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ABSTRACT

2-Triethylsiloxy-substituted 1,3-butadiene has been prepared in gram quantities from chloroprene via a simple synthetic procedure. Silatrane
and catechol-substituted analogues of this main group element substituted diene were prepared by ligand exchange and characterized by
X-ray crystallography in addition to standard spectroscopic techniques. Diels −Alder reactions of these dienes are reported as well as subsequent
TBAF assisted/Pd-catalyzed Hiyama cross-coupling reactions of those Diels −Alder adducts.

Reports of main group element substituted 1,3-dienes and
their reaction chemistry are not widespread in organic
chemistry. With respect to silyl-substituted 1,3-dienes, 1-tri-
methylsilyl-1,3-butadiene was originally reported and trapped
with maleic anhydride in 1957.1 Fleming and co-workers then
reported an alternate preparation of this compound and a
number of its Diels-Alder reactions over the 1970s and early
1980s.2,3 Subsequent to these initial reports a number of
1-silyl-1,3-diene preparations that rely on olefination ofR,â-
unsaturated aldehydes, nickel-catalyzed coupling reactions,
etc. have also been reported and reviewed.4,5 Reports of
2-silyl-substituted 1,3-dienes are 3- to 4-fold less frequent
than their 1-substituted counterparts. 2-Triethylsilyl-1,3-
butadiene and a few of its Diels-Alder reactions were
reported by Ganem and Batt in 1978.6 Paquette and Daniels

reported some 2-silyl-substituted-1,3-cyclohexadienes in
1982 but none of their Diels-Alder chemistry.7 Trost and
Mignani reported the Pd-catalyzed elimination and cycliza-
tion reactions of 3-acetoxy-2-trimethylsilyl-1-butene in 1986.8

Two other reports of the preparation of 2-trialkylsilyl-1,3-
dienes have appeared since a 1995 review but neither of these
studies report Diels-Alder reactions.9,10 Reports of the
preparation and use of 2-trialkoxysilyl-1,3-dienes are ex-
tremely rare. We find a report of the use of the Ganem and
Batt protocol to make 2-trimethoxysilyl- and 2-triethoxysilyl-
1,3-butadiene in 198411 and then a report of the polymeri-
zation of these materials in 1989.12 Given the known
propensity of trialkoxysilyl aryls and alkenyls to participate
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in fluoride-assisted, metal-catalyzed cross-coupling reac-
tions,13 we felt that an easily accessible preparation of
2-trialkoxysilyl-1,3-dienes would be subsequently useful for
tandem Diels-Alder/cross-coupling chemistry. We report our
initial studies in this area in the work that follows.

2-Trialkoxysilyl-Substituted 1,3-Diene Preparation and
Characterization. 2-Triethoxysilyl-1,3-butadiene (2) was
prepared in high yield by the nucleophilic addition of 1,3-
butadienyl-2-magnesium chloride (generated in situ from
chloroprene (1) and Mg) to triethoxysilyl chloride.12,14 The
title compound (2) was isolated as a colorless liquid after
distillation under reduced pressure. This compound slowly
polymerized on standing at room temperature over a period
of 10-15 days but is quite stable at low temperature,-20°C.
2-Triethoxysilyl-1,3-butadiene (2) can be used in ligand
exchange reactions to make other siloxy dienes (3, 4) as air
stable crystalline solids. Alcoholysis of compound2 with
triethanolamine in the presence of a catalytic amount of KOH
resulted in the formation of (buta-1,3-dien-2-yl)silatrane (3)
as a light yellow solid. Treatment of2 with catechol in the
presence of KOH yielded potassium [bis(1,2-benzenediolato)-
1,3-butadien-2-yl]silicate (4) as a white amorphous powder.
At room temperature, compounds3 and4 show no signs of
decomposition over a period of a few weeks.

All the silyl butadienes (2, 3, and 4) were structurally
characterized by 1D and 2D NMR techniques. On the basis
of the absence of NOESY cross-peaks between H1T H4
and H3 T H1 and no observable peak broadening at
temperatures down to-60 °C, we concluded that thes-cis
to s-transinterconversion is too fast to observe in solution.
Dienes3 and4 were both also characterized by single-crystal
X-ray diffraction. Diene3 proved to be unusual in that there
were three independent molecules per asymmetric unit. Two
of the three molecules in this unit hads-trans like diene
torsion angles (C(17)-C(18)-C(19)-C(20) was 178.5(3)°

and C(27)-C(28)-C(29)-C(30) was 170.3(3)°) whereas the
third molecule had ans-cislike diene torsion angle (C(37)-
C(38)-C(39)-C(40)) of 36.3(4)° (Figure 1). Diene4

crystallizes with potassium coordinated THF molecules
(Figure 2). The Si-C13 bond length is 1.889(5) Å and the

diene torsion angle is very close to thes-trans 176.7(8)°
(Figure 2).

Diels-Alder Reactions.We initially compared dienes2,
3, and 4 in reactions withN-phenylmaleimide. We found
that whereas the triethoxysilyl diene2 showed only about a
2% conversion to cycloadduct5 by NMR after 30 min at
25 °C in THF, the silatrane3 and catechol containing dienes
4 showed complete conversion to cycloadducts6 and7 by
1H NMR and the cycloadducts were subsequently isolated
in almost quantitative yield.
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Figure 1. View of a molecule of thes-cisconformer of diene3.

Figure 2. View of a molecule of diene4 showing the coordinating
THF solvent molecules.
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We next wanted to get an idea of relative reactivity of
these most reactive silicon-substituted dienes3 or 4 in
comparison to known, reactive dienes such as Danishefsky’s
diene (1-methoxy-3-trimethylsiloxy-1,3-butadiene).15 We
found that silatrane diene3 reacted withN-phenylmaleimide
at 0 °C with akobs of 3.7× 10-2 min-1 andt1/2 of 18.8 min
whereas Danishefsky’s diene reacted under identical condi-
tions with akobs of 2.1 × 10-2 min-1 and at1/2 of 33 min.
These data place the silatrane diene3 at almost twice as
reactive as Danishefsky’s diene.

Single-point-energy, semiempirical (AM1) calculations of
HOMO energies for a number of dienes, while constraining the
1,3-diene dihedral angles to 0°, were also performed with
SPARTAN2.0.1,3-Butadiene,2-methoxybutadiene,andDani-
shefsky’s diene have HOMO energies of-9.35,-9.09, and
-8.82 eV, respectively. Dienes2, 3, and4 have HOMO ener-
gies of-9.21,-7.87, and-5.04 eV, respectively. These ener-
gies are consistent with our observations that2 is less reactive
than Danishefsky’s diene whereas3 is more reactive than
Danishefsky’s diene and diene3 is less reactive than diene4.

Additional Diels-Alder reactions with the unsymmetrical
dienophile, citraconic anhydride8, were then performed to
assess any differences in rate or regioselectivity of cycload-
dition reactions. The silatrane-substituted diene3 produced
a 2.0:1 mixture of para:meta regioisomers (9:10) in 78%
isolated yield after heating to 120°C in THF for 48 h. The
catechol silane-substituted diene (4) reacted under slightly
milder conditions (90°C for 36 h) to produce a 4.8:1 mixture
of 11:12 in 78% isolated yield.

Major and minor isomer regiochemistry and stereochem-
istry assignments were originally performed with NOESY
data which showed strong NOEs between the CH3 and both
the ring junction H and one of the two diastereotopic H’s
on the CH2 R to the alkene C-H for both 9 and 11. This
assignment was subsequently confirmed for the major isomer
(9) by X-ray crystallography (Figure 3).

Diels-Alder/Cross Coupling. We have demonstrated that
it is possible to effect Hiyama cross-coupling reactions of
these silicon-substituted Diels-Alder cycloadducts.16 Sila-
trane-substituted cycloadduct6 was treated with iodobenzene
or p-iodoanisole in the presence of Pd(II), PPh3, and TBAF
to produce the cross-coupled cycloadducts13and14 in 83%
and 68% isolated yield.

We have also looked very briefly at the possibility of using
these dienes in one-pot sequential reaction sequences rather
than the two-pot Diels-Alder cross-coupling sequences
described above. The first attempt to do transmetallation/
Diels-Alder/cross coupling by treating2 with N-phenyl-
maleimide, iodobenzene, and TBAF in the presence of Pd(II)
and CuI just yielded the cross-coupling product of the silyl
diene, 2-phenyl-1,3-butadiene (15).17 The implication of this
experiment is that transmetallation/oxidative addition/reduc-
tive elimination could not be intercepted by the Diels-Alder
reaction under these conditions. A less ambitious transmet-
allation/Diels-Alder/protonolysis scheme did yield some
Diels-Alder product1618,19 from a one-pot reaction.

In summary, we have prepared new, stable, crystalline
silyl-substituted dienes in high yield and find that they readily

Scheme 1. Reactions of 2-Trialkoxysilyl-1,3-dienes

Figure 3. View of a molecule of major cycloadduct isomer9.
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participate in Diels-Alder/cross-coupling tandem reactions.
We will report the transition-metal-catalyzed reaction chem-
istry of these main group element substituted dienes in much
more detail in due course.
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