TRITERPENOID SAPONINS AND FLAVONOL GLYCOSIDES FROM PHYTOLACCA THYRSIFLORA*

MITSUE HARAGUCHI, MARIO MOTIDOME and OTTO R. GOTTLIEB

Instituto de Química, Universidade de São Paulo, 05508 São Paulo, SP, Brasil

(Revised received 2 November 1987)

Key Word Index—*Phytolacca thyrsiflora*; Phytolaccaceae; triterpenoid saponins; glycosylphytolaccagenins; glycosylserjanoates; glycosylspergulagenates; glycosylkaempferols; lignan; americanin A.

Abstract—The organs of *Phytolacca thyrsiflora* contain heterosides of different aglycones. In the roots only saponins based on phytolaccagenin and very probably on its de-O-methylderivative jaligonic acid have been located. The berries contain four new saponins based on serjanic acid. The de-O-methylanalogues, i.e. the spergulagenic acid derivatives, have so far been obtained only by saponification of the serjanoates. Finally, the leaves contain, besides glycosides of 7-O-methylkaempferol and of kaempferol, two of the new saponins based on serjanic acid. Only the known lignan, americanin A, was isolated from the seeds.

INTRODUCTION

Species of the genus *Phytolacca*, family Phytolaccaceae, superorder Caryophylliflorae sensu Dahlgren [1], are noted for their use in popular medicine against ailments of the joints (*P. acinosa*) [2], edema and rheumatism (*P. americana*, *P. insularis*)[3, 4] and dermatitis (*P. octandra*) [5]. Jointly with *P. bogotensis* [6], *P. dodecandra* [3, 7] and *P. rivinoides* [8] all contain triterpenoid saponins as the probable active principles. *P. dodecandra* has been found to be useful in the control of *Biomphalaria glabrata*, the snail-vector of bilharziasis [9].

Phytolacca thyrsiflora Fenzl ex Schmidt, popularly known as 'caruru bravo' or 'caruru selvagem', is used in Brazil for a series of alleged therapeutic properties [10]. It may also contain potential moluscicides and is known to intoxicate and sometimes even to kill cattle [11].

RESULTS AND DISCUSSION

All compounds isolated from the roots of *Phytolacca* thyrsiflora (Table 1) have been encountered previously in other species of the genus: phytolaccagenin-3-O- β -D-xylopyranoside (phytolaccoside-B, 1c) and phyto-laccagenin-3-O- β -D-glucopyranosyl $(1 \rightarrow 4)$ - β -D-xylopyranoside (phytolaccoside-E, 1e) [12] in *P. americana* [13], as well as phytolaccagenin-3-O- β -D-glucopyranoside (1d) in *P. esculenta* [14]. All three saponins are based on phytolaccagenin (1a). This aglycone, jointly with jaligonic acid (1b), was also described in connection with *P. esculenta*. Both, 1a and 1b, were now obtained again by acid hydrolysis of a crude extract of the roots of *P. thyrsiflora*.

In contrast to the saponins of the roots, the saponins of the berries (2d, 4a, 4b, 4c) and some of the saponins of the leaves (2d, 4c) are all based on the well known serjanic acid (2a) as the aglycone. The evidence for this assertion is documented in Table 1. In serjanic acid position C-20 is occupied by a carbomethoxyl, while C-17 sustains a free carboxyl. These features continue in the heteroside 2d, while the C-17 carboxyls of 4a, 4b, and 4c are freed only by saponification and must originally have been part of an ester, predictably an O-glucosyl one. Saponification of the carbomethoxyls of all four compounds (4a, 4b, 2d and 4c), leads respectively to 3b, 3c, 3e, and 3f. The sole concomitant change in the structure of the sugar units was observed for 2d. Indeed 3e contains one sugar unit less than its precursor (2d).

The number of sugar units per molecule was established via NMR evidence concerning the number of anomeric carbons (δ 102–107) and protons (δ 4.8–6.3) (Table 2), as well as through mass spectral data obtained by the FD and FAB techniques (Experimental). The nature of these units was determined via partial hydrolysis with dilute HCl (Table 1). For the triglycoside 2d this led to the diglycoside 2c and the monoglycoside 2b; for 3f, the saponification product of the triglycoside 4c, this led to the diglycoside 3d and the monoglycoside 3b. The nature of the heterosidic sugar moieties was determined by ¹³C NMR comparison with model compounds (Tables 3 and 4). This refers inclusively to the interosidic $1 \rightarrow 3$ bond between galactose and glucose of 2c and 2d, methyl-O- β -D-laminoribioside (7) [15] serving as model; and to D-allose, the terminal sugar unit of 4c and 3f, momordicoside F, (12) [16] serving as model. This was the only analytical procedure adopted in the characterization of allose. In all other cases sugars were freed and identified by chromatographic comparison with authentic samples. All saponins are glycosylated at C-3, as revealed by an 11 ppm downfield shift of the pertinent signals of the saponin with respect to the sapogenin.

Hydrolysis of the glycosylflavonoids 5c and 5d gave kaempferol (5a), while 5e and 5f gave 7-O-methylkaempferol (5b). Both flavonols are well known and, jointly

^{*} Taken in part from the Doctorate thesis presented by M. H. to Universidade de São Paulo (1986).

Table 1. Constituents of Phytolacca thyrsiflora and of their reaction products

			Reagents	
		20% KOH	0.5 N HCl	1 N HCl
Root	BuOH extract			1a, 1b
	1c			la, xylose
	1d			1a, glucose
	1e			1a, xylose, glucose
Berry	BuOH extract			2a
	4a	3b		2a , glucose
	4b	3c		2a, glucose
	2d	3e	2b,2c	2a, glucose, galactose
	4c	3f	3a, 3b, 3d	2a, glucose
Leaf	2d			-
	4c			
	5c			5a, galactose, xylose
	5e			5b , galactose, xylose
	5d			5a, galactose, glucose
	5f			5b, galactose, glucose
Seed	6			

ia $R^{1} = H, R^{2} = Me$ ib $R^{1} = R^{2} = H$ ic $R^{3} = Xyl(1-, R^{2} = Me)$ id $R^{1} = Gic(1-, R^{2} = Me)$ ie $R^{4} = Glc(1--+4)Xyl(1-, R^{2} = Me)$

 $R^1 = R^2 = H, R^3 = Me$ 28 2ь $R^1 = Glc(1-, R^2 = H, R^3 = Me$ $R^1 = Gal(1 \rightarrow 3) Glc(1 -, R^2 = H, R^3 = Me$ 20 2d $R^1 = Gal(1 \rightarrow 2) Gal(1 \rightarrow 3) Glc(1 -, R^2 = H, R^3 = Me$ $\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{H}$ 3a **3b** $R^1 = Glc(1-, R^2 = R^3 = H$ **3c** $R^1 = Gle(1 - 2)Gle(1 - R^2 = R^3 = H$ **3d** $R^1 = Glc(1-4)Glc(1-, R^2 = R^3 = H$ **3e** $R^1 = Gal(1 \rightarrow 3) Glc(1 \rightarrow R^2 = R^3 = H$ **3f** $R^1 = All (1 - 4) Glc (1 - 4) Glc (1 - R^2 = R^3 = H$ 4a $R^1 = R^2 = Glc(1-, R^3 = Me)$ **4b** $R^1 = Glc(1 - 2) Glc(1 - R^2 = Glc, R^3 = Me$

4c R^1 = All (1-4) Glc (1-4) Glc (1-, R^2 = Glc, R^3 = Me

with the carbohydrates indicated in Table 1, were identified with ease. Compound 5c was identified by ¹³C NMR (Table 5) with kaempferol-3- $O[\beta$ -D-xylopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside] isolated previously from Armoracia rusticana [17]. The compound served as a model in the identification of the remaining flavonoids, including the disaccharide portion of 5c. The identities of the analogous portions of compounds 5d and 5f were established using quercetin 3- $O[\beta$ -D-glycopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside] (5g) [18] as model.

The spectral data obtained in the present study for 5c were previously recorded for an uncompletely characterized constituent of *Lysichiton camtschatcence* [19]. We wish to suggest that this constituent also shows structure 5c.

EXPERIMENTAL

Mps: uncorr. DCCC was performed using the DCC-A apparatus of Tokyo Rikakikai, Tokyo (Japan); 300 tubes were used, upper layer (water layer) as stationary phase, in descending mode. FABMS and FDMS: JEOL JMS DX- 300/JMA-3500 system. In FABMS, the samples were dissolved in a glycerol matrix and the target was bombarded with Xe atoms. ¹H NMR spectra were measured at 400 MHz (JEOL GX-400) and 60 MHz (Varian EM-360) and ¹³C NMR spectra at 20 MHz (Varian FT-80A).

Isolation of the constituents. Material of Phytolacca thyrsiflora was collected in the Municipality of Cotia, São Paulo, and identified by Professor Sylvio Panizza, Universidade de São Paulo. Roots, berries, leaves and seeds were treated separately by the following general method. Plant material, freed of fat by maceration in petrol, was extracted exhaustively with EtOH. The filtered soln was evapd and the residue, in H₂O, was extracted exhaustively with *n*-BuOH saturated with H₂O. The BuOH soln was evapd. Only the residue originating from seeds was at this stage extracted previously with EtOAc. All other residues were fractionated by successive column (50 × 4.5 cm) chromatography (silica gel H, eluant CHCl₃-MeOH-H₂O, 16:9:2) under pressure (N₂, 0.5 kgf/cm²); and droplet countercurrent chromatography, descending mode, CHCl₃-

Table 2. NMR signals (δ , C₅D₅N) assigned to anomeric ¹³C (20 MHz) and ¹H (400 MHz), coupling constants (J Hz) in parentheses

	¹³ C	¹ H
2d	102.4 104.9 105.7	
3b	105.0, 106.6	4.97 (7.8)
3f	102.5, 104.9, 105.8	4.81 (7.6), 5.41 (7.0), 5.55 (7.8)
4 a	106.8	4.96 (7.6), 6.33 (8.0)
4b	105.0, 105.8	4.93 (7.6), 5.41 (7.5), 6.33 (8.1)
4c	102.6, 105.0, 105.9	

Table 3. ${}^{13}CNMR$ chemical shifts of saponins in C₅D₅N and of model compounds (7, 8, 9) [In the first four lines only diagnostically relevant values are given, for other values relevent to the aglycone moieties see 4a (Experimental)]

С	2b	2c	2d	3b	3e	4 a	7	8	9
3	89.2	89.2 <u>‡</u>	89.1	89.4	89.3	89.2			
28	180.2	180.0	179.8	180.7	180.4	176.3			
30	177.4	177.4	177.2	180.1	179.9	177.2			
OMe	51.9	51.7	51.7			51.9	56.5	56.7	56.6
C ₃ -O-Inner									
sugar									
1	106.9	106.3	105.7	106.8	106.3	106.8	105.5	105.4	106.1
2	75.8	74.6	75.0	75.3	74.7	75.8	73.8	74.8	72.5
3	78.7*	89.0t	89.1	78.7*	88.7	78.5*	88.7	78.1	75.2
4	71.9	70.28	70.9	72.0	70.0§	71.9	70.2	71.4	70.1
5	78.3*	77.8*	77.8*	78.2*	77.8*	78.2*	77.7	78.1	76.8
6	63.1	62.7†	61.9†	63.1	62.3	63.1	62.8	62.5	62.3
Intermediate									
sugar									
1			102.4						
2			82.8						
3			73.1						
4			69.9						
5			77.5*						
6			62.3†						
Terminal			,						
sugar									
1		106.3	104.9		106.3		105.0		
2		73.1	72.7		73.0		75.4		
3		75.1	74.5		75.2		78.3*		
4		70.0§	70.1		70.3§		71.9		
5		77.4*	77.4*		77.4*		78.2*		
6		62.3†	61.9†		62.3		62.8		
C ₂₈ -O-Inner		I	'						
sugar									
1						95.8			
2						75.8			
3						79.2			
4						71.1			
5						78.8*			
6						62.1			

7 Methyl-O- β -D-laminoribioside in C₅D₅N [15].

8 Methyl-O- β -D-glucopyranoside in C₅D₅N [15].

9 Methyl-O- β -D-galactopyranoside in C₅D₅N [15]. *,†,§,‡ Assignments may be interchanged between the carbons in the same column.

C	3c	3d	3f	4b	4c	8	10	11	12	
3	89.5	89.4	89.4	89.2	89.2					
28	180.5	180.6	179.6	176.2	176.5					
30	180.0	180.2	180.2	177.1	177.3					
OMe				51.8	52.1	56.7		58.9		
C ₁ -O-Inner										
sugar										
1	105.7	106.5	105.8	105.8	105.9	105.4	95.8	104.5	103.8	
2	83.0	75.2§	75.2	83.1	75.1	74.8	82.8	74.2*	76.1	
3	78.4*	76.9†	78.3	78.4*	78.2	78.1	77.2	76.4	72.4	
4	71.6†	81.7	82.9	71.7	82.9	71.4	71.7	80.3	69.2	
5	78.1*	76,4†	77.2	78.2*	77.2	78.1	77.2	75.9	73.0	
6	62.9	62.4‡	62.1	62.9†	62.1	62.5	62.4	61.8	62.3	
Intermediate		1		1						
sugar										
1			104.9		105.0					
2			74.7		74.5					
3			77.8*		78.2					
4			82.9		82.9					
5			77.7*		77.8					
6			62.1		62.1					
Terminal										
sugar										
1	105.1	105.0	102.5	105.0	102.6		103.9	103.9		
2	75.3	75.4§	75.8	74.3	75.9		74.9	74.6*		
3	78.4*	78.4*	72.9	78.0*	72.9		77.2	77.5		
4	71.9†	71.7	70.0	71.7	70.1		71.1	71.2		
5	77.0	78.3*	73.0	77.0	73.0		77.2	77.2		
6	62.9	62.5‡	62.4	62.6†	62.1		62.4	62.4		
C ₂₈ -O-Inner		•								
sugar										
1				95.8	95.9					
2				74.1	74.2					
3				79.2	79.3					
4				71.1	71.2					
5				78.8	78.9					
6				62.0	62.4					

Table 4. ¹³C NMR chemical shifts of saponins in C_5D_5N and of model compounds (8, 10, 11, 12) [in the first four lines only diagnostically relevant values are given for other values respective to the aglycon moieties see 4a (Experimental)]

10 β -Sophorose in D₂O [15].

11 Methyl-O- β -D-cellobioside in D₂O [15].

12 Momordicoside F_2 in C_5D_5N [16].

*,†,\$,‡ Assignments may be interchanged between the carbons in the same column.

5a	R ¹ =	$R^2 = R^3 = H$
5b	R ¹ =	$Me, R^2 = R^3 = H$
5c	R1 =	$R^2 = H, R^3 = Xyl(1-2)Gal(1-$
5d	R ¹ =	$R^2 = H$. $R^3 = Glc (1 - 2) Gal (1 - 2)$
5e	R1 =	Me, $R^2 = H$, $R^3 = Xyl(1-2)Gagal(1-2)Gal(1-2)Gal(1-2)Gal(1-2)Gal(1-2)Gal(1-2)Gal(1$
5f	R1 =	Me. $R^2 = H$, $R^3 = Glc(1-2)Gal(1-2$
5g	R'≖	H, $R^2 = OH$, $R^3 = Gic(1 - 2)Gat(1)$

MeOH-H₂O, 7:13:8, rate 10–20 ml/hr. Yields:dry roots (450g) gave BuOH extract (19.5g): 1c (190mg), 1d (110mg) and 1e (450mg). Fresh roots (3.4 kg) gave BuOH extract (3.2g):1c (30mg), 1d (10mg) and 1e (40mg). Dry berries (without seeds) (138g) gave BuOH extract (8.5g):2d (1.50g), 4a (350mg), 4b (720mg) and 4c (2.3g). Dry leaves (700g) gave BuOH extract (29 g):2d (970mg), 4c (3.87g), 5c (390mg), 5d (510mg), 5e (250mg) and 5f (1.01g). Seeds (134g) gave EtOAc extract (7.2g): $\frac{6}{6}$ (840mg).

Identifications. Phytolaccagenin (1a) [3,12], jaligonic acid (1b) [20], phytolaccoside B (1c), phytolaccoside E (1e) [12], serjanic acid (2a) [21], spergulagenic acid (3a) [3] and kaempferol-3-O-[β -D-xylopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside] (5c) [17], kaempferol-3-O-[β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside (5d) [22] and americanin A (6) [23] were identified by spectral comparisons with published data. Only com-

Structural	~ .	5c		_		5g
parts	Carbon	[17]	5d	5e	51	[18]
Flavonol	2	156.9	155.8	155.8	156.2	156.2
	3	134.3	133.1	133.4	133.4	133.0
	4	178.8	177.7	177.7	177.8	177.3
	4a	105.2	104.4	105.0	105.1	104.1
	5	160.7	161.5	161.1	161.2	161.0
	6	99.5	99.0	98.5	98.4	98.6
	7	163.3	164.4	165.2	165.2	164.1
	8	95.1	93.9	92.4	92.4	93.4
	8a	157.9	156.5	156.4	156.4	155.4
	OMe		_	56.2	56.2	_
	1′	122.0	121.1	121.0	121.0	121.1
	2'	131.8	131.2	131.2	131.2	115.3
	3′	115.8	115.5	115.4	115.5	144.7
	4′	159.3	160.2	160.3	160.3	148.3
	5'	115.8	115.5	115.4	115.5	115.8
	6'	131.8	131.2	131.2	131.1	122.1
Inner	1″	100.8	98.7	98.0	98.6	98.4
Sugar	2‴	78.9	80.6	79.9	80.6	80.7
	3″	74.0	73.5	73.8	73.6	73.2
	4″	69.4	67.9	68.0	67.8	67.4
	5''	74.4	76.0	76.1	75.9	75.8
	6″	61.1	61.1*	60.1	61.2*	59.8*
Terminal	1‴	104.2	104.1	104.8	104.4	104.2
sugar	2‴	75.8	74.6	74.1	74.6	74.3
-	3‴	75.4	76.8	76.4	77.2	76.7
	4‴	70.1	70.0	69.6	70.0	69.5
	5‴	66.0	77.2	65.9	76.8	76.4
	6‴		60.2*		60.1*	60.6*

Table 5. ¹³C NMR chemical shifts of glycosylflavonoids (5d, 5e, 5f) and of model compounds (5c and 5g) in DMSO- d_6

* Assignments may be interchanged between the carbons in the same column.

plementary, previously unpublished, data on these compounds are given below.

Phytolaccoside B (1c). FDMS m/z (rel. int.): 664 [M]⁺, 618 [M-H₂CO₂]⁺, 532 [M-132]⁺, 133 [Xyl+H-H₂O]⁺.

Phytolaccagenin-3-O-β-D-glucopyranoside (1d). Mp 215–217°. IR ν_{max}^{KB} cm⁻¹:3500–3300 (OH), 1730 (ester CO), 1630, 1200– 100 (C–O–C), 820. FDMS *m/z*: 733 [M+K]⁺, 717 [M+Na]⁺, 695 [M+H]⁺, 694 [M]⁺, 532 [M–162]⁺, 163 [Glc+H -H₂O]⁺. ¹³C NMR:δ sugar moiety:105.3, 75.2, 78.3, 71.2, 77.9, 62.3 (glucosyl C-1 to C-6).

Phytolaccoside E (1e). FDMS m/z: 873 $[M + 2Na + H]^+$, 865 $[M + K]^+$, 849 $[M + Na]^+$, 826 $[M]^+$, 664 $[M - 162]^+$, 532 $[M - 162-132]^+$.

Serjanic acid-3-O- $(\beta$ -D-glucopyranoside) (2b). Mp 195–198°. ¹³C NMR : Table 3.

Serjanic acid-3-O-[β -D-galactopyranosyl (1 \rightarrow 3)- β -D-glucopyranoside] (2c). Mp 217–219°. ¹³C NMR : Table 3.

Serjanic acid-3-O-[β -D-galactopyranosyl (1 \rightarrow 2)- β -D-galactopyranosyl (1 \rightarrow 3)- β -D-glucopyranoside] (2d). Mp 203–206°. ¹³C NMR: Table 3. FDMS *m/z*: 1064 [M + 2K]⁺, 1026 [M + H +K]⁺, 1010 [M + H + Na]⁺, 864 [(M + H + K) - 162]⁺, 848 [(M + H + Na) - 162]⁺, 525 [(M + 2H + Na) - 3(162)]⁺.

Spergulagenic acid (3a). ¹³C NMR: 39.1 (C-1), 28.0 (C-2), 78.3 (C-3), 39.8 (C-4), 56.0 (C-5), 18.8 (C-6), 33.4 (C-7), 39.4 (C-8), 48.2 (C-9), 37.5 (C-10), 23.9 and 24.0 (C-11, C-16), 123.5 (C-12), 144.9 (C-13), 42.2 (C-14), 28.6 (C-15), 46.5 (C-17), 43.5 (C-18), 43.2 (C-19), 44.2 (C-20), 31.2 (C-21), 34.8 (C-22), 28.9 (C-23), 16.6 (C-24),

15.6 (C-25), 16.6 (C-26), 26.3 (C-27), 180.0 and 180.5 (C-28, C-30), 29.2 (C-29).

Spergulagenic acid-3-O-(β -D-glucopyranoside) (**3b**). Mp 251-255° FABMS m/z: 647 [M-H]⁻, 485 [M-162]⁻. ¹H NMR (400 MHz): δ 4.97 (1H, d, J = 7.8 Hz, Glc H-1). ¹³C NMR: Table 3.

Spergulagenic acid-3-O-[β -D-glucopyranosyl (1 \rightarrow 2)- β -D-glucopyranoside] (3c). ¹³C NMR. Table 4.

Spergulagenic acid-3-O-[β -D-glucopyranosyl (1 \rightarrow 4)- β -D-glucopyranoside] (3d). Mp 224–227°. ¹³C NMR: Table 4.

Spergulagenic acid-3-O-[β -D-galactopyranosyl(1 \rightarrow 3)- β -D-glucopyranoside] (3e). Mp 228–231°. ¹³C NMR: Table 3.

Spergulagenic acid-3-O-[β -D-allopyranosyl (1 \rightarrow 4)- β -D-glucopyranosyl (1 \rightarrow 4)- β -D-glucopyranoside] (**3f**). Mp 228-240°.FABMS m/z 972 [M]⁻, 809 [M-H-162]⁻, 647 [M -H-2 (162)]⁻, 458 [M-H-3 (162)]. ¹H NMR (400 MHz): δ 5.55 (1H, d, J = 7.9 Hz, H-1 of sugar moiety), 5.41 (1H, d, J = 7.0 Hz, H-1 of sugar moiety), 4.81 (1H, d, J = 7.8 Hz, H-1 of sugar moiety). ¹³C NMR: Table 4.

Serjanic acid-3-O-(β-D-glucopyranoside)-28-O-β-D-glucopyranoside (4a). Mp 194–198°. FABMS m/z: 823 [M–H]⁻, 661 [M–H–162]⁻, 499 [M–H–2(162)]⁻. ¹H NMR (400 MHz):δ 6.33 (1H, d, J = 8.1 Hz, Glc H-1), 4.96 (1H, d, J = 7.6, Glc H-1). ¹³C NMR: Table 3 and 38.8 (C-1), 26.8 (C-2), 39.6 (C-3), 56.0 (C-5), 18.6 (C-6), 33.3 (C-7), 40.0 (C-8),48.1 (C-9), 37.1 (C-10), 23.7 and 23.9 (C-11, C-16), 124.0 (C-12), 144.0 (C-13), 42.2 (C-14), 28.5 (C-15), 46.7 (C-17), 42.6 (C-18), 43.3 (C-19), 44.1 (C-20), 30.0 (C- 21), 34.0 (C-22), 28.5 (C-23), 17.1 and 17.6 (C-24, C-26), 15.7 (C-25), 26.2 (C-27), 28.5 (C-29). The mean maximal variation of these values for the aglycon (serjanic acid) parts of **2b-2d**, **3b-3f**. **4b**. **4c** is \pm 0.3 ppm.

Serjanic acid-3-O-[β -D-glucopyranosyl (1 \rightarrow 2)- β -glucopyranoside] 28-O- β -glucopyranoside (4b). Mp 209–212°. ¹³C NMR: Table 4. FABMS *m/z*: 985 [M – H]⁻, 823 [M – 11 – 162]⁻, 661 [M – H – 2](162)]⁻, 499 [M – H – 3(162)]⁻. ¹H NMR (400 MHz): δ 6.33 (1H, *d*, *J* = 8.0 Hz, Glc H-1), 5.40 (1H, *d*, *J* = 7.5 Hz, glc H-1), 493 (1H, *d*, *J* = 7.6 Hz, Glc H-1).

Serjanic acid-3-O-[β -D-allopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl(1 \rightarrow 4)- β -D-glucopyranoside] 28-O- β -D-glucopyranoside (4c). Mp 225–228°. FDMS *m/z*: 1188 [M + H + K]⁺, 1172 [M + H + Na]⁺, 1148 [M]⁺, 1026 [(M + H + K) – 162]⁺, 1010 [(M + H + Na)⁻162]⁺, 864 [(M + K) – 324]⁺, 846 [(M + Na) – 324]⁺, 700 [(M + K) – 486]⁺, 684 [(M + Na) – 486]⁺, 540 [(M + H + K) – 648]⁺. ¹³C NMR: Table 4.

Kaempferol-3-O-β-D-glucopyranosyl (1→2)-β-D-galactopyranoside (5d). FDMS m/z: 610 [M]⁺, 448 [M-162]⁺, 286 [genin]⁺. ¹³C NMR: Table 5.

Kaempferol-7-O-*methyl*-3-O-[β-D-*xylopyranosyl* (1→2)-β-Dgalactopyranoside] (5e). Mp 168–171[°]. UV λ_{max}^{EtOH} nm: 268. 351; + NaOAc: 277, 400; + AlCl₃: 276, 303, 351, 396. FDMS *m/z*: 594 [M]⁺, 462 [M-132]⁺, 300 [genin]⁺, 162 [Gal + H – H₂O]⁺, 133 [Xyl + H – H₂O]⁺. ¹H NMR (60 MHz, DMSO-d₆):δ 8.27 (2H, *d*, *J* = 8 Hz, H-2' and H-6'), 6.95 (2H, *d*, *J* = 8 Hz, H-3' and H-5'), 6.78 (1H, *d*, *J* = 2 Hz, H-8), 6.42 (1H, *d*, *J* = 2 Hz, H-6), 3.87 (3H, s, Me). ¹³C NMR: Table 5.

Kaempferol-3-O-[β-D-glucopyranosyl(1→2)-β-D-galactopyranoside]-7-O-methyl (**5f**). Mp 175–178⁺. UV λ_{max} nm: 267, 351; + NaOAc: 269, 399; + AlCl₃: 278, 306, 354, 404. FDMS m/z: 647 [M + Na]⁺, 625 [M + H]⁺, 462 [M -- 162]⁺, 300 [genin]⁺. ¹H NMR (60 MHz, DMSO-d₆): δ 8.15 (2H, d, J = 8 Hz, H-2' and H-6'), 6.80 (2H, d, J = 8 Hz, H-3' and H-5'), 6.73 (1H, d, J = 2 Hz, H-8), 6.40 (1H, d, J = 2Hz, H-6), 3.88 (3H. *s*, Mc). ¹³C NMR: Table 5.

Hydrolysis with 1 N HCl. The saponins (50 mg) in EtOH (2 ml) and 1 N HCl (2 ml) were heated under reflux (4 hr). The EtOH was evapd. The residual aq. solns were poured on ice- H_2O . The ppt. was collected and recrystallized from EtOH. The mother liquors were passed through an ion exchange column (Amberlite IRA-45) to neutralise and then evapd. The residues were submitted to standard paper (Whatman no. 1) chromatography (BAW 4:1:5). Detection of spots relied on the application of aniline hydrogen phthalate and heating (110°, 10 min). The identification of sugars involved cochromatography with authentic samples.

Hydrolysis with alkali. The saponins (100 mg each) in MeOH containing 20% KOH (60 ml) were heated under reflux (10 hr). The cooled mixtures were poured on ice-H₂O, acidified with 4 NHCl until pH 5-6 and extracted with *n*-BuOH. The BuOH layer was separated and evapd. The residues were fractionated by CC (silica gel H. CHCl₃-MeOH-H₂O, 16:9:2) under pressure. Yields: $2d \rightarrow 3e$ (21 mg), $4a \rightarrow 3b$ (15 mg), $4b \rightarrow 3c$ (13 mg), $4c \rightarrow 3f$ (10 mg).

Hydrolysis with 0.5 N HCl. The saponins (70 mg each) in EtOH (20 ml) and 0.5 N HCl (20 ml) were heated under reflux (2 hr). The cooled mixtures were neutralized with aq. 1 N NaOH. The EtOH was evapd and the residue dissolved in H₂O. The soln was extracted with *n*-BuOH saturated with H₂O. The BuOH layer was evapd. The residue was submitted to a

sequence of chromatographic procedures up to the isolation of pure products of partial hydrolysis. The aq. layer was examined for sugars by the traditional paper chromatographic method (BAW, 4:1:5). Yields: $2d \rightarrow 2b$ (21 mg) and 2c (11 mg), $3f \rightarrow 3a$ (10 mg), 3b (15 mg) and 3d (7 mg).

Acknowledgements—The authors are grateful to Professor Toshio Kawasaki, Dr Kazumoto Miyahara and Dr Masatoshi Nishi (Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan) for the measurements of FDMS, FABMS and ¹H NMR (400 MHz) spectra. We also wish to thank FINEP, CNPq and FAPESP for grants; CAPES and CNPq for graduate fellowships to M. H. and Fundo Bunka of Research of the Sociedade Brasileira de Cultura Japonesa for a research grant and fellowship to M.H.

REFERENCES

- 1. Dahlgren, R. (1980) Bot. J. Linn. Soc. 80, 91.
- Dhar, D. N., Munjal, R. C. and Singh, A. K. (1977) Planta Med. 32, 225.
- Woo, W. S. and Kang, S. S. (1975) J. Pharm. Soc. Korea 19, 189.
- 4. Kang, S. S. and Woo, W. S. (1987) Planta Med. 53, 338.
- 5. Moreno, M. and Rodrígues, V. M. (1981) *Phytochemistry* 20, 1446.
- Martinod, P., Hidalgo, J. and Guevara, C. (1977) *Politecnica* 3, 49. *Chem. Abstr.* 90, 83623.
- 7. Dorsaz, A.-C. and Hostettmann, K. (1986) *Helv. Chim. Acta* 69, 2038.
- Gonzalez, A. G., Breton, J. L. F., Castaneda, J. P., Fraga, B. M. and Morales, A. (1972) *Ann. Quim.* 68, 1057.
- Parkhurst, R. M., Thomas, D. W., Skinner, W. A. and Cary, L. W. (1973) Indian J. Chem. 11, 1192.
- 10. Rocha, A. B. (1978) Rev. Fac. Farm. Ciênc. Farm. (Araraquara) 1, 13.
- 11. Andrade, S. de O. (1969) Biológico (São Paulo) 35, 60.
- 12. Woo, W. S., Kang, S. S., Yamasaki, K. and Tanaka, O. (1978) Arch. Pharm. Res. 1 (1), 21.
- Woo, W. S., Kang, S. S., Seligmann, O. and Chari, V. M. (1978) *Planta Med.* 34, 87.
- Yi, Y. and Wang, Z. (1984) Zhongeaoyao 15, 55. Chem. Abstr. 100, 180001.
- Usui, T., Yamaoka, N., Matsuda, K., Tuzimura, K., Sugiyama, Y. and Sato, S. (1973) J. Chem. Soc. Perkin Trans. 1, 2425.
- Okabe, H., Miyahara, Y. and Yamauchi, T. (1982) Tetrahedron Letters 23, 77.
- Larsen, L. M., Nielsen, J. K. and Sørensen, H. (1982) *Phyto-chemistry* 21, 1029.
- Strack, D., Meurer, B., Wray, V., Grotjahn, G., Austenfeld, F. A. and Wiermann, R. (1984) *Phytochemistry* 23, 2970.
- 19. Williams, C. A., Harborne, J. B. and Mayo, S. J. (1981) Phytochemistry 20, 217.
- 20. Woo, W. S. (1973) Lloydia 36, 326.
- Alvarado, M., Moreno, M. and Rodríguez, V. M. (1981) Phytochemistry 20, 2436.
- Nagy, E., Seres, I., Verzar-Petri, G. and Neszmelyi, A. (1985) Z. Naturforsch. 39B, 1813.
- 23. Woo, W. S. and Kang, S. S., Wagner, H. and Chari, V. M. (1978) Tetrahedron Letters 35, 3239.