A Stereoselective One-stage α -Glucosylation with 2,3,4,6-Tetra-O-benzyl- α -p-glucopyranose and a Mixture of Methanesulfonic Acid, Cobalt(II) Bromide, and Tetraethylammonium Perchlorate

Shinkiti Koto,* Naohiko Morishima, and Shonosuke Zen School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Received September 5, 1981)

A one-stage procedure for the stereoselective α -glucosylation of alcohol with 2,3,4,6-tetra-0-benzyl- α -D-glucopyranose and a mixture of methanesulfonic acid, cobalt(II) bromide, and tetraethylammonium perchlorate is described. The mechanism of the glucosylation reaction is discussed.

Continuing effort has been dedicated to developing a variety of stereoselective α -glucosylation methods.¹⁾ The methods employing various kinds of glucosyl halides and equivalents with a non-participating benzyloxyl group at C-2 are most often used for the synthesis of α -glucosides.²⁾ However, they always require the preparation of the moisture-sensitive glucosylating precursors. Even the one-pot method starting from the stable glucosylating precursor, 2,3,4,6-tetra-O-benzyl- α -D-glucopyranose (1), involves a two-stage treatment of activation and condensation.^{2e)}

The glucosylation of alcohol with 1 readily proceeds in one-stage fashion in the presence of methanesulfonic acid (MeSO₃H) and CoBr₂ in CH₂Cl₂ at 25 $^{\circ}$ C.^{3a)} The later improvement^{3b)} of the stereoselectivity of this reaction using the additive tetraethylammonium perchlorate (Et₄NClO₄) enabled us to develop a simple method for the highly stereoselective α -glucosylation of alcohol with 1 (In Eq. 1, G denotes the 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl group).

$$\alpha GOH + ROH \xrightarrow{MeSO_3H/CoBr_2/Et_4NClO_4} \alpha GOR (+\beta GOR)$$
(1)

The method is as handy as the modified Fischer method⁴⁾ and is practically free from the moisture problem often encountered in the usual glucosylation, since CoBr₂ is a strong desciccant.

Results and Discussion

Glucosylation with MeSO₃H and CoBr₂.^{3a)} When an equimolar mixture of 1, cyclohexylmethanol, and CoBr₂ in CH₂Cl₂ was treated with MeSO₃H at 25 °C, the glucosylation reaction (In Eq. 2, R=cyclohexylmethyl, X=MeSO₃) was found to proceed smoothly to give the anomeric glucosides (2a and 2b)

$$\alpha$$
GOH + ROH $\xrightarrow{\text{HX/CoBr}_2} \rightarrow \alpha$ GOR + β GOR (2)

(Table 1). The yield of the glucosides 2a and 2b was maximized at 0.5 h (Runs 1-6). The yield was very dependent on the amount of MeSO₃H (Runs 1, 3, and 5) and moderately dependent on that of CoBr₂ (Runs 2, 3, and 4) and of the alcohol (Runs 3 and 6). Too much use of MeSO₃H and the alcohol decreased yields of the glucosides (Runs 5 and 6). No other salts examined so far showed such acceleration effects.5) Acid such as p-toluenesulfonic acid and 2,4,6-trimethylbenzenesulfonic acid were of use, but trifluoroacetic acid was not. As for the solvent, benzene was useful for the reaction. Nitromethane (MeNO₂) brought about the stereoselective formation of the α -glucoside 2a, but the yield was not satisfactory because de-O-benzylation reactions occurred concurrently. Even in the use of CH₂Cl₂, trace amounts of by-products such as the de-O-benzylation products, cyclohexylmethyl 3,4,6-tri-O-benzyl-α- and -β-D-gluco-

Table 1. Results of glucosylation of cyclohexylmethanol (CmOH) with 2,3,4,6-tetra-O-benzyl- α -d-glucopyranose (1), MeSO₃H, and CoBr₂ at 25 °C

Run	MeSO₃H equiv.	${ m CoBr_2}$ equiv.	CmOH equiv.	Solvent	$\frac{\text{Time}}{\text{h}}$	Yield of the glucosides 2a and 2b / $%(\alpha/\beta)$	Recovery of 1/%
1	0.1	1.0	1.0	$\mathrm{CH_2Cl_2}$	0.5	27 (44/56)	68
2	0.3	0.5	1.0	$\mathrm{CH_{2}Cl_{2}}$	0.5	29 (55/45)	67
3	0.3	1.0	1.0	CH_2Cl_2	0.5	72 (49/51)	14
4	0.3	2.0	1.0	CH_2Cl_2	0.5	72 (47/53)	15
5	1.0	1.0	1.0	$\mathrm{CH_2Cl_2}$	0.5	51 (59/41)	25
6	0.3	1.0	2.0	$\mathrm{CH_2Cl_2}$	0.5	64 (59/41)	14
7	0.3	1.0	1.0	$\mathrm{CH_{2}Cl_{2}}$	2.0	85 (52/48)	1
8	0.3	1.0	1.0	C_6H_6	2.0	82 (54/46)	d)
9	0.3	1.0	1.0	$\mathrm{CH_3NO_2}$	2.0	60 (72/28)	d)
10 ^a)	0.3	1.0	1.0	$\mathrm{CH_2Cl_2}$	2.0	75 (53/47)	d)
11 ^{b)}	0.3	1.0	1.0	$\mathrm{CH_2Cl_2}$	2.0	71 (51/49)	d)
12c)	0.3	1.0	1.0	$\mathrm{CH_2Cl_2}$	2.0	13 (46/54)	39

a) p-Toluenesulfonic acid (0.3 equiv.) used instead of MeSO₃H. b) 2,4,6-Trimethylbenzenesulfonic acid (0.3 equiv.) used instead of MeSO₃H. c) CF₃CO₂H (0.3 equiv.) used instead of MeSO₃H. d) Not determined.

Table 2. Results of glucosylation of cyclohexylmethanol with 2,3,4,6-tetra-O-benzyl- α -d-glucopyranose (1), MeSO₃H, CoBr₂, and an additive in CH₂Cl₂^{a)}

Run	Additive	Equiv.	Time h	Yield of the glucosides, 2a and 2b / $\%$ (α/β)	Recovery of 1/%
13 ^{b)}	Bu ₄ NBr	0.5	2.0	65 (52/48)	
14 ^{b)}	$\mathrm{Bu_4NBr}$	1.0	2.0	62 (74/26)	27
15 ^{b)}	Bu_4NBr	1.0	4.0	62 (77/23)	30
16 ^{b)}	Bu_4NBr	2.0	2.0	5 (80/20)	88
17 ^{b)}	$\mathrm{BnEt_3NBr^{e)}}$	1.0	2.0	69 (61/39)	20
18 ^{b)}	${ m EtPyBr^{e)}}$	1.0	2.0	76 (55/45)	14
19 ^{b)}	KBr	1.0	2.0	70 (59/41)	
20 ^{c)}	$\text{Et}_{4}\text{NClO}_{4}$	0.5	2.0	87 (75/25)	
21 ^{b)}	$\text{Et}_{4}\text{NClO}_{4}$	1.0	2.0	75 (76/24)	
22 ^{d)}	$\text{Et}_{4}\text{NClO}_{4}$	1.3	2.0	83 (76/24)	
23 ^{b)}	$LiClO_4$	1.0	2.0	75 (53/47)	_
24 ^{b)}	Et ₄ NCF ₃ SO ₃	1.0	2.0	50 (61/39)	
25 ^{b)}	$\text{Et}_{4}\text{NBF}_{4}$	1.0	2.0	69 (60/40)	

a) The reaction was conducted at 25 °C. Yields are based on the weight of glucosides obtained compared to the weight of alcohol charged. b) The mole ratio of 1, MeSO₃H, and CoBr₂ to alcohol was 1.0, 0.3, and 1.0, respectively. c) The mole ratio of 1, MeSO₃H, and CoBr₂ to alcohol was 1.3, 0.3, and 1.0, respectively. d) The mole ratio of 1, MeSO₃H, and CoBr₂ to alcohol was 1.3, 0.4, and 1.3, respectively. e) Bn denotes benzyl group and EtPy means N-ethylpyridinium ion.

pyranosides (3a and 3b), and the self-condensation products (4a and 4b) of 1^{6a}) were isolated from the reaction mixture.^{6b)}

When the glucosylation of methanol (MeOH) with 1 was carried out at 0 °C, the transient accumulation of the glucosyl bromide (5) was observed by means of TLC at the beginning of the reaction (<0.5 h). The ¹H NMR spectrum of the filtrate of the mixture of 1, MeSO₃H, and CoBr₂ in CH₂Cl₂ was essentially superimposable with that of the authentic 5 in CH₂Cl₂. Therefore, 5 evidently intervenes in the glucosylation reaction.

The IR spectrum of the solid material recovered from the glucosylation mixture had the characteristic absorption of the salt of MeSO₃H at ν =1180 and 1060 cm⁻¹ and the ¹H NMR spectrum of the supernatant of the glucosylation mixture did not show the signal of the methyl group of MeSO₃H near at δ 3.2. Moreover, it was found that MeSO₃H and CoBr₂ reacted to afford the solid material whose composition was CoBr_{2-x}(CH₃SO₃)_x. Consequently, MeSO₃H surely reacts with CoBr₂ to generate HBr (Eq. 3) during the glucosylation reaction.

$$CoBr_2 + xMeSO_3H \longrightarrow CoBr_{2-x}(MeSO_3)_x + xHBr$$
 (3)

It was then confirmed that the glucosylation of MeOH with 1 proceeds well in the presence of CoBr₂ and HBr (In Eq. 2, R=Me, X=Br) and CoBr₂ accelerates the alcoholysis of 5 with cyclohexylmethanol.^{7a)} It is concluded that HBr generated *in situ* cooperates with CoBr₂ to convert 1 efficiently into 5 (Eq. 4a), which then undergoes alcoholysis (Eq. 4b). Figure 1 presents a summarized scheme for the one-stage glucosylation of alcohol using 1 and the mixture of MeSO₃H and CoBr₂.^{7b)}

$$\alpha GOH \xrightarrow{a) \ HBr/CoBr_2} \alpha GBr \xrightarrow{b) \ ROH/CoBr_2} \alpha GOR + \beta GOR$$

$$(4)$$

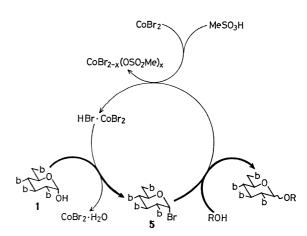


Fig. 1. Summarized scheme of the glucosylation reaction of alcohol with 2,3,4,6-tetra-O-benzyl-α-D-glucopyranose using the mixture of methanesulfonic acid and cobalt(II) bromide.

Improvement of the Stereoselectivity of the Glucosylation. 3b) Since the glucosyl bromide 5 intervenes in the glucosylation reaction (Fig. 1), tetrabutylammonium bromide (Bu₄NBr) and relatives were added into the reaction mixture, because it was anticipated that they cause the bromide ion-catalyzed stereoselective α-glucosylation^{2c)} (Table 2). The addition of Bu₄NBr caused the predominant formation of the α -glucoside 2a, but with a decrease of the yields of 2a and 2b (Runs 13—15). Excessive use of Bu₄NBr sharply decreased the yield of glucosides; two molar amounts of Bu₄NBr almost inhibited the reaction (Run 16). This is attributable to the fact that two molar amounts of Bu₄NBr interrupts the formation of 5 from 1, because the bromide anion strongly coordinates with CoBr₂ to form [CoBr₃] and/or [CoBr₄]²⁻, in competition with MeSO₃H (cf. Eq. 2).8) Other bromides showed similar tendencies, but the effects were weaker than for $\mathrm{Bu_4NBr}$.

Next, effects of $\rm Et_4NClO_4$ and related substances on the selectivity of the glucosylation were examined, because the perchlorate anion has poor coordinating ability to $\rm CoBr_2^{9}$) and the glucosyl perchlorates with a benzyloxyl group at C-2 undergo the stereoselective α -glucosylation^{2b}) (Runs 20—25). Among the salts used, $\rm Et_4NClO_4$ sharply increased the proportion of the α -anomer $\rm 2a$ without serious decrease of the yield of the glucosides. The difference in the coordinating ability to $\rm CoBr_2$ between perchlorate anion (weaker) and bromide anion (stronger)^{7b}) promotes the formation of the glucosyl perchlorate as in Eq. 5, so that the perchlorate anion does not in-

$$\alpha GOH + Et_4N^+//ClO_4^- + CoBr_2 \longrightarrow$$

$$G^+//ClO_4^- + Et_4N^+//[CoBr_3]^-$$
(5)

terrupt the whole reaction. The effect of other salts was similar but feeble (Runs 23—25).

Finally, the extent of the anomerization of the β-glucoside **2b** was determined under the three glucosylation conditions described above (Table 3). Because **2b** did not anomerize into **2a** so much in the presence of MeSO₃H, CoBr₂, and Bu₄NBr (Run 27), most of **2a** seems to be formed *via* the bromide ion-catalyzed alcoholysis of **5**, in the glucosylation (Run 14) of cyclohexylmethanol with **1** and this reagent mixture. In contrast to this, the mixture of MeSO₃H, CoBr₂, and Et₄NClO₄ in CH₂Cl₂ anomerized **2b** into **2a** efficiently (Run 28) (Eq. 6). The composition of the anomeric

$$\beta GOR \xrightarrow{\text{MeSO}_3 \text{H/CoBr}_2/\text{Et}_4 \text{NCIO}_4} \Rightarrow \alpha GOR$$
 (6)

glucosides of the anomerization mixture was almost identical with that of the glucosylation mixture of the alcohol with 1 and this ternary mixture (Run 21). Therefore, this glucosylation furnishes an equilibrium mixture of the anomeric glucosides like the Fischer glucosylation does. It is noted that the mixture of MeSO₃H and CoBr₂ in MeNO₂ smoothly anomerized 2b and the composition of the anomeric glucosides was equal to that of the glucosylation mixture in MeNO₂ containing this binary mixture (Run 9). In this case, the high solubility of CoBr₂ in MeNO₂ may greatly enhance the polarity of the medium. This promotes the formation of the glucosyl cation G+ to attain the anomerization of 2b with MeSO₃H. Based on the results described so far, the mechanism of the stereoselective α-glucosylation affording the equilibri-

Table 3. Anomerization of cyclohexylmethyl 2,3,4,6-tetra-O-benzyl- β -d-glucopyranoside (2b) in various conditions^{a)}

Run	Additive, equiv.	Solvent	Yield of glucosides (2a, 2b)		
			%	(α/β)	
26	None	CH_3NO_2	54	(74/26)	
27	Bu ₄ NBr, 1.0	CH_2Cl_2	74	(12/88)	
28	$Et_4NClO_4, 1.0$	$\mathrm{CH_2Cl_2}$	74	(78/22)	

a) The reaction was conducted for 2 h at 25 °C. The mole ratios of $MeSO_3H$ and $CoBr_2$ to the glucoside ${\bf 2b}$ were 0.3 and 1.0.

$$\alpha GOR \rightleftharpoons \alpha GOR$$

$$\uparrow b$$

$$\alpha GOH \rightleftharpoons \alpha GOH \xrightarrow{a} \alpha GBr \xrightarrow{b} G^{\dagger} // ClO_4^{-} \rightleftharpoons G^{\dagger} // OR$$

$$\downarrow b$$

$$\downarrow BGOR$$

$$\downarrow BGOR$$

$$\downarrow BGOR$$

Fig. 2. Scheme of the stereoselective α-glucosylation of alcohol with 2,3,4,6-tetra-O-benzyl-α-D-glucopyranose using the mixture of methanesulfonic acid, cobalt(II) bromide, and tetraethylammonium perchlorate (**a** denotes the step which may be assisted by CoBr₂ and **b** does the one which may be promoted be CoBr₂ and ClO₄-).

Table 4. Results of glucosylation of various alcohols through the ternary system^a)

Alcohol	Glucosides	Yield of glucosides		
Alcohol	obtained	$\%$ (α/β)		
1-Hexanol ^{b)}	7a, 7b	83 (73/27)		
1-Octanol ^{b)}	8a, 8b	82 (75/25)		
1-Dodecanol ^{b)}	9a, 9b	80 (77/23)		
Cyclohexylmethanol ^{b,d)}	2a, 2b	83 (76/24)		
6-(2,4-Dinitroanilino)- 1-hexanol ^{b,d)}	10a, 10b	88 (71/29)		
Cyclopentanol ^{e)}	11a, 11b	85 (72/28)		
Cyclohexanol ^{c,d)}	12a, 12b	83 (80/20)		
Cyclooctanol ^{d)}	13a, 13b	78 (77/23)		
Cyclododecanol ^{e)}	14a, 14b	80 (74/26)		
5α -Cholestan- 3β -ol ^{c,d)}	15a, 15b	63 (79/21)		

a) The reaction was conducted on a 0.5 mmol scale in CH₂Cl₂ for 2 h at 25 °C. Yields were based on the weight of glucosides compared to the weight of alcohol charged. b) Mole ratios of 1, MeSO₃H, CoBr₂, and Et₄NClO₄ to alcohol were 1.3, 0.4, 1.3, and 1.3. c) Mole ratios of 1, MeSO₃H, CoBr₂, and Et₄NClO₄ to alcohol were 1.3, 0.3, 1.3, and 0.5. d) Anomeric glucosides obtained were identified with the samples prepared by alternative methods (Ref. 11).

um mixture of the anomeric glucosides is postulated in Fig. 2.

This one-stage stereoselective α-glucosylation was applied to several alcohols to give the results summarized in Table 4. For practical use, slightly excess amounts of 1, CoBr₂, and Et₄NClO₄ were charged in the case of primary alcohols (Runs 22, 29—32). Because of the high susceptibility of the glucoside of secondary alcohols to the anomerization, ¹⁰) smaller amounts of Et₄NClO₄ was used in the glucosylation of such alcohols (Runs 33—37).

Experimental

Instruments used are identical with those described previously. Green-colored anhydrous CoBr₂ (Wako) was stored over P₂O₅. The acid MeSO₃H (Tokyo Kasei) was used without any pretreatments. The additives Et₄NClO₄ (Tokyo Kasei) and Bu₄NBr (Tokyo Kasei), recrystallized from acetonitrile containing hexane, were used after being stored *in vacuo* over P₂O₅ for several days. The pre-distilled

TARIE 5	PHYSICAL	AND	ANALVTICAL	DATA O	E ALEVI	D-CI HCOSIDE	DERIVATIVES

Compd	${f Mp}$	$[\alpha]_{\scriptscriptstyle \mathrm{D}}^{\scriptscriptstyle 20}/^{\circ} \ (c, \ \mathrm{CHCl_2})$	Found (%)		Molecular formula	Calcd (%)	
Compu	$ heta_{ m m}/$ Ĉ ${ m C}$	$[\alpha]_{D}/(c, \text{CHO}_2)$	$\widetilde{\mathbf{c}}$	H	Molecular formula	$\widehat{\mathbf{c}}$	H
7a 7b	 35—37	$+32 (0.5) \\ +6 (0.6)$	76.71 76.97	7.76 }	${ m C_{40}H_{48}O_6}$	76.89	7.74
8a 8b	30—32	$+32 (0.7) \\ +8 (0.9)$	77.24 77.43	$\left. \begin{array}{c} 8.01 \\ 8.13 \end{array} \right\}$	$\mathrm{C_{42}H_{52}O_6}$	77.27	8.03
9a 9b	_	$+30 (0.6) \\ +5 (0.5)$	77.82 77.79	$\left\{ \begin{array}{c} 8.63 \\ 8.70 \end{array} \right\}$	$\mathrm{C_{46}H_{60}O_6}$	77.93	8.53
11a 11b		$\begin{array}{ccc} +41 & (1.8) \\ +9 & (0.6) \end{array}$	76.76 76.72	$\{7.33 \\ 7.29 \}$	$\mathrm{C_{39}H_{44}O_6}$	76.94	7.29
13a 13b	 8788	$+50 (2.0) \\ +6 (0.7)$	77.39 77.46	7.72 }	$\mathrm{C_{42}H_{50}O_6}$	77.51	7.74
14a 14b	 96—97	$+49 (2.0) \\ +3 (1.0)$	78.05 78.13	$\frac{8.40}{8.21}$	${ m C_{46}H_{58}O_6}$	78.15	8.27

Compd	R1	R²	R³	Compd	R1	R ²	R³
1	Н	OH	Bn	9a	Н	ODd	Bn
2a	H	OCm	$\mathbf{B}\mathbf{n}$	9b	ODd	H	Bn
2b	OCm	H	Bn	10a	H	ODh	Bn
3a	H	OCm	H	10b	ODh	H	Bn
3ь	OCm	H	H	11a	H	OCp	Bn
4a	H	$O\alpha G$	Bn	11b	OCp	H	Bn
4b	$O\alpha G$	H	Bn	12a	H	OCh	Bn
5	H	\mathbf{Br}	Bn	12b	OCh	H	Bn
6a	H	OMe	Bn	13a	H	OCoc	Bn
6Ь	OMe	H	Bn	13b	OCoc	H	Bn
7a	H	OHx	Bn	14a	H	OCdd	Bn
7b	OHx	H	Bn	14b	OCdd	H	$\mathbf{B}\mathbf{n}$
8a	H	OOc	Bn	15a	H	OCt	Bn
8ь	OOc	H	Bn	15b	OCt	H	Bn

Bn=benzyl, Ch=cyclohexyl, Cm=cyclohexylmethyl, Coc=cyclooctyl, Cp=cyclopentyl, Ct=5\$\alpha\$-cholestan-3\$\beta\$-yl, Dd=dodecyl, Dh=6-(2,4-dinitroanilino)-1-hexyl, \$\alpha G=2,3,4,6-tetra-O-benzyl-\$\alpha\$-p-glucopyranosyl, Hx=hexyl, Me=methyl, Oc=octyl.

solvents were stored over Molecular Sieve (Linde 3A). Tetraethylammonium trifluoromethanesulfonate and tetrafluoroborate were prepared by the treatment of Et_4NBr with CF_3SO_3Ag (Alpha) and with $AgBF_4$ (Wako), respectively, in dry MeOH followed by evaporation in vacuo. Compound 1, 6-(2,4-dinitroanilino)-1-hexanol, 5α -cholestan- 3β -ol (Tokyo Kasei) were stored in vacuo over P_2O_5 . Column chromatography of the pre-processed mixture of products was done on silica gel (Kanto Kagaku) using the solvent system of hexane and ethyl acetate, unless otherwise stated; each fraction was examined by TLC on silica gel (Merck, 7731). Evaporation was carried out under reduced pressure at 35-40 °C, unless otherwise stated. Table 5 summarized the physical and analytical data of newly synthesized compounds.

The Procedure for the Glucosylation with 2,3,4,6-Tetra-Obenzyl- α -D-glucopyranose (1), MeSO₃H, and CoBr₂. The acid MeSO₃H (3.2 μ l, 0.05 mmol) was added to a stirred mixture of 1 (90 mg, 0.17 mmol), CoBr₂ (36.5 mg, 0.17 mmol) and cyclohexylmethanol (20.5 μ l, 0.17 mmol) in

CH₂Cl₂ (0.45 ml). After being vigorously stirred at 25 °C for 2 h, the mixture was diluted with benzene, followed by the addition of powdered NaHCO₃ with agitation. The filtrate was evaporated and chromatographed to give cyclohexylmethyl 2,3,4,6-tetra-O-benzyl-α- and -β-D-glucopyranoside (2a and 2b) and the by-products.⁶⁾ The glucosides (2a and 2b) and the self-condensation products (4a and 4b) were identified by comparison with those reported.^{6a,11)} Yields are based on the weight of products obtained, with reference to the weight of 1 charged. The results are summarized in Table 1.

The Glucosylation of MeOH with the Benzylated Glucose 1, MeSO₃H, and HBr. A cooled saturated solution of HBr in CH₂Cl₂ (0.64 M, 0.28 ml) was added into a stirred mixture of 1 (90 mg, 0.17 mmol), CoBr₂ (36.5 mg, 0.17 mmol), and MeOH (7 μ l, 0.17 mmol) in CH₂Cl₂ (0.45 ml). After being agitated for 2 h at 25 °C, the mixture was processed as above to afford methyl 2,3,4,6-tetra-O-benzyl- α -D-glucopyranoside (6a) (30 mg, 33%) and the β -anomer 6b (26 mg, 28%), identified with those reported. Some unchanged 1 was recovered (21 mg, 23%).

Without CoBr₂, the anomeric mixture of **6a** and **6b** was obtained in 15% yield $(\alpha/\beta=70/30)$ and **1** was recovered (83%).

The Formation of 2,3,4,6-Tetra-O-benzyl- α -D-glucopyranosyl Bromide (5) from the Benzylated Glucose I with MeSO₃H and CoBr₂. A mixture of I (90 mg, 0.17 mmol), MeSO₃H (11 μ l, 0.17 mmol), and CoBr₂ (36.5 mg, 0.17 mmol) in CH₂Cl₂ (0.45 ml) was stirred for 1 h at 25 °C. The insoluble material was filtered, washed with CH₂Cl₂, and ignited at 110 °C in vacuo; IR (KBr) 1345 (Me), 1180, 1060 cm⁻¹ (SO₃). Found: C, 7.07; H, 2.08; Br, 18.07%. Calcd for CoBr_{0.55}(CH₃SO₃)_{1.45}: C, 7.23; H, 1.82; Br, 18.25%. The ¹H NMR of the filtrate was essentially the same as that of 5 prepared via the treatment of ethyl 2,3,4,6-tetra-O-benzyl-1-thio- α -D-glucopyranoside¹²) (49 mg, 0.083 mmol) in CH₂Cl₂ (0.5 ml) with a solution of Br₂ in CH₂Cl₂ (60% w/v, 27 μ l) for 10 min in the dark, followed by the quick evaporation at 60 °C; δ =6.59 (d, J=4.0 Hz, H-1 of 5).

When Bu_4NBr (107 mg, 0.33 mmol) was added to the reaction mixture prior to the addition of MeSO₃H, ¹H NMR of the filtrate indicated that **5** did not form (the signal at δ 6.59 was absent).

The Procedure for the Glucosylation with the Benzylated Glucose 1, MeSO₃H, CoBr₂, and Additive. To a mixture of 1 (90 mg, 0.17 mmol), CoBr₂ (36.5 mg, 0.17 mmol), an additive, and an alcohol (0.17 mmol) in a solvent (0.45 ml), MeSO₃H (3.3 µl, 0.050 mmol) was added under stirring. After agitation for 2 h at 25 °C, the mixture was processed

and then chromatographed as described above. The results are summarized in Tables 2 and 4.

Synthesis of Cyclohexylmethyl 3,4,6-Tri-O-benzyl- α - and - β -D-glucopyranose(3 α and 3 β), Which Were Isolated from the Reaction Mixture of the Glucosylation of Cyclohexylmethanol with the Benzylated Glucose 1. 3,4,6-Tri-O-benzyl- α -D-glucopyranose¹³⁾ (450 mg, 1.0 mmol) was condensed with cyclohexylmethanol (124 μ l, 1.0 mmol) in CH₂Cl₂ (2.5 ml) in the presence of MeSO₂H (20 μ l, 0.3 mmol) and CoBr₂ (219 mg, 1.0 mmol) at 25 °C for 2 h. After processing, the mixture was chromatographed (benzene-2-butanone, gradient, 100:1 \rightarrow 10:1) to afford the β -anomer 3 α (107.5 mg, 20%); colorless needles, mp 89.5—91 °C, α 1 α 1 α 2 α 3 (c 1.0, CHCl₃), and then the α -anomer 3 α 4 (199.5 mg, 37%); α 6 (c 1.0, CHCl₃), Found: (3 α 6) C, 74.03; H, 7.74%. (3 α 7) Color H, 7.83%. Calcd for C₃₄H₄₂O₆: C, 74.70; H, 7.74%.

The Reaction of $CoBr_2$ with $MeSO_3H$ in CH_2Cl_2 . A suspension of $CoBr_2$ (43.6 mg, 0.2 mmol) in CH_2Cl_2 (0.54 ml) was treated with $MeSO_3H$ (0.2—0.4 mmol) at 25 °C for 1 h under vigorous stirring. The solid material was collected, washed with dry CH_2Cl_2 (0.3 ml×7), and ignited in vacuo at 110 °C over P_2O_5 . In each case, the evolution of HBr was seen at the removal of the stopper of the vessel and the filtrate precipitated AgBr on addition of aq AgNO₃. The solid material obtained was analyzed to afford the following data [the amount of $MeSO_3H$ (mmol), analysis]: 13 μ l (0.2). Found: C, 5.08; H, 1.36; Br, 30.37%. Calcd for $CoBr_{0.92}(CH_3SO_3)_{1.08}$: C, 5.52; H, 1.39; Br, 31.29%. 26 μ l (0.4). Found: C, 7.47; H, 2.14; Br, 17.19%. Calcd for $CoBr_{0.50}(CH_3SO_3)_{1.50}$: C, 7.46; H, 1.89; Br, 16.54%.

References

- 1) A. F. Bochkov and G. E. Zaikov, "Chemistry of the O-Glycosidic Bond, Formation and Cleavage," Translated by C. Schuerch, Pergamon Press (1979), Chap. 2.
- 2) a) P. W. Austin, F. E. Hardy, J. G. Buchanan, and J. Baddiley, J. Chem. Soc., 1964, 2128; R. Eby and C. Schuerch, Carbohydr. Res., 34, 79 (1974); b) K. Igarashi, J. Irisawa, and T. Homma, ibid., 39, 213 (1975); c) R. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James, J. Am. Chem. Soc., 97, 4056 (1975); d) J.-R. Pougny, J.-C. Jaquinet, M. Nassr, D. Duchet, M. L. Milat, and P. Sinaÿ, J. Am. Chem. Soc., 99, 6762 (1977); e) J. Leroux and A. S. Perlin, Carbohydr. Res., 67, 163 (1978), T. Mukaiyama, T.

- Nakatsuka, and S. Shoda, Chem. Lett., 1979, 487.
- 3) a) S. Koto, N. Morishima, and S. Zen, *Chem. Lett.*, **1976**, 1109; b) S. Koto, N. Morishima, S. Inada, and S. Zen, IXth Intern. Symp. Carbohydr. Chem., 1978, Apr. 10—14, London, B-27.
- 4) R. E. Wing and J. N. BeMiller, Carbohydr. Res., 10, 441 (1969); A. Klemer and R. Kutz, Tetrahedron Lett., 1969, 1693; F. Micheel and E.-D. Pick, ibid., 1969, 1695; A. Klemer and B. Kraska, Carbohydr. Res., 32, 400 (1974).
- 5) The following salts gave **2a** and **2b** in, at best, poor yields (<10%) when the equimolar mixture of **1**, MeSO₃H, a salt, and cyclohexylmethanol in CH₂Cl₂ was stirred for 2 h at 25 °C: CoCl₂, CoSO₄, Co(MeSO₃)₂, NiBr₂, CuBr₂, HgBr₂, CdBr₂, TgBr₃, CaBr₄, MgSO₂, and CaSO₃
- HgBr₂, CdBr₂, ZnBr₂, CaBr₂, MnBr₂, MgSO₄, and CaSO₄. 6) a) S. Koto, N. Morishima, and S. Zen, *Bull. Chem. Soc. Jpn.*, **52**, 784 (1979); b) For example, the isolated byproducts of Run 7 were $\mathbf{4a}(5\%)$, $\mathbf{4b}(2.6\%)$, $\mathbf{3a}(3.8\%)$, and $\mathbf{3b}(0.8\%)$.
- 7) a) Stirring the equimolar mixture of $CoBr_2$, cyclohexylmethanol, and the glucosyl bromide 5 in CH_2Cl_2 for 2 h at 25 °C gave 2a and 2b in a 70% yield $(\alpha/\beta=54/46)$ and the de-O-benzylation products; b) The fact that $CoBr_2$ coordinates reversibly with alcohol but irreversibly with H_2O [K. Sone, T. Fukuda, J. Mizusaki, and K. Moriyama, Monatsh. Chem., 107, 271 (1976)] and selectively coordinates with Br^- in the presence of alcohol [D. L. Wertz and R. F. Kruh, Inorg. Chem., 9, 595 (1970); S. Buffagni and R. M. Dunn, J. Chem. Soc., 1961, 5105] appears important for the glucosylation to proceed. The order of the affinity of nucleophiles to $CoBr_2$ in CH_2Cl_2 may be: $H_2O\gg Br^->ROH>ClO_4^-$.
- 8) F. A. Cotton, D. M. L. Goodgame, and M. Goodgame, J. Am. Chem. Soc., 83, 4690 (1961).
- 9) K. Sawada and M. Tanaka, J. Inorg. Nucl. Chem., 39, 339 (1977).
- 10) S. Koto, et al., Bull. Chem. Soc. Jpn., to be submitted.
- 11) S. Koto, T. Sato, N. Morishima, and S. Zen, Bull. Chem. Soc. Jpn., 53, 1761 (1980).
- 12) F. Weygand and H. Ziemann, *Justus Liebigs Ann. Chem.*, **657**, 179 (1962).
- 13) G. Ekborg, B. Lindberg, and J. Lönngren, *Acta Chem. Scand.*, **26**, 3287 (1972); P. A. Gent and R. Gigg, *Carbohydr. Res.*, **49**, 325 (1976).