Electrophilic *ipso*-Halocyclization of *N*-Arylpropynamides with Polyfluoroalkyl Alcohols: Selective Synthesis of 8-(Polyfluoroalkoxy)azaspiro[4.5]trienes

Zhi-Qiang Wang,^a Bo-Xiao Tang,^a Hong-Ping Zhang,^{a,b} Feng Wang,^a Jin-Heng Li*^a

^a Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. of China Fax +86(731)8872101; E-mail: jhli@hunnu.edu.cn

^b Department of Biology and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R of China

Received 19 September 2008; revised 25 November 2008

Abstract: A novel and efficient method for the synthesis of 8-(polyfluoroalkoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-ones has been demonstrated via the electrophilic *ipso*-halocyclization of *N*arylpropynamides with polyfluoroalkyl alcohols. In the presence of *N*-halosuccinimides (NXS), a variety of *N*-arylpropynamides underwent an electrophilic *ipso*-halocyclization reaction with polyfluoroalkyl alcohols to afford the corresponding 8-(polyfluoroalkoxy)spiro[4.5]trienes in good yields. Note that molecular sieves can improve the yield of the reaction.

Key words: electrophilic *ipso*-halocyclization, *N*-arylpropynamide, *N*-halosuccinimide, spiro[4.5]decane, polyfluoroalkoxy substitution

The intramolecular electrophilic cyclization of arylalkynes has recently attracted much attention and it is now widely recognized for its potential to synthesize a wide range of heterocycles and carbocycles under simple and mild conditions.¹⁻³ The electrophilic cyclization protocols are generally worked between alkyne and ortho-arene substituents to construct heterocycles and carbocycles.¹ Recently, the reaction between alkynes and *ipso*-arene substituents to give spirocyclic compound has been developed by the Fanghänel^{2a} and Larock groups^{2b} indepen-4-(4-Methoxyaryl)alk-1-ynes dently. 4-[4or (dimethylamino)aryl]alk-1-ynes, for example, underwent intramolecular electrophilic ipso-cyclization with iodine monochloride or iodine/sodium hydrogen carbonate to synthesize spiro[4.5]trienones in moderate to excellent yields (Scheme 1, equation 1). We have also reported that the intramolecular ipso-iodocyclization of 4-(4-alkylaryl)alk-1-ynes with iodine monochloride or iodine proceeded smoothly, providing the corresponding 8methylene-1-azaspiro[4.5]trienes in moderate to good vields (Scheme 1, equation 2).^{2c} However, the above *ipso*cyclization method is limited to aryl compounds bearing active para-substituents, such as methoxy, dimethylamino, and alkyl groups, on the aryl ring. Very recently, we found that N-(para-unsubstituted aryl)propynamides and phenyl 3-phenylpropynoate underwent the intramolecular electrophilic *ipso*-iodocyclization/nucleophilic addition process with N-iodosuccinimide (NIS) and acetic acid to

SYNTHESIS 2009, No. 6, pp 0891–0902

Advanced online publication: 24.02.2009

DOI: 10.1055/s-0028-1087972; Art ID: F20008SS

 $\ensuremath{\mathbb{C}}$ Georg Thieme Verlag Stuttgart \cdot New York

afford selectively spiro[4.5]trienyl acetates in moderate to good yields (Scheme 1, equation 3).³ This prompted us to extend the new intramolecular electrophilic ipso-cyclization of (para-unsubstituted aryl)alkynes route to the synthesis of the important spiro[4.5]decanes.⁴ It is well known that the trifluoromethyl group has a great effect on biological activity and often confers significant changes in chemical and physical properties.⁵ Thus, we expected to induce a trifluoromethyl group into the spirocyclic motif using trifluoroacetic acid, but failed. Interestingly, we found that 2,2,2-trifluoroethanol was a suitable substrate for this purpose. Here, we wish to report that para-unactivated N-arylpropynamides can undergo electrophilic ipso-cyclization with polyfluoroalkyl alcohols and N-halosuccinimides (NXS) to synthesize selectively 8-(polyfluoroalkoxy)azaspiro[4.5]trienes in good vields (Scheme 1, equation 4).^{6,7}

Stimulated by our previous studies on the electrophilic *ipso*-iodocyclization of *N*-(*para*-unsubstituted aryl)propynamides with *N*-iodosuccinimide and acetic acid,³ we investigated the feasibility of the electrophilic *ipso*-iodocyclization of *N*-methyl-*N*,3-diphenylpropynamide (**1a**) with 2,2,2-trifluoroethanol (**2a**) because it was reported as

a special nucleophilic reagent for *ipso*-cyclizations.^{6b,c,g} We found that the reaction temperature has a fundamental influence on the reaction. As shown in Table 1, trace amounts of three products were detected by GC-MS analysis from the reaction of N-methyl-N,3-diphenylpropynamide (1a) with 2,2,2-trifluoroethanol (2a) at room temperature (entry 1). At 80 °C, the target product 3aa was enhanced to 51% total yield together with an orthocyclized side-product 4aa in 23% yield (entry 2). Molecular sieves were found to improve the reaction, and the yield of **3aa** was enhanced to 67% when 100 mg of 3 Å molecular sieves were added (entry 3).⁸ However, trace amounts of 3aa or 4aa were observed using iodine monochloride instead of N-iodosuccinimide (entry 4) and the product 4aa was obtained as the major product in the presence of iodine (entry 5). Ethanol in place of 2,2,2-trifluoroethanol (2a) as the reaction partner was also tested, but failed (entry 6).⁹ In the cases where the N-methyl group was replaced by N-benzyl or N-acetyl or an N-unsubstituted group, however, the reaction did not proceed and the starting material **1a** was recovered in >95% yield (entries 7-9).

A variety of substrates were examined by reacting with polyfluoroalkyl alcohols and *N*-iodosuccinimide to examine the scope of this intramolecular electrophilic *ipso*-io-docyclization process, and the results are summarized in Table 2.⁸ We were pleased to find that the novel process

 Table 1
 Screening Optimal Conditions for the Electrophilic ipso-Iodocyclization Reaction^a

N I	Ph + CF ₃ CH ₂ OH 0 2a	[1] CF	Ph SGH20 N R +	Ph
18	5		3aa	4aa
Entry	R	[1] Isolated yield (%)		ield (%)
			cis/trans-3	4
1 ^{b,c}	Me (1a)	NIS	trace (3aa)	trace (4aa)
2°	Me (1a)	NIS	26:25 (3aa)	23 (4aa)
3	Me (1a)	NIS	30:37 (3aa)	19 (4aa)
4 ^d	Me (1a)	ICl	trace (3aa)	trace (4aa)
5	Me (1a)	I_2	trace (3aa)	53 (4aa)
6 ^e	Me (1a)	NIS	0 (3aa)	trace (4aa)
$7^{\rm f}$	Bn (1b)	NIS	trace (3ba)	trace (4ba)
8^{f}	Ac (1c)	NIS	trace (3ca)	trace (4ca)
9 ^f	H (1d)	NIS	trace (3da)	trace (4da)

^a Reagents and conditions: **1a** (0.3 mmol), **2a** (2 mL), [I] (1.5 equiv), 3 Å MS (100 mg), 80 °C, 8 h.

^b At r.t.

^c Without molecular sieves.

^d Messy results were observed at –40 °C.

^e EtOH instead of CF₃CH₂OH; >95% of **1a** was recovered.

f > 95% of **1a** was recovered.

tolerated a wide range of functional groups, such as methyl, methoxy, chloro, bromo, iodo, and nitro groups in the aromatic nucleus. Initially, the reaction of substrate 1a with another polyfluoroalkyl alcohol, 2,2,3,3,3-pentafluoropropan-1-ol (2b), was tested, and the results showed that it was still a suitable substrate to react with amide 1a in good yield (entry 1). Subsequently, both the electronic and steric properties of the N-aryl group on the ipso-iodocyclization process were evaluated. Substrates 1e-i, bearing electron-neutral or electron-rich groups on the Naryl group, all worked well with polyfluoroalkyl alcohol 2a or 2b and N-iodosuccinimide in moderate to good yields (entries 2-7). N-Methyl-N-(2-methylphenyl)-3phenylpropynamide (1e) bearing an ortho-methyl group on the N-aryl ring, for instance, underwent the reaction with 2a and N-iodosuccinimide smoothly in 75% total yield (entry 2). To our surprise, substrate 1f having a meta-methyl group provided the ortho-cyclized product 4fa as the major product in 66% yield together with the ipso-product 3fa in 28% yield (entry 4). We found that substrates 1j-l bearing weakly electron-deficient halo groups also displayed high efficient for the ipso-iodocyclization reaction with N-iodosuccinimide and 2,2,2-trifluoroethanol (2a) providing 3ja-la in good yields (entries 8–10). However, the reaction of amide 1m, bearing an acetyl group on the N-aryl ring, did not take place under standard conditions (entry 11). N-Aryl groups bearing some active *para*-substituents were also evaluated (entries 12 and 13). N-Methyl-N-(4-methylphenyl)-3-phenylpropynamide (1n) did not undergo the reaction and N-(4-methoxyphenyl)-*N*-methyl-3-phenylpropynamide (10) provided the spiro[4.5]trien-8-one 50a in 66% yield (Figure 1).

Next, substituents at the terminal of the C=C bond of anilines were also examined (entries 14-19). N-Methyl-*N*-phenylpropynamide (**1p**), a terminal alkyne, was an unsuitable substrate for the reaction with N-iodosuccinimide at 80 °C (entry 14). We found that the terminally substituted alkynes, with either alkyl groups or aryl groups, all worked well with N-iodosuccinimide to afford the corresponding target products 3qa-ua in moderate yields (entries 15–19). Substrate 1q having a methyl group at the terminal of the C=C bond, for instance, gave the cis- and trans-spirocyclic products 3qa in 77% total yield together with an *ortho*-cyclized byproduct in 15% yield (entry 15). The results demonstrated that both the electronic and steric properties of the aryl groups affected the chemoselectivity of the reaction to some extent. Although the orthocyclized product 4sa was obtained as the major product from the reaction of the bulky substrate 1s, the spirocyclic product **3sa** was still isolated in 38% yield (entry 17). Both the *ipso*-cyclized product **3ta** and the *ortho*-cyclized product 4ta were observed in the reaction of the electronrich substrate 1t (entry 18), but only the ipso-cyclized product 3ua was isolated from the electron-deficient substrate 1u (entry 19). However, another product, 3-iodo-1methyl-4-(thiophen-2-yl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (5va) (Figure 1), was isolated from the reaction of the heteroarylalkyne substrate 1v with Niodosuccinimide in 2,2,2-trifluoroethanol (2a) (entry 20). Unfortunately, amine 1w, ester 1x, and ether 1y were found to be unsuitable substrates under the standard reaction conditions (entries 21-23).

 Table 2
 Electrophilic ipso-Iodocyclizations of N-Arylpropyn amides 1 with Polyfluoroalkyl Alcohols 2 in the Presence of N-Iodosuccinimide^a

 Table 2
 Electrophilic ipso-Iodocyclizations of N-Arylpropyn amides 1 with Polyfluoroalkyl Alcohols 2 in the Presence of N-Iodosuccinimide^a (continued)

 Table 2
 Electrophilic *ipso*-Iodocyclizations of *N*-Arylpropynamides 1 with Polyfluoroalkyl Alcohols 2 in the Presence of *N*-Iodosuccinimide^a (continued)

^a Reagents and conditions: **1** (0.3 mmol), **2a** (2 mL), 3 Å MS (100 mg), NIS (1.5 equiv), 80 °C, 8 h.

^b 3-Iodo-1,5-dimethyl-4-phenylquinolin-2(1*H*)-one (**4fa**) and 3-iodo-1,7-dimethyl-4-phenylquinolin-2(1*H*)-one (**4fa**'); ratio **4fa/4fa'** 1:3.

^c Messy results were observed, which was determined by GC-MS analysis.

^d Another product **50a** (Figure 1) was isolated in 66% yield. ^e For 24 h.

^f Another product **5va** (Figure 1) was isolated in 47% yield.

 g >95% of substrate 1 was recovered.

Figure 1

As listed in Scheme 2, the two other *N*-halosuccinimides, *N*-bromosuccinimide (NBS) and *N*-chlorosuccinimide (NCS), were used as the electrophilic reagents to react with anilines. To our delight, both *N*-bromosuccinimide and *N*-chlorosuccinimide are efficient for the electrophilic *ipso*-iodocyclizations. Substrate **1a**, for instance, underwent the electrophilic *ipso*-iodocyclization with either *N*bromosuccinimide or *N*-chlorosuccinimide successfully to afford the corresponding *ipso*-cyclized products **6aa** and **7aa** in 62% and 77% yields, respectively. Gratifyingly, a 32% yield of the corresponding desired product **6va** was still achieved in the reaction of *N*-methyl-*N*-phenylA working mechanism as outlined in Scheme 3 was proposed on the basis of the present results and the previously reported mechanisms.^{1–3} Initially, the iodonium intermediate **A** is generated by the interaction of the electrophilic *N*-iodosuccinimide with the alkyne moiety. The iodonium intermediate **A** can proceed via two routes including: (1) intramolecular electrophilic *ortho*-cyclization reaction to afford **4**, or (2) intramolecular electrophilic *ipso*-cyclization reaction to form intermediate **B**.^{1,2} The reaction of intermediate **B** with R_FCH_2OH occurs to yield both *cis*- and *trans*-products **3**. Based on the mechanism, we deduced that both the steric hindrance and electron-withdrawing groups disfavored the stability of intermediate **B** resulting in lower yields.

Scheme 2 Electrophilic *ipso*-halocyclizations in the presence of *N*-bromosuccinimide or *N*-chlorosuccinimide. *Reagents and conditions*: 1 (3 mmol), 2a (2 mL), 3 Å MS (100 mg), NXS (1.5 equiv), 80 °C, 8 h.

Scheme 3 A working mechanism

In summary, we have developed a novel and efficient electrophilic ipso-halocyclization method for the synthesis of 8-(polyfluoroalkoxy)azaspiro[4.5]trienes. In the presence of N-halosuccinimides, a variety of N-arylpropynamides underwent the electrophilic ipso-halocyclization reaction with polyfluoroalkyl alcohols to afford the corresponding 8-(polyfluoroalkoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-ones in good yields. Based on the results, two features were established: (1) The scope of the electrophilic *ipso*-halocyclization method was extended to substrates having no active para-substituents. (2) A wide range of functional groups, such as methyl, methoxy, chloro, bromo, iodo, and nitro groups, in the aromatic nucleus were tolerated well under the present reaction conditions. Efforts to explore new electrophilic ipsohalocyclization route and apply these protocols in organic synthesis are underway in our laboratory.

NMR spectroscopy was performed on an Inova-400 (Varian), or a Bruker-500 spectrometer operating at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR), or 500 MHz (¹H NMR) and 125 MHz (¹³C NMR). TMS was used an internal standard and CDCl₃ was used as the solvent. MS analysis was performed on GC-MS analysis (Shimadzu GCMS-QP2010). Melting points are uncorrected.

Electrophilic ipso-Halocyclization; General Procedure

A mixture of aniline 1 (0.3 mmol), polyfluoroalkyl alcohol 2 (2 mL), NXS (1.5 equiv), and 3Å molecular sieve (100 mg) was stirred at 80 °C for the desired time (Table 2) until complete consumption of starting material (TLC and GC-MS analysis). The mixture was washed with sat. $Na_2S_2O_3$ soln and extracted with Et_2O . The combined organic layers were dried (anhyd Na_2SO_4) and evaporated under vacuum; the residue was purified by flash column chromatography (hexane or hexane–EtOAc) to afford the desired product.

cis-3-Iodo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-aza-spiro[4.5]deca-3,6,9-trien-2-one (*cis*-3aa)

Pale yellow solid; mp 105.0–106.4 °C.

IR (KBr): 1695 cm⁻¹.

¹H NMR (400 MHz): δ = 7.40–7.34 (m, 3 H), 7.26 (d, *J* = 8.0 Hz, 2 H), 6.21 (d, *J* = 10.0 Hz, 2 H), 5.64 (d, *J* = 10.0 Hz, 2 H), 4.13 (s, 1 H), 3.83–3.77 (m, 2 H), 2.94 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.2, 162.0, 133.2, 131.2, 129.4, 128.5, 128.4, 127.9, 123.8 (q, *J* = 276.6 Hz, 1 C), 96.8, 69.4, 69.3, 65.0 (q, *J* = 34.4 Hz, 1 C), 26.6.

LR-MS (EI, 70 eV): m/z (%) = 461 (M⁺, 3), 362 (2), 334 (100), 129 (66).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₅F₃INO₂: 461.0100; found: 461.0098.

trans-**3-Iodo-1-methyl-4-phenyl-8**-(**2,2,2-trifluoroethoxy**)-**1azaspiro**[**4.5]deca-3,6,9-trien-2-one** (*trans*-**3a**) Yellow solid; mp 179.6–180.4 °C.

IR (KBr): 1681 cm⁻¹.

¹H NMR (400 MHz): δ = 7.39–7.37 (m, 3 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 6.20 (d, *J* = 10.0 Hz, 2 H), 5.71 (d, *J* = 10.0 Hz, 2 H), 4.69 (s, 1 H), 2.89–2.85 (m, 2 H), 2.83 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.0, 162.6, 133.2, 131.7, 130.1, 129.7, 128.5, 128.1, 125.0, 123.6 (q, *J* = 276.1 Hz, 1 C), 97.1, 68.8, 67.9, 61.5 (q, *J* = 34.4 Hz, 1 C), 26.3.

LR-MS (EI, 70 eV): m/z (%) = 461 (M⁺, 18), 362 (3), 334 (100), 129 (60).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₅F₃INO₂: 461.0100; found: 461.0099.

cis-3-Iodo-1-methyl-8-(2,2,3,3,3-pentafluoropropoxy)-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3ab) Yellow solid; mp 100.1 °C.

IR (KBr): 1672 cm⁻¹.

¹H NMR (500 MHz): δ = 7.40–7.37 (m, 3 H), 7.26 (d, J = 8.0 Hz, 2 H), 6.21 (d, J = 10.0 Hz, 2 H), 5.66 (d, J = 10.0 Hz, 2 H), 4.16 (s, 1 H), 3.88 (t, J = 12.5 Hz, 2 H), 2.95 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.1, 161.9, 133.1, 130.9, 129.4, 128.7, 128.3, 127.8, 118.6 (tt, *J* = 285.0, 35.0 Hz, 1 C), 113.7 (tq, *J* = 233.8, 37.5 Hz, 1 C), 96.7, 69.3, 69.2, 63.5 (q, *J* = 26.3 Hz, 1 C), 26.5.

LR-MS (EI, 70 eV): *m/z* (%) = 511 (M⁺, 3), 384 (100), 129 (71).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₅F₅INO₂: 511.0068; found: 511.0065.

trans-**3-Iodo-1-methyl-8-(2,2,3,3,3-pentafluoropropoxy)-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-2-one (***trans***-3ab) Yellow solid; mp 159.2–160.0 °C.**

IR (KBr): 1679 cm⁻¹.

¹H NMR (500 MHz): δ = 7.40–7.37 (m, 3 H), 7.24 (d, *J* = 8.0 Hz, 2 H), 6.20 (d, *J* = 10.0 Hz, 2 H), 5.74 (d, *J* = 10.0 Hz, 2 H), 4.70 (s, 1 H), 3.00 (t, *J* = 12.5 Hz, 2 H), 2.85 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.0, 162.5, 133.1, 131.4, 130.3, 129.7, 128.4, 128.0, 118.5 (tt, *J* = 284.0, 35.0 Hz, 1 C), 113.0 (tq, *J* = 235.0, 37.5 Hz, 1 C), 97.1, 68.7, 67.9, 60.7 (q, *J* = 26.3 Hz, 1 C), 26.3.

LR-MS (EI, 70 eV): m/z (%) = 511 (M⁺, 121), 385 (23), 384 (100), 129 (69).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₅F₅INO₂: 511.0068; found: 511.0068.

cis-3-Iodo-1,6-dimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3ea) Pale yellow solid; mp 93.0–94.5 °C.

IR (KBr): 1698 cm⁻¹.

¹H NMR (500 MHz): δ = 7.32–7.27 (m, 3 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 6.14 (d, *J* = 10.0 Hz, 1 H), 5.87 (s, 1 H), 5.52 (d, *J* = 10.0 Hz, 1 H), 4.14 (s, 1 H), 3.74–3.69 (m, 2 H), 2.79 (s, 3 H), 1.51 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.6, 161.2, 133.7, 132.9, 130.7, 129.6, 129.0, 128.8, 128.5, 127.9, 127.6, 124.9, 123.8 (q, *J* = 277.5 Hz, 1 C), 96.6, 71.7, 70.6, 64.4 (q, *J* = 28.0 Hz, 1 C), 26.3, 17.0.

LR-MS (EI, 70 eV): *m/z* (%) = 475 (M⁺, 32), 460 (16), 376 (5), 349 (23), 348 (100), 129 (61).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₂: 475.0256; found: 475.0254.

trans-**3-Iodo-1,6-dimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one** (*trans*-**3ea**) Pale yellow solid; mp 154.5–155.3 °C.

IR (KBr): 1674 cm⁻¹.

¹H NMR (500 MHz): δ = 7.34–7.29 (m, 3 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 6.12 (d, *J* = 10.0 Hz, 1 H), 5.90 (s, 1 H), 5.58 (d, *J* = 10.0 Hz, 1 H), 4.63 (s, 1 H), 2.98–2.90 (m, 2 H), 2.70 (s, 3 H), 1.56 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.4, 161.7, 135.5, 132.9, 131.0, 130.4, 129.9, 128.7, 128.6, 127.9, 123.8 (q, *J* = 276.3 Hz, 1 C), 97.2, 71.4, 69.5, 61.9 (q, *J* = 27.0 Hz, 1 C), 25.9, 17.3.

LR-MS (EI, 70 eV): m/z (%) = 475 (M⁺, 52), 460 (17), 376 (6), 348 (100), 129 (66).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₂: 475.0256; found: 475.0256.

cis-3-Iodo-1,6-dimethyl-8-(2,2,3,3,3-pentafluoropropoxy)-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3eb)

Pale yellow solid; mp 86.1 °C.

IR (KBr): 1699 cm⁻¹.

¹H NMR (500 MHz): δ = 7.40–7.35 (m, 3 H), 7.29 (d, *J* = 8.0 Hz, 2 H), 6.20 (d, *J* = 10.0 Hz, 1 H), 5.94 (s, 1 H), 5.60 (d, *J* = 10.0 Hz, 1 H), 4.23 (s, 1 H), 3.86 (t, *J* = 12.5 Hz, 2 H), 2.87 (s, 3 H), 1.59 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.6, 161.0, 133.8, 132.8, 130.5, 129.6, 129.1, 128.4, 127.6, 127.5, 118.6 (tt, *J* = 284.0 Hz, 35.0 Hz, 1 C), 114.1 (tq, *J* = 271.1 Hz, 36.3 Hz, 1 C), 96.5, 71.6, 70.4, 63.0 (t, *J* = 26.3 Hz, 1 C), 26.2, 17.0.

LR-MS (EI, 70 eV): m/z (%) = 525 (M⁺, 11), 398 (38), 249 (10), 207 (13), 129 (40), 43 (100).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₇F₅INO₂: 525.0224; found: 525.0224.

trans-**3-Iodo-1,6-dimethyl-8**-(**2,2,3,3,3-pentafluoropropoxy**)-**4-phenyl-1-azaspiro**[**4.5**]**deca-3,6,9-trien-2-one** (*trans*-**3eb**) Pale yellow solid; mp 152.9–153.4 °C.

IR (KBr): 1699 cm⁻¹.

¹H NMR (500 MHz): δ = 7.40–7.35 (m, 3 H), 7.29 (d, *J* = 10.0 Hz, 2 H), 6.18 (d, *J* = 10.0 Hz, 1 H), 5.96 (s, 1 H), 5.66 (d, *J* = 10.0 Hz, 1 H), 4.71 (s, 1 H), 3.16–3.09 (m, 2 H), 2.77 (s, 3 H), 1.64 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.3, 161.6, 135.6, 132.7, 130.7, 130.4, 129.8, 128.5, 128.4, 127.7, 118.5 (tt, *J* = 284.0 Hz, 35.0 Hz, 1 C), 113.9 (tq, *J* = 271.1 Hz, 36.3 Hz, 1 C), 97.2, 71.2, 69.4, 60.8 (t, *J* = 26.3 Hz, 1 C), 25.9, 17.3.

LR-MS (EI, 70 eV): m/z (%) = 525 (M⁺, 43), 398 (100), 129 (71), 43 (62).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₇F₅INO₂: 525.0224; found: 525.0224.

cis-**3-Iodo-1**,7-dimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3fa) Pale yellow solid; mp 149.5–150.7 °C.

IR (KBr): 1696 cm⁻¹.

¹H NMR (400 MHz): δ = 7.40–7.33 (m, 3 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 6.15 (d, *J* = 10.0 Hz, 1 H), 5.61 (d, *J* = 10.0 Hz, 1 H), 5.36 (s, 1 H), 4.03 (s, 1 H), 3.77–3.65 (m, 2 H), 2.91 (s, 3 H), 1.85 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.1, 162.6, 138.9, 133.3, 130.7, 129.4, 129.0, 128.6, 128.3, 127.8, 123.8, 123.7 (q, *J* = 276.9 Hz, 1 C), 122.4, 96.4, 72.0, 70.3, 64.0 (q, *J* = 34.4 Hz, 1 C), 26.6, 19.5.

LR-MS (EI, 70 eV): *m*/*z* (%) = 475 (M⁺, 49), 376 (7), 349 (23), 348 (100), 129 (84).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₂: 475.0256; found: 475.0256.

trans-3-Iodo-1,7-dimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-3fa) Pale yellow solid; mp 160.4–160.9 °C.

IR (KBr): 1695 cm⁻¹.

Synthesis 2009, No. 6, 891–902 $\,$ © Thieme Stuttgart \cdot New York

H), 6.14 (d, *J* = 10.0 Hz, 1 H), 5.70 (d, *J* = 10.0 Hz, 1 H), 5.42 (s, 1 H), 4.54 (s, 1 H), 2.81 (s, 3 H), 2.72–2.52 (m, 2 H), 1.83 (s, 3 H).

¹³C NMR (100 MHz): δ = 166.9, 163.1, 139.3, 133.5, 131.2, 130.3, 129.6, 128.6, 128.5, 128.1, 127.8, 127.7, 125.3, 123.7 (q, *J* = 275.9 Hz, 1 C), 96.8, 70.8, 70.1, 60.5 (q, *J* = 34.4 Hz, 1 C), 26.5, 15.9.

LR-MS (EI, 70 eV): *m*/*z* (%) = 475 (M⁺, 10), 376 (2), 348 (100), 129 (47).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₂: 475.0256; found: 475.0253.

cis-3-Iodo-1,6,7-trimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (cis-3ga) Yellow solid; mp 100.2–101.5 °C.

IR (KBr): 1687 cm⁻¹.

¹H NMR (400 MHz): δ = 7.40–7.32 (m, 3 H), 7.20 (d, *J* = 8.0 Hz, 2 H), 6.14 (d, *J* = 10.0 Hz, 1 H), 5.57 (d, *J* = 10.0 Hz, 1 H), 4.10 (s, 1 H), 3.72–3.58 (m, 2 H), 2.84 (s, 3 H), 1.78 (s, 3 H), 1.49 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.6, 161.9, 133.3, 133.1, 130.4, 129.5, 128.4, 127.5, 127.1, 123.9 (q, *J* = 276.2 Hz, 1 C), 96.5, 73.0, 72.7, 63.3 (q, *J* = 34.4 Hz, 1 C), 26.3, 15.7, 12.4.

LR-MS (EI, 70 eV): m/z (%) = 489 (M⁺, 38), 390 (7), 362 (100), 129 (55).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₉F₃INO₂: 489.0413; found: 489.0412.

trans-**3-Iodo-1,6,7-trimethyl-4-phenyl-8-(2,2,2-trifluoroeth-oxy)-1-azaspiro**[**4.5**]deca-**3,6,9-trien-2-one** (*trans*-**3**ga) Pale yellow solid; mp 155.1–155.2 °C.

IR (KBr): 1693 cm⁻¹.

¹H NMR (400 MHz): δ = 7.38–7.34 (m, 3 H), 7.14 (d, *J* = 8.0 Hz, 2 H), 6.12 (d, *J* = 10.0 Hz, 1 H), 5.63 (d, *J* = 10.0 Hz, 1 H), 4.54 (s, 1 H), 2.74 (s, 3 H), 2.71–2.59 (m, 2 H), 1.79 (s, 3 H), 1.55 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.4, 163.1, 134.1, 133.4, 130.5, 130.4, 129.8, 128.6, 128.5, 127.8, 123.8 (q, *J* = 276.0 Hz, 1 C), 97.3, 72.6, 72.3, 60.5 (q, *J* = 34.4 Hz, 1 C), 26.0, 15.5, 12.8.

LR-MS (EI, 70 eV): m/z (%) = 489 (M⁺, 57), 390 (10), 362 (100), 129 (68).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₉F₃INO₂: 489.0413; found: 489.0413.

cis-3-Iodo-1,6,9-trimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (cis-3ha) Yellow solid; mp 152.8–153.4 °C.

IR (KBr): 1672 cm^{-1} .

¹H NMR (400 MHz): δ = 7.40–7.33 (m, 3 H), 7.25 (d, J = 8.0 Hz, 2 H), 5.87 (s, 1 H), 5.31 (s, 1 H), 4.09 (s, 1 H), 3.75–3.62 (m, 2 H), 2.84 (s, 3 H), 1.84 (s, 3 H), 1.55 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.6, 161.9, 138.6, 134.1, 133.0, 129.6, 128.8, 128.7, 127.7, 127.6, 124.3, 123.9 (q, *J* = 276.6 Hz, 1 C), 96.2, 73.1, 72.7, 63.5 (q, *J* = 34.4 Hz, 1 C), 26.3, 19.2, 16.7.

LR-MS (EI, 70 eV): m/z (%) = 489 (M⁺, 23), 390 (6), 362 (100), 129 (54).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₉F₃INO₂: 489.0413; found: 489.0413.

trans-**3-Iodo-1,6,9-trimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (***trans***-3ha) Pale yellow solid; mp 165.7–166.6 °C.**

IR (KBr): 1674 cm⁻¹.

¹H NMR (400 MHz): δ = 7.38–7.35 (m, 3 H), 7.19 (d, *J* = 8.0 Hz, 2 H), 5.90 (s, 1 H), 5.35 (s, 1 H), 4.55 (s, 1 H), 2.85–2.78 (m, 1 H), 2.74 (s, 3 H), 2.70–2.63 (m, 1 H), 1.82 (s, 3 H), 1.62 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.3, 162.3, 138.7, 135.7, 133.3, 129.8, 128.6, 128.4, 127.8, 125.6, 123.8 (q, J = 276.1 Hz, 1 C), 97.1, 72.6, 72.3, 60.8 (q, J = 34.4 Hz, 1 C), 26.0, 19.2, 17.1.

LR-MS (EI, 70 eV): m/z (%) = 489 (M⁺, 28), 390 (5), 362 (100), 129 (52).

HRMS (EI): m/z [M]⁺ calcd for C₂₀H₁₉F₃INO₂: 489.0413; found: 489.0411.

cis-3-Iodo-6-methoxy-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3ia)

Yellow solid; mp 76.0 °C.

IR (KBr): 1700 cm⁻¹.

¹H NMR (500 MHz): δ = 7.41–7.34 (m, 3 H), 7.18 (d, *J* = 8.0 Hz, 2 H), 6.14 (d, *J* = 10.0 Hz, 1 H), 5.51 (d, *J* = 10.0 Hz, 1 H), 5.09 (s, 1 H), 4.51 (s, 1 H), 3.83–3.73 (m, 2 H), 3.59 (s, 3 H), 2.87 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.9, 160.7, 151.9, 132.8, 130.7, 129.5, 129.3, 128.3, 127.8, 127.6, 129.2 (q, J = 276.0 Hz, 1 C), 98.8, 96.6, 71.9, 70.6, 63.6 (q, J = 33.4 Hz, 1 C), 54.9, 26.3.

LR-MS (EI, 70 eV): *m*/*z* (%) = 491 (M⁺, 34), 392 (24), 377 (19), 364 (18), 129 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₃: 491.0205; found: 491.0204.

trans-**3-Iodo-6-methoxy-1-methyl-4-phenyl-8-(2,2,2-trifluoro-ethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (***trans***-3ia) White solid; mp 147.0–148.6 °C.**

IR (KBr): 1696 cm⁻¹.

¹H NMR (500 MHz): δ = 7.39–7.38 (m, 3 H), 7.11 (d, *J* = 8.0 Hz, 2 H), 6.09 (d, *J* = 10.0 Hz, 1 H), 5.56 (d, *J* = 10.0 Hz, 1 H), 5.06 (s, 1 H), 4.98 (s, 1 H), 3.62 (s, 3 H), 2.78 (s, 3 H), 2.74–2.64 (m, 2 H).

¹³C NMR (125 MHz): δ = 167.7, 161.6, 153.1, 133.0, 131.0, 129.6, 129.1, 128.5, 127.8, 129.0 (q, *J* = 276.1 Hz, 1 C), 99.5, 97.0, 70.7, 70.4, 59.9 (q, *J* = 33.8 Hz, 1 C), 54.8, 26.1.

LR-MS (EI, 70 eV): *m*/*z* (%) = 491 (M⁺, 36), 460 (21), 392 (26), 364 (24), 234 (7), 129 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₃: 491.0205; found: 491.0205.

cis-6-Chloro-3-iodo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3ja) Pale yellow solid; mp 92.9–94.0 °C.

IR (KBr): 1697 cm⁻¹.

¹H NMR (400 MHz): δ = 7.43–7.35 (m, 3 H), 7.26 (d, *J* = 8.0 Hz, 2 H), 6.32 (s, 1 H), 6.21 (d, *J* = 10.0 Hz, 1 H), 5.67 (d, *J* = 10.0 Hz, 1 H), 4.31 (s, 1 H), 3.84–3.78 (m, 2 H), 2.91 (s, 3 H).

¹³C NMR (100 MHz): δ = 167.5, 159.7, 132.4, 132.2, 130.2, 129.8, 129.6, 128.8, 127.9, 127.8, 123.6 (q, *J* = 276.8 Hz, 1 C), 98.2, 71.9, 71.7, 65.0 (q, *J* = 33.4 Hz, 1 C), 26.2.

LR-MS (EI, 70 eV): m/z (%) = 497 (M⁺ + 2, 9), 495 (M⁺, 29), 460 (M - Cl, 30), 396 (4), 368 (50), 332 (31), 129 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄ClF₃INO₂: 494.9710; found: 494.9709.

trans-6-Chloro-3-iodo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-3ja) Pale yellow solid; mp 162.1–163.3 °C. IR (KBr): 1700 cm⁻¹.

¹H NMR (500 MHz): δ = 7.44–7.41 (m, 3 H), 7.28 (d, *J* = 8.0 Hz, 2 H), 6.34 (s, 1 H), 6.18 (d, *J* = 10.0 Hz, 1 H), 5.76 (d, *J* = 10.0 Hz, 1 H), 4.86 (s, 1 H), 2.85 (s, 3 H), 2.82–2.80 (m, 2 H).

¹³C NMR (125 MHz): δ = 167.3, 160.3, 133.5, 132.5, 130.7, 130.5, 130.0, 129.9, 128.7, 123.4 (q, *J* = 276.3 Hz, 1 C), 98.8, 71.8, 70.3, 61.5 (q, *J* = 35.0 Hz, 1 C), 26.1.

LR-MS (EI, 70 eV): *m/z* (%) = 497 (M⁺ + 2, 9), 495 (M⁺, 29), 460 (M - Cl, 30), 368 (54), 129 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄ClF₃INO₂: 494.9710; found: 494.9709.

cis-6-Bromo-3-iodo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3ka) Pale yellow solid; mp 117.8–119.5 °C.

IR (KBr): 1697 cm⁻¹.

¹H NMR (500 MHz): δ = 7.35–7.30 (m, 3 H), 7.23 (d, *J* = 8.0 Hz, 2 H), 6.48 (s, 1 H), 6.16 (d, *J* = 10.0 Hz, 1 H), 5.65 (d, *J* = 10.0 Hz, 1 H), 4.14 (s, 1 H), 3.77–3.72 (m, 2 H), 2.85 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.3, 159.8, 133.8, 132.3, 130.2, 129.7, 128.5, 127.8, 127.7, 124.0, 123.4 (q, *J* = 276.3 Hz, 1 C), 98.3, 72.3, 71.9, 64.9 (q, *J* = 33.8 Hz, 1 C), 26.2.

LR-MS (EI, 70 eV): m/z (%) = 541 (M⁺ + 2, 9), 539 (M⁺, 10), 461 (12), 460 (M - Br, 58), 412 (10), 332 (52), 333 (22), 234 (9), 129 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄BrF₃INO₂: 538.9205; found: 538.9205.

trans-6-Bromo-3-iodo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-3ka) Pale yellow solid; mp 164.6–165.8 °C.

IR (KBr): 1699 cm⁻¹.

¹H NMR (500 MHz): δ = 7.35–7.34 (m, 3 H), 7.24 (d, *J* = 8.0 Hz, 2 H), 6.50 (s, 1 H), 6.12 (d, *J* = 10.0 Hz, 1 H), 5.73 (d, *J* = 10.0 Hz, 1 H), 4.67 (s, 1 H), 2.79–2.77 (m, 5 H).

¹³C NMR (125 MHz): δ = 167.2, 160.4, 134.0, 132.5, 130.4, 130.0, 129.8, 128.8, 128.6, 128.2, 125.4, 123.1 (q, *J* = 276.1 Hz, 1 C), 99.0, 72.2, 70.6, 61.7 (q, *J* = 35.0 Hz, 1 C), 26.1.

LR-MS (EI, 70 eV): m/z (%) = 541 (M⁺ + 2, 23), 539 (M⁺, 26), 461 (2), 460 (M - Br, 9), 412 (11), 333 (22), 332 (52), 234 (9), 129 (100).

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₈H₁₄BrF₃INO₂: 538.9205; found: 538.9205.

cis-3,6-Diiodo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3la) Pale yellow solid; mp 114.0–115.2 °C.

IR (KBr): 1691 cm⁻¹.

¹H NMR (500 MHz): δ = 7.44–7.39 (m, 3 H), 7.35 (d, *J* = 8.0 Hz, 2 H), 6.87 (s, 1 H), 6.30 (d, *J* = 10.0 Hz, 1 H), 5.81 (d, *J* = 10.0 Hz, 1 H), 4.11 (s, 1 H), 3.86–3.80 (m, 2 H), 2.92 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.1, 160.3, 141.8, 132.3, 130.3, 129.7, 128.4, 127.8, 123.5 (q, *J* = 277.5 Hz, 1 C), 102.7, 98.5, 73.0, 71.9, 64.9 (q, *J* = 33.8 Hz, 1 C), 26.3.

LR-MS (EI, 70 eV): *m*/*z* (%) = 588 (M⁺, 3), 587 (15), 460 (100), 333 (25), 250 (29), 234 (20), 129 (96).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄F₃I₂NO₂: 586.9066; found: 586.9065.

trans-3,6-Diiodo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-3la) Pale yellow solid; mp 164.6–165.8 °C.

rate yenow sond, mp 104.0–105.8

IR (KBr): 1699 cm^{-1} .

¹H NMR (500 MHz): δ = 7.44–7.41 (m, 3 H), 7.39–7.37 (m, 2 H), 6.91 (s, 1 H), 6.27 (d, *J* = 10.0 Hz, 1 H), 5.89 (d, *J* = 10.0 Hz, 1 H), 4.63 (s, 1 H), 2.94–2.90 (m, 2 H), 2.84 (s, 3 H).

¹³C NMR (125 MHz): δ = 166.9, 160.8, 143.0, 132.4, 130.5, 130.0, 128.8, 128.5, 128.3, 127.9, 123.4 (q, J = 276.3 Hz, 1 C), 104.4, 99.2, 72.8, 70.6, 61.8 (q, J = 33.8 Hz, 1 C), 26.1.

LR-MS (EI, 70 eV): *m/z* (%) = 588 (M⁺, 9), 587 (43), 503 (5), 460 (25), 333 (25), 250 (21), 129 (77), 57 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄F₃I₂NO₂: 586.9066; found: 586.9066.

cis-3-Iodo-1,4-methyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3qa) Yellow solid; mp 84.1–85.9 °C.

IR (KBr): 1699 cm⁻¹.

¹H NMR (500 MHz): δ = 6.29 (d, *J* = 12.5 Hz, 2 H), 5.48 (d, *J* = 12.5 Hz, 2 H), 4.65 (s, 1 H), 3.89–3.84 (m, 2 H), 2.91 (s, 3 H), 1.81 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.3, 160.7, 130.6, 129.2, 123.7 (q, J = 276.3 Hz, 1 C), 94.5, 69.0, 68.7, 64.2 (q, J = 35.0 Hz, 1 C), 26.6, 15.4.

LR-MS (EI, 70 eV): m/z (%) = 399 (M⁺, 44), 587 (15), 272 (44), 111 (31), 97 (45), 57 (89), 43 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₃H₁₃F₃INO₂: 398.9943; found: 398.9943.

trans-3-Iodo-1,4-methyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-3qa)

Yellow solid; mp 88.6 °C.

IR (KBr): 1694 cm^{-1} .

¹H NMR (500 MHz): δ = 6.36 (d, *J* = 12.5 Hz, 2 H), 5.48 (d, *J* = 12.5 Hz, 2 H), 4.63 (s, 1 H), 3.92–3.88 (m, 2 H), 2.78 (s, 3 H), 1.90 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.2, 160.6, 131.1, 129.9, 123.5 (q, *J* = 276.3 Hz, 1 C), 69.3, 68.3, 64.8 (q, *J* = 35.0 Hz, 1 C), 26.2, 15.8. LR-MS (EI, 70 eV): *m/z* (%) = 399 (M⁺, 17), 300 (4), 503 (5), 272 (28), 111 (37), 57 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₃H₁₃F₃INO₂: 398.9943; found: 398.9941.

cis-3-Iodo-1-methyl-8-(2,2,3,3,3-pentafluoropropoxy)-4-pentyl-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3rb) Yellow oil.

IR (KBr): 1699 cm⁻¹.

¹H NMR (500 MHz): $\delta = 6.28$ (d, J = 11.0 Hz, 2 H), 5.49 (d, J = 11.0 Hz, 2 H), 4.68 (s, 1 H), 3.92 (t, J = 13.0 Hz, 2 H), 2.86 (s, 3 H), 2.09–2.05 (m, 2 H), 1.49–1.40 (m, 2 H), 1.29–1.25 (m, 4 H), 0.88 (t, J = 6.5 Hz, 3 H).

¹³C NMR (125 MHz): δ = 167.4, 164.3, 130.3, 129.2, 118.6 (tt, *J* = 284.0, 35.0 Hz, 1 C), 114.0 (tq, *J* = 233.8, 36.3 Hz, 1 C), 94.5, 69.0, 68.8, 63.1 (t, *J* = 27.5 Hz, 1 C), 31.8, 29.5, 27.4, 26.3, 22.0, 13.6.

LR-MS (EI, 70 eV): m/z (%) = 505 (M⁺, 7), 434 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₂₁F₅INO₂: 505.0537; found: 505.0535.

trans-3-Iodo-1-methyl-8-(2,2,3,3,3-pentafluoropropoxy)-4-pentyl-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-3rb) Yellow oil.

IR (KBr): 1699 cm⁻¹.

¹H NMR (500 MHz): $\delta = 6.33$ (d, J = 11.0 Hz, 2 H), 5.50 (d, J = 11.0 Hz, 2 H), 4.63 (s, 1 H), 3.94 (t, J = 13.0 Hz, 2 H), 2.75 (s, 3 H), 2.021–2.12 (m, 2 H), 1.49–1.40 (m, 2 H), 1.31–1.25 (m, 4 H), 0.89 (t, J = 6.5 Hz, 3 H).

¹³C NMR (125 MHz): δ = 167.2, 164.1, 130.5, 130.0, 118.5 (tt, J = 283.8, 35.0 Hz, 1 C), 113.9 (tq, J = 271.3, 36.3 Hz, 1 C), 94.6, 69.1, 68.5, 63.6 (t, J = 27.5 Hz, 1 C), 31.6, 29.8, 27.5, 26.0, 21.9, 13.6.

LR-MS (EI, 70 eV): m/z (%) = 505 (M⁺, 17), 434 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₂₁F₅INO₂: 505.0537; found: 505.0537.

cis-3-Iodo-1-methyl-4-(2-methylphenyl)-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3sa) Pale yellow solid; mp 118.4 °C.

IR (KBr): 1694 cm⁻¹.

¹H NMR (500 MHz): δ = 7.28 (t, *J* = 7.5 Hz, 1 H), 7.22 (d, *J* = 7.5 Hz, 1 H), 7.14 (t, *J* = 7.5 Hz, 1 H), 6.88 (d, *J* = 7.5 Hz, 1 H), 6.27 (d, *J* = 12 Hz, 1 H), 6.05 (d, *J* = 12 Hz, 1 H), 5.70 (d, *J* = 12 Hz, 1 H), 5.65 (d, *J* = 12 Hz, 1 H), 3.84 (s, 1 H), 3.77–3.72 (m, 2 H), 2.97 (s, 3 H), 2.19 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.1, 163.0, 135.9, 1, 129.8, 129.1, 128.0, 127.7, 125.1, 123.7 (q, *J* = 276.3 Hz, 1 C), 98.5, 70.7, 69.3, 64.5 (q, *J* = 33.8 Hz, 1 C), 26.9, 20.0.

LR-MS (EI, 70 eV): m/z (%) = 475 (M⁺, 21), 376 (4), 348 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₂: 475.0256; found: 475.0256.

trans-**3-Iodo-1-methyl-4-(2-methylphenyl)-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (***trans***-3sa) Pale yellow solid; mp 163.3–164.1 °C.**

IR (KBr): 1682 cm⁻¹.

¹H NMR (500 MHz): δ = 7.32–7.26 (m, 2 H), 7.21 (t, *J* = 7.5 Hz, 1 H), 6.93 (d, *J* = 7.5 Hz, 1 H), 6.25 (d, *J* = 12 Hz, 1 H), 6.09 (d, *J* = 12 Hz, 1 H), 5.82 (d, *J* = 10 Hz, 1 H), 5.76 (d, *J* = 10 Hz, 1 H), 4.74 (s, 1 H), 2.90 (s, 3 H), 2.61–2.57 (m, 1 H), 2.46–2.42 (m, 1 H), 2.26 (s, 3 H).

¹³C NMR (125 MHz): δ = 166.8, 163.1, 135.8, 132.0, 131.8, 131.0, 130.7, 130.5, 129.7, 128.4, 125.3, 123.5 (q, *J* = 276.3 Hz, 1 C), 98.8, 70.0, 67.5, 60.1 (q, *J* = 33.8 Hz, 1 C), 26.6, 19.9.

LR-MS (EI, 70 eV): m/z (%) = 475 (M⁺, 3), 376 (2), 348 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₂: 475.0256; found: 475.0255.

cis-3-Iodo-4-(4-methoxyphenyl)-1-methyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3ta) Yellow solid; mp 133.3–135.0 °C.

IR (KBr): 1697 cm⁻¹.

¹H NMR (500 MHz): δ = 7.23 (d, *J* = 7.0 Hz, 2 H), 6.88 (d, *J* = 7.0 Hz, 2 H), 6.21 (d, *J* = 10.5 Hz, 2 H), 5.69 (d, *J* = 10.5 Hz, 2 H), 4.68 (s, 1 H), 3.78 (s, 3 H), 3.05–3.00 (m, 2 H), 2.81 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.2, 162.1, 160.6, 131.4, 130.3, 129.6, 125.1, 123.6 (q, *J* = 277.5 Hz, 1 C), 113.9, 96.4, 68.8, 68.0, 61.9 (q, *J* = 33.8 Hz, 1 C), 55.2, 26.3.

LR-MS (EI, 70 eV): m/z (%) = 491 (M⁺, 36), 364 (69), 159 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₃: 491.0205; found: 491.0205.

trans-3-Iodo-4-(4-methoxyphenyl)-1-methyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-3ta) Yellow solid; mp 135.0 °C.

IR (KBr): 1682 cm⁻¹.

¹H NMR (500 MHz): δ = 7.28 (d, *J* = 9.0 Hz, 2 H), 6.87 (d, *J* = 8.5 Hz, 2 H), 6.22 (d, *J* = 10.0 Hz, 2 H), 5.62 (d, *J* = 10.0 Hz, 2 H), 4.24 (s, 1 H), 3.83–3.81 (m, 5 H), 2.92 (s, 3 H).

¹³C NMR (125 MHz): δ = 167.3, 161.4, 160.4, 130.9, 129.3, 128.9, 125.2, 123.8 (q, *J* = 277.5 Hz, 1 C), 113.8, 95.9, 69.4, 69.1, 64.6 (q, *J* = 33.8 Hz, 1 C), 55.3, 26.9.

LR-MS (EI, 70 eV): *m*/*z* (%) = 491 (M⁺, 44), 364 (69), 265 (11), 253 (6), 159 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇F₃INO₃: 491.0205; found: 491.0205.

cis-3-Iodo-1-methyl-4-(4-nitrophenyl)-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-3ua)

Yellow solid; mp 175.5–176.3 °C.

IR (KBr): 1690 cm⁻¹.

¹H NMR (500 MHz): δ = 8.17 (d, *J* = 9.0 Hz, 2 H), 7.40 (d, *J* = 8.5 Hz, 2 H), 6.21 (d, *J* = 10.5 Hz, 2 H), 5.59 (d, *J* = 10.5 Hz, 2 H), 4.08 (s, 1 H), 3.79–3.74 (m, 2 H), 2.89 (s, 3 H).

¹³C NMR (125 MHz): δ = 166.4, 159.7, 148.2, 139.7, 131.7, 129.1, 127.7, 123.7, 123.6 (q, J = 276.3 Hz, 1 C), 99.1, 69.1 (2 C), 65.0 (q, J = 35.0 Hz, 1 C), 26.6.

LR-MS (EI, 70 eV): m/z (%) = 506 (M⁺, 3), 406 (3), 379 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄F₃IN₂O₄: 505.9950; found: 505.9950.

trans-**3-Iodo-1-methyl-4-(4-nitrophenyl)-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (***trans***-3ua) Yellow solid; mp 121.9–123.4 °C.**

IR (KBr): 1682 cm⁻¹.

¹H NMR (500 MHz): δ = 8.19 (d, *J* = 8.5 Hz, 2 H), 7.46 (d, *J* = 8.5 Hz, 2 H), 6.24 (d, *J* = 10.0 Hz, 2 H), 5.65 (d, *J* = 9.0 Hz, 2 H), 4.55 (s, 1 H), 3.15–3.10 (m, 2 H), 2.79 (s, 3 H).

¹³C NMR (125 MHz): δ = 166.4, 159.7, 148.2, 139.4, 132.0, 129.4, 129.0, 123.6, 123.4 (q, *J* = 277.5 Hz, 1 C), 99.0, 68.7, 68.3, 63.2 (q, *J* = 35.0 Hz, 1 C), 26.3.

LR-MS (EI, 70 eV): m/z (%) = 506 (M⁺, 3), 407 (3), 380 (20), 379 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄F₃IN₂O₄: 505.9950; found: 505.9948.

3-Iodo-1-methyl-4-phenylquinolin-2(1*H***)-one (4aa)¹** Pale yellow solid; mp 173.2 °C.

IR (KBr): 1737, 1637, 1597 cm⁻¹.

¹H NMR (400 MHz): δ = 7.62–7.50 (m, 4 H), 7.43 (d, *J* = 8.4 Hz, 1 H), 7.22 (d, *J* = 6.8 Hz, 2 H), 7.15 (d, *J* = 8.0 Hz, 1 H), 7.08 (t, *J* = 7.2 Hz, 1 H), 3.90 (s, 3 H).

¹³C NMR (100 MHz): δ = 159.1, 156.3, 141.2, 139.6, 131.1, 128.8, 128.9, 128.6, 128.4, 122.4, 121.5, 65.8, 31.7.

LR-MS (EI, 70 eV): m/z (%) = 361 (M⁺, 100).

3-Iodo-1,5-dimethyl-4-phenylquinolin-2(1*H*)-one (4fa) and **3-Iodo-1,7-dimethyl-4-phenylquinolin-2**(1*H*)-one (4fa') Pale yellow solid; ratio 4fa/4fa' 1:3.

IR (KBr): 1644 cm⁻¹.

¹H NMR (400 MHz): δ = 7.41–7.35 (m, 4 H), 7.26 (d, *J* = 6.8 Hz, 0.31 H), 7.13–7.08 (m, 4 H), 6.92 (d, *J* = 6.4 Hz, 0.69 H), 6.86 (d, *J* = 5.6 Hz, 0.28 H), 6.80 (d, *J* = 6.8 Hz, 0.72 H), 3.81 (s, 0.29 H), 3.78 (s, 0.71 H), 2.38 (s, 3 H).

 ^{13}C NMR (100 MHz): δ = 159.2, 158.7, 156.2, 156.0, 146.0, 142.0, 141.6, 140.8, 139.0, 137.0, 128.7, 128.4, 127.1, 123.8, 119.8, 119.4, 114.4, 113.3, 105.3, 99.8, 32.8, 31.7, 24.9, 22.2.

LR-MS (EI, 70 eV): m/z (%) = 375 (M⁺, 100).

3-Iodo-1,4-dimethylquinolin-2(1H)-one (4qa)¹

Yellow solid; mp 121.0 °C.

IR (KBr): 1633 cm^{-1} .

¹H NMR (500 MHz): δ = 7.83 (d, *J* = 8.0 Hz, 1 H), 7.62 (t, *J* = 8.0 Hz, 1 H), 7.40 (d, *J* = 8.5 Hz, 1 H), 7.28–7.25 (m, 1 H), 2.83 (s, 3 H), 2.82 (s, 3 H).

¹³C NMR (100 MHz): δ = 150.8, 139.0, 130.9, 129.1, 126.0, 122.4, 120.6, 114.4, 102.7, 31.6, 26.2.

LR-MS (EI, 70 eV): m/z (%) = 299 (M⁺, 100).

3-Iodo-1-methyl-4-(2-methylphenyl)quinolin-2(1*H***)-one (4sa) Pale yellow solid; mp 109.6–121.0 °C.**

IR (KBr): 1637 cm^{-1} .

¹H NMR (500 MHz): δ = 7.61 (t, *J* = 8.5 Hz, 1 H), 7.46–7.41 (m, 2 H), 7.36 (t, *J* = 8.0 Hz, 2 H), 7.10–7.04 (m, 3 H), 3.91 (s, 3 H), 2.05 (s, 3 H).

¹³C NMR (125 MHz): δ = 159.1, 156.3, 140.5, 139.4, 134.8, 131.1, 130.3, 128.8, 128.2, 128.0, 126.3, 122.5, 120.9, 114.3, 101.5, 31.6, 19.3.

LR-MS (EI, 70 eV): m/z (%) = 375 (M⁺, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₇H₁₄INO: 375.0120; found: 375.0120.

Downloaded by: NYU. Copyrighted material.

3-Iodo-4-(4-methoxyphenyl)-1-methylquinolin-2(1*H***)-one (4ta) Yellow solid; mp 145.1 °C.**

IR (KBr): 1631 cm⁻¹.

¹H NMR (500 MHz): δ = 7.26 (t, *J* = 8.0 Hz, 1 H), 7.21 (d, *J* = 8.0 Hz, 1 H), 7.14 (d, *J* = 8.5 Hz, 1 H), 7.10 (d, *J* = 10.5 Hz, 2 H), 7.07–7.05 (m, 3 H), 3.90 (s, 3 H), 3.89 (s, 3 H).

¹³C NMR (125 MHz): δ = 159.8, 159.1, 156.2, 139.6, 133.6, 130.9, 129.8, 129.0, 122.3, 121.8, 114.1, 102.1, 55.3, 31.7.

LR-MS (EI, 70 eV): m/z (%) = 391 (M⁺, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₇H₁₄INO₂: 391.0069; found: 391.0069.

 $\label{eq:solution} \begin{array}{l} \textbf{3-Iodo-1-methyl-4-phenyl-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione~(50a)^3 \end{array}$

White solid; mp 195.6–197.3 °C.

IR (KBr): 1699, 1662, 1361 cm⁻¹.

¹H NMR (400 MHz): δ = 7.40–7.34 (m, 3 H), 7.28 (d, J = 8.0 Hz, 2 H), 6.52, 6.46 (dd, J = 10.4 Hz, 10.4 Hz, 4 H), 2.95 (s, 3 H).

¹³C NMR (100 MHz): δ = 183.8, 167.4, 158.0, 144.1, 133.3, 131.9, 130.1, 128.7, 127.7, 98.2, 70.4, 27.1.

LR-MS (EI, 70 eV): *m/z* (%) = 377 (M⁺, 14), 248 (94), 129 (100).

3-Iodo-1-methyl-4-(thiophen-2-yl)-1-azaspiro[4.5]deca-3,6,9-triene-2,8-dione (5va) White solid; mp 179.3–180.1 °C.

IR (KBr): 1695, 1662 cm⁻¹.

¹H NMR (500 MHz): δ = 7.68 (s, 1 H), 7.53 (d, *J* = 5.0 Hz, 2 H), 7.10 (d, *J* = 5.0 Hz, 2 H), 6.62–6.53 (m, 4 H) 2.93 (s, 3 H).

¹³C NMR (125 MHz): δ = 183.9, 167.6, 149.5, 145.1, 133.2, 132.7, 129.7, 129.4, 127.5, 93.5, 69.1, 26.3.

LR-MS (EI, 70 eV): m/z (%) = 383 (M⁺, 27), 256 (18), 135 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₄H₁₀INO₂S: 382.9477; found: 382.9477.

cis-3-Bromo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-6aa) Pale yellow solid; mp 88.2 °C.

IR (KBr): 1697 cm⁻¹.

¹H NMR (500 MHz): δ = 7.39–7.35 (m, 5 H), 6.25 (d, *J* = 10.0 Hz, 2 H), 5.64 (d, *J* = 10.0 Hz, 2 H), 4.27 (s, 1 H), 3.85–3.80 (m, 2 H), 2.92 (s, 3 H).

¹³C NMR (125 MHz): δ = 165.6, 154.8, 131.2, 130.3, 129.5, 128.9, 128.4, 127.8, 123.7 (q, *J* = 276.3 Hz, 1 C), 118.4, 69.2, 67.2, 64.6 (q, *J* = 33.8 Hz, 1 C), 26.2.

LR-MS (EI, 70 eV): m/z (%) = 415 (M⁺ + 2, 3), 413 (M⁺, 3), 334 (100), 129 (42).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₅BrF₃NO₂: 413.0238; found: 413.0237.

trans-3-Bromo-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-6aa)

White solid; mp 173.9–174.7 °C.

IR (KBr): 1693 cm⁻¹.

¹H NMR (500 MHz): δ = 7.42–7.36 (m, 3 H), 7.32 (d, J = 7.0 Hz, 2 H), 6.24 (d, J = 10.0 Hz, 2 H), 5.73 (d, J = 10.0 Hz, 2 H), 4.72 (s, 1 H), 3.02–3.00 (m, 2 H), 2.82 (s, 3 H).

¹³C NMR (125 MHz): δ = 165.5, 155.3, 131.8, 131.2, 129.9, 129.8, 128.4, 128.3, 123.6 (q, *J* = 276.3 Hz, 1 C), 118.8, 73.1, 66.8, 62.0 (q, *J* = 33.8 Hz, 1 C), 25.9.

LR-MS (EI, 70 eV): m/z (%) = 415 (M⁺ + 2, 12), 413 (M⁺, 12), 334 (100), 129 (64).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₅BrF₃NO₂: 413.0238; found: 413.0238.

cis-3-Bromo-6-chloro-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (cis-6ja) Yellow oil.

IR (KBr): 1716 cm⁻¹.

¹H NMR (500 MHz): δ = 7.41–7.33 (m, 5 H), 6.35 (d, *J* = 7.5 Hz, 1 H), 6.24 (t, *J* = 7.5 Hz, 1 H), 5.68 (d, *J* = 7.5 Hz, 1 H), 4.11 (d, *J* = 7.5 Hz, 1 H), 3.85–3.83 (m, 2 H), 2.90 (s, 3 H).

¹³C NMR (100 MHz): δ = 166.0, 152.7, 132.2, 130.6, 130.3, 129.8, 129.7, 128.6, 128.0, 127.8, 123.5 (q, *J* = 276.9 Hz, 1 C), 120.0, 71.6, 70.1, 64.9 (q, *J* = 35.1 Hz, 1 C), 25.9.

LR-MS (EI, 70 eV): *m/z* (%) = 451 (6), 450 (5), 449 (M⁺ + 2, 25), 448 (5), 447 (M⁺, 18), 414 (40), 368 (33), 332 (16), 312 (13), 268 (19), 234 (19), 129 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄BrClF₃NO₂: 446.9849; found: 446.9849.

trans-3-Bromo-6-chloro-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-6ja) Yellow solid; mp 94.9 °C.

IR (KBr): 1708 cm⁻¹.

¹H NMR (500 MHz): δ = 7.43–7.34 (m, 5 H), 6.36 (d, *J* = 10.0 Hz, 1 H), 6.21 (t, *J* = 10.0 Hz, 1 H), 5.75 (d, *J* = 10.0 Hz, 1 H), 4.86 (s, 1 H), 2.98–2.94 (m, 2 H), 2.82 (s, 3 H).

¹³C NMR (125 MHz): δ = 165.7, 153.2, 132.3, 130.8, 130.4, 130.0, 129.6, 129.4, 128.5, 127.6, 123.5 (q, *J* = 276.3 Hz, 1 C), 120.4, 71.3, 70.0, 61.9 (q, *J* = 35.0 Hz, 1 C), 25.6.

LR-MS (EI, 70 eV): m/z (%) = 451 (5), 450 (4), 449 (M⁺ + 2, 15), 448 (4), 447 (M⁺, 9), 414 (9), 368 (13), 332 (10), 268 (7), 234 (10), 129 (90), 77 (9), 43 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₄BrClF₃NO₂: 446.9849; found: 446.9848.

3-Bromo-1-methyl-4-(thiophen-2-yl)-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (6va)

Yellow solid; ratio cis/trans 3:2; mp 147.2 °C.

IR (KBr): 1694 cm⁻¹.

¹H NMR (500 MHz): δ = 7.66–7.36 (m, 2 H), 7.12–7.05 (m, 1 H), 6.40–6.36 (m, 2 H), 5.67–5.63 (m, 2 H), 4.75–4.72 (m, 1 H), 3.98–3.93 (m, 2 H), 2.91 (s, 1.9 H), 2.89 (m, 1.1 H).

¹³C NMR (125 MHz): δ = 165.5, 165.2, 147.1, 146.2, 134.0, 132.4, 131.2, 131.0, 130.2, 130.0, 129.9, 129.7, 129.6, 129.1, 127.3, 123.8 (q, *J* = 276.3 Hz, 1 C), 117.4, 115.3, 114.9, 70.1, 69.9, 66.0–64.8 (qq, 2 C), 25.9, 25.8.

LR-MS (EI, 70 eV): *m/z* (%) = 422 (7), 421 (M⁺ + 2, 38), 420 (9), 419 (M⁺, 36), 375 (2), 341 (13), 340 (66), 241 (21), 204 (19), 135 (100), 77 (21).

HRMS (EI): m/z [M]⁺ calcd for C₁₆H₁₃BrF₃NO₂S: 418.9803; found: 418.9800.

cis-3-Chloro-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-7aa) Yellow solid; mp 73.0 °C.

IR (KBr): 1700 cm⁻¹.

¹H NMR (400 MHz): δ = 7.41–7.26 (m, 5 H), 6.26 (d, *J* = 10.0 Hz, 2 H), 5.61 (d, *J* = 10.0 Hz, 2 H), 4.35 (s, 1 H), 3.87–3.80 (m, 2 H), 2.89 (s, 3 H).

¹³C NMR (100 MHz): δ = 165.0, 150.6, 131.2, 130.3, 129.6, 128.7, 128.4, 127.9, 127.0, 123.7 (q, *J* = 277.0 Hz, 1 C), 69.3, 65.5, 64.7 (q, *J* = 34.3 Hz, 1 C), 27.8.

LR-MS (EI, 70 eV): m/z (%) = 371 (M⁺ + 2, 3), 369 (M⁺, 9), 334 (M - Cl, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₅ClF₃NO₂: 369.0743; found: 369.0741.

trans-3-Chloro-1-methyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-7aa) Yellow solid; mp 129.7 °C.

IR (KBr): 1719 cm⁻¹.

¹H NMR (400 MHz): δ = 7.40–7.36 (m, 5 H), 6.26 (d, *J* = 10.0 Hz, 2 H), 5.71 (d, *J* = 10.0 Hz, 2 H), 4.72 (s, 1 H), 31.8–3.11 (m, 2 H), 2.80 (s, 3 H).

¹³C NMR (100 MHz): δ = 164.9, 151.0, 131.8, 130.1, 129.9, 129.8, 128.6, 128.4, 128.3, 127.3, 123.6 (q, J = 276.1 Hz, 1 C), 68.0, 65.2, 62.3 (q, J = 34.3 Hz, 1 C), 25.6.

LR-MS (EI, 70 eV): m/z (%) = 371 (M⁺ + 2, 11), 369 (M⁺, 33), 334 (M - Cl, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₅ClF₃NO₂: 369.0743; found: 369.0743.

cis-3-Chloro-1,6-dimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*cis*-7ea) Yellow solid; mp 90.0 °C.

IR (KBr): 1699 cm⁻¹.

¹H NMR (400 MHz): δ = 7.44–7.36 (m, 5 H), 6.24 (d, *J* = 10.0 Hz, 1 H), 6.00 (s, 1 H), 5.58 (d, *J* = 10.0 Hz, 1 H), 4.43 (s, 1 H), 3.86–3.80 (m, 2 H), 2.82 (s, 3 H), 1.55 (s, 3 H).

¹³C NMR (100 MHz): δ = 165.4, 149.8, 134.1, 130.6, 129.7, 129.3, 128.7, 128.5, 128.0, 127.9, 127.6, 123.8 (q, *J* = 276.9 Hz, 1 C), 70.6, 67.8, 64.5 (q, *J* = 34.4 Hz, 1 C), 25.6, 16.9.

LR-MS (EI, 70 eV): *m/z* (%) = 385 (M⁺ + 2, 7), 383 (M⁺, 21), 348 (M - Cl, 22), 284 (7), 234 (7), 207 (14), 129 (13), 77 (8), 43 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇ClF₃NO₂: 383.0900; found: 383.0899.

trans-3-Chloro-1,6-dimethyl-4-phenyl-8-(2,2,2-trifluoroethoxy)-1-azaspiro[4.5]deca-3,6,9-trien-2-one (*trans*-7ea) Yellow solid; mp 182.1 °C.

IR (KBr): 1720 cm⁻¹.

¹H NMR (400 MHz): δ = 7.43–7.40 (m, 2 H), 7.36–7.30 (m, 3 H), 6.19 (d, *J* = 10.0 Hz, 1 H), 5.97 (s, 1 H), 5.57 (d, *J* = 10.0 Hz, 1 H), 3.28–3.24 (m, 2 H), 2.67 (s, 3 H), 1.53 (s, 3 H).

¹³C NMR (100 MHz): δ = 165.3, 150.1, 135.3, 131.0, 130.1, 130.0, 129.9, 128.7, 128.5, 128.2, 128.0, 123.7 (q, *J* = 276.9 Hz, 1 C), 69.7, 67.6, 62.8 (q, *J* = 34.3 Hz, 1 C), 25.2, 17.2.

LR-MS (EI, 70 eV): m/z (%) = 385 (M⁺ + 2, 6), 383 (M⁺, 17), 348 (M - Cl, 15), 284 (8), 207 (20), 129 (12), 77 (9), 43 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₉H₁₇ClF₃NO₂: 383.0900; found: 383.0900.

Acknowledgment

The authors thank the National Natural Science Foundation of China (No. 20572020 and 20872112), Scientific Research Fund of Hunan Provincial Education Department (No. 08A037), and Program for New Century Excellent Talents in University (No. NCET-06-0711) for financial support.

References

(1) For selected recent papers on the electrophilic halocyclizations of alkynes, see: (a) Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2005, 7, 763. (b) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432. (c) Yao, T.; Campo, M. A.; Larock, R. C. J. Org. Chem. 2005, 70, 3511. (d) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 10292. (e) Yue, D.; Yao, T.; Larock, R. C. J. Org. Chem. 2006, 71, 62. (f) Hu, T.; Liu, K.; Shen, M.; Yuan, X.; Tang, Y.; Li, C. J. Org. Chem. 2007, 72, 8555. (g) Pattarozzi, M.; Zonta, C.; Broxterman, Q. B.; Kaptein, B.; De Zorzi, R.; Randaccio, L.; Scrimin, P.; Licini, G. Org. Lett. 2007, 9, 2365. (h) Worlikar, S. A.; Kesharwani, T.; Yao, T.; Larock, R. C. J. Org. Chem. 2007, 72, 1347. (i) Ciochina, R.; Grossman, R. B. Chem. Rev. 2006, 106, 3963. (j) Bi, H.-P.; Guo, L.-N.; Duan, X.-H.; Gou, F.-R.; Huang, S.-H.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2007, 9, 397. (k) Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2007, 46, 4764. (l) Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.; Gonzalez, J. M. J. Am. Chem. Soc. 2003, 125, 9028. (m) Barluenga, J.; Vazquez-Villa, H.; Ballesteros, A.; Gonzalez, J. M. Org. Lett. 2003, 5, 4121. (n) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M. Angew. Chem. Int.

Ed. **2003**, *42*, 2406. (o) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M. *Angew. Chem. Int. Ed.* **2006**, *45*, 3140. (p) Barluenga, J.; Palomas, D.; Rubio, E.; Gonzalez, J. M. *Org. Lett.* **2007**, *9*, 2823. (q) Greger, H. *Planta Med.* **2006**, *72*, 99.

901

Downloaded by: NYU. Copyrighted material.

- (2) (a) Appel, T. R.; Yehia, N. A. M.; Baumeister, U.; Hartung, H.; Kluge, R.; Ströhl, D.; Fanghänel, E. *Eur. J. Org. Chem.* **2003**, 47. (b) Zhang, X.; Larock, R. C. *J. Am. Chem. Soc.* **2005**, *127*, 12230. (c) Yu, Q.-F.; Zhang, Y.-H.; Yin, Q.; Tang, B.-X.; Tang, R.-Y.; Zhong, P.; Li, J.-H. *J. Org. Chem.* **2008**, *73*, 3658.
- (3) We have also developed a general and selective protocol for the synthesis of spiro[4.5]trienyl acetates via intramolecular electrophilic *ipso*-cyclization of *N*-arylpropynamides with NIS and AcOH, in which no any active substituents at the *para*-position of the N-aryl ring were required, see: Tang, B.-X.; Tang, D.-J.; Tang, S.; Yu, Q.-F.; Zhang, Y.-H.; Liang, Y.; Zhong, P.; Li, J.-H. *Org. Lett.* **2008**, *10*, 1063.
- (4) (a) Heathcock, C. H.; Graham, S. L.; Pirrung, M. C.; Plavac, F.; White, C. T. The Total Synthesis of Natural Products, Vol. 5; Apsimon, J., Ed.; Wiley-Interscience: New York, 1983, 264-313. (b) Yoneda, K.; Yamagata, E.; Nakanishi, T.; Nagashima, T.; Kawasaki, I.; Yoshida, T.; Mori, H.; Miura, I. Phytochemistry 1984, 23, 2068. (c) Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. J. Antibiot. 1996, 49, 37. (d) Biard, J. F.; Guyot, S.; Roussakis, C.; Verbist, J. F.; Vercauteren, J.; Weber, J. F.; Boukef, K. Tetrahedron Lett. 1994, 35, 2691. (e) Blackman, A. J.; Li, C.; Hockless, D. C. R.; Skelton, B. W.; White, A. H. Tetrahedron 1993, 49, 8645. (f) Du, Y.; Lu, X. J. Org. Chem. 2003, 68, 6463; and references cited therein. (g) Amagata, T.; Minoura, K.; Numata, A. J. Nat. Prod. 2006, 69, 1384. (h) Galliford, C. V.; Scheidt, K. A. Angew. Chem. Int. Ed. 2007, 46, 8748.
- (5) (a) Magueur, G.; Crousse, B.; Charneau, S.; Grellierm, P.; Begue, J. P.; Bonnet-Delpon, D. J. Med. Chem. 2004, 47, 2694. (b) Gryshuk, A.; Chen, Y.; Goswami, L. N.; Pandey, S.; Missert, J. R.; Ohulchanskyy, T.; Potter, W.; Prasad, P. N.; Oseroff, A.; Pandey, R. K. J. Med. Chem. 2007, 50, 1754. (c) Gimenez, D.; Andreu, C.; Olmo, M. L.; Varea, T.; Diaz, D.; Asensio, G. Bioorg. Med. Chem. 2006, 14, 6971. (d) Large-Radix, S.; Billard, T.; Langlois, B. R. J. Fluorine Chem. 2003, 124, 147. (e) Welch, J. T. Tetrahedron 1987, 43, 3123. (f) Jiang, J.; DeVita, R. J.; Doss, G. A.; Goulet, M. T.; Wyvratt, M. J. J. Am. Chem. Soc. 1999, 121, 593.
- (6) For selected papers on the synthesis of the spiro[4.5]decane skeleton by intramolecular oxidative *ipso*-cyclization reactions of aryl nitrenium ions, see: (a) Kawashima, T.; Naganuma, K.; Okazaki, R. *Organometallics* **1998**, *17*, 367.
 (b) Wardrop, D. J.; Basak, A. *Org. Lett.* **2001**, *3*, 1053.
 (c) Miyazawa, E.; Sakamoto, T.; Kikugawa, Y. J. *Org. Chem.* **2003**, *68*, 5429. (d) Kikugawa, Y.; Nagashima, A.; Sakamoto, T.; Miyazawa, E.; Shiiya, M. J. Org. Chem. **2003**, *68*, 6739. (e) Wardrop, D. J.; Landrie, C. L.; Ortíz, J. A. *Synlett* **2003**, 1352. (f) Wardrop, D. J.; Burge, M. S. *J. Org. Chem.* **2005**, *70*, 10271. (g) Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. *Chem. Commun.* **2007**, 1224; and references cited therein.
- (7) For selected papers on the synthesis of the spiro[4.5]decane skeleton by the other *ipso*-cyclization methods, see:
 (a) Kende, A. S.; Koch, K. *Tetrahedron Lett.* 1986, 27, 6051. (b) Haack, R. A.; Beck, K. R. *Tetrahedron Lett.* 1989, 30, 1605. (c) Nagao, Y.; Lee, W. S.; Jeong, I.-Y.; Shiro, M. *Tetrahedron Lett.* 1995, 36, 2799. (d) Boyle, F. T.; Hares, O.; Matusiak, Z. S.; Li, W.; Whiting, D. A. J. Chem. Soc., *Perkin Trans. 1* 1997, 2707. (e) Blay, G.; Cardona, L.; Collado, A. M.; García, B.; Morcillo, V.; Pedro, J. R. J. Org.

Synthesis 2009, No. 6, 891–902 © Thieme Stuttgart · New York

Chem. **2004**, *69*, 7294. (f) Pearson, A. J.; Wang, X.; Dorange, I. B. *Org. Lett.* **2004**, *6*, 2535. (g) Pigge, F. C.; Coniglio, J. J.; Rath, N. P. *Organometallics* **2005**, *24*, 5424. (h) Pigge, F. C.; Coniglio, J. J.; Dalvi, R. *J. Am. Chem. Soc.* **2006**, *128*, 3498. (i) Zhdankin, V. V.; Stang, P. J. *Chem. Rev.* **2002**, *102*, 2523. (j) Wang, Z.; Xi, Z. *Synlett* **2006**, 1275. (k) Liu, L.; Wang, Z.; Zhao, F.; Xi, Z. *J. Org. Chem.* **2007**, *72*, 3484.

(8) The structures and the *cis/trans* configuration of the products are determined on the basis of the chemical shift of hydrogen

at the 8-position of the spirocyclic motif according to the reported authoritative data of the corresponding analogues, see refs. 6b, 6c, and 6g.

(9) A set of other reagents, including NaOEt, NaOAc, NH₄Cl, 4nitrophenol, and TfOH, instead of TFA were examined. The results showed that no reaction was observed using NaOEt, NaOAc, NH₄Cl, or 4-nitrophenol, and the electrophilic *ortho*-cyclization product **4aa** was obtained in 90% yield in the presence of TfOH.