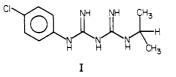
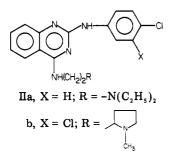
Articles

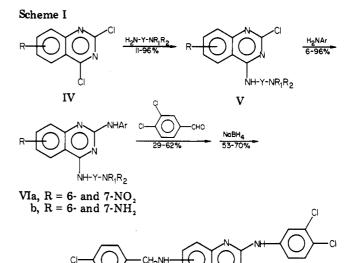

Synthesis and Antimalarial Effects of N^2 -Aryl- N^4 -[(dialkylamino)alkyl]- and N^4 -Aryl- N^2 -[(dialkylamino)alkyl]-2,4-quinazolinediamines^{1,2}

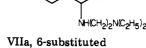
Edward F. Elslager, Carolyn Hess, Judith Johnson, Daniel Ortwine, Vera Chu, and Leslie M. Werbel*^{1,2}


Department of Chemistry, Warner-Lambert/Parke-Davis, Pharmaceutical Research Division, Ann Arbor, Michigan 48106. Received July 25, 1980

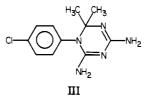
A series of $N^2(\text{and } N^4)$ -aryl- $N^4(\text{and } N^2)$ -[(dialkylamino)alkyl]-2,4-quinazolinediamines has been synthesized for antimalarial evaluation. Condensation of the appropriate 2,4-dichloroquinazoline (IV) with the requisite N,Ndialkylalkylenediamine afforded a series of 2-chloro-N-[(dialkylamino)alkyl]-4-quinazolinamines (V) which were condensed with the appropriate arylamine to provide the corresponding N^2 -aryl- N^4 -[(dialkylamino)alkyl]-2,4quinazolinediamines (VI). Hydrolysis of 2,4-dichloroquinazoline to 2-chloro-4-quinazolinol was followed by condensation with the appropriate N,N-dialkylalkylenediamine to give an array of 2-[[(dialkylamino)alkyl]amino]-4-quinazolinols (IXa). Chlorination with phosphorus oxychloride and condensation with a requisite arylamine provided the N^2 -[(dialkylamino)alkyl]- N^4 -phenyl-2,4-quinazolinediamines (X). Antimalarial activity was general among the N^2 aryl- N^4 -[(dialkylamino)alkyl]-2,4-quinazolinediamines (VI), while the reverse isomers were of lower activity. Phototoxic liability precluded clinical evaluation of a member of the series.

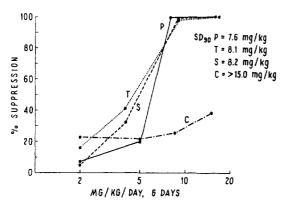
During the evolutionary process that led to the development of chlorguanide (I),³⁴ it was discovered that certain




 N^4 -[(dialkylamino)alkyl]- N^2 -phenyl-2,4-quinazolinediamines possessed strong antimalarial effects against *Plasmodium gallinaceum* in chicks.^{5,6} Among them, N^2 -(4-chlorophenyl)- N^4 -[2-(diethylamino)ethyl]-2,4quinazolinediamine (IIa) proved to be one of the most

promising members of the series, but the development of chlorguanide and its active metabolite, cycloguanil (III),^{4,7}

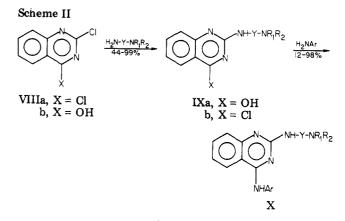

- This is paper 48 of a series on antimalarial drugs. For paper 47, see J. Heterocycl. Chem., 17, 497 (1980).
- (2) This investigation was supported by U.S. Army Medical Research and Development Command Contracts DA-49-193-MD-2754 and DADA-17-72-C-2077. This is contribution no. 1586 to the Army Research Program on Malaria.
- (3) F. H. S. Curd and F. L. Rose, J. Chem. Soc., 729 (1946).
- (4) P. E. Thompson and L. M. Werbel, "Antimalarial Agents, Chemistry and Pharmacology", Academic Press, New York, 1972.
- (5) F. H. S. Curd, J. K. Landquist, and F. L. Rose, J. Chem. Soc., 775 (1947).
- (6) F. H. S. Curd, J. K. Lanquist, and F. L. Rose, J. Chem. Soc., 1759 (1948).
- (7) H. C. Carrington, A. Crowther, D. Davey, A. Levi, and F. Rose, Nature (London), 168, 1080 (1951).


b, 7-substituted

precluded evaluation of this compound and related substances.

Faced with the problem of developing new agents that might be useful against drug-resistant malarias,⁴ IIa and several close analogues were synthesized for evaluation against *Plasmodia* in contemporary test systems.^{θ -10} Early

- (8) P. E. Thompson, A. Bayles, and B. Olszewski, *Exp. Parasitol.*, 25, 32 (1969).
- (9) P. E. Thompson, A. Bayles, and B. Olszewski, Am. J. Trop. Med. Hyg., 19, 12 (1970).


Figure 1. Effects of N^2 -(3,4-dichlorophenyl)- N^4 -[2-(1-methyl-2-pyrrolidinyl)ethyl]-2,4-quinazolinediamine against drug-resistant lines of *P. berghei* in mice.

results revealed that IIa (compound 51; Table II) was active against *P. berghei* in mice at 80 mg/kg and curative at 160 mg/kg and, moreover, that IIb (compound 19; Table II) proved to be essentially as active against cycloguaniland DDS-resistant strains of *P. berghei* as against the sensitive parasite, although some cross-resistance to chloroquine was noted (Figure 1). Therefore a full-scale investigation of this structural class was undertaken, and the present article summarizes the results with the N^4 -[(dialkylamino)alkyl]- N^2 -phenyl-2,4-quinazolinediamines, as well as the related N^2 -[(dialkylamino)alkyl]- N^4 phenyl-2,4-quinazolinediamines.

Chemistry. The synthetic approach utilized for the preparation of the N^{4} -[(dialkylamino)alkyl]- N^{2} -phenyl-2,4-quinazolinediamines (VI) involved modifications of previous^{5,6} procedures and is depicted in Scheme I. Condensation of the appropriate 2,4-dichloroquinazoline (IV) with the requisite N,N-dialkylalkylenediamine in ether, alcohol-ether, alcohol, nitrobenzene, or dilute aqueous sodium hydroxide⁵ generated the corresponding 2-chloro-N-[(dialkylamino)alkyl]-4-quinazolinamines V (1-17; Table I) in 11-96% yield (procedures A-C). It has been shown⁵ that, under the conditions used, only the chlorine in the 4 position is replaced. The cis and trans isomers arising from the reactions of N.N-dimethyl- and N.N-diethyl-1,4-cyclohexanediamine with 2.4-dichloroquinazoline (compounds 1, 2 and 4, 5; Table I) were separated by fractional crystallization and differentiated on the basis of their R_f values on TLC. Condensation of V with the appropriate arylamine in alcohol either in the presence of or the absence of hydrochloric acid provided the desired N^4 -[(dialkylamino)alkyl]- N^2 -phenyl- and -heterocyclic-2,4-quinazolinediamines VI (compounds 18-82; Tables II and III) in 6-96% yield (procedure F). Alternatively, VI may be synthesized from IV in one pot (procedures D and E) in ethanol or nitrobenzene by treatment with the appropriate N,N-dialkylalkylenediamine, followed by the addition of the desired arvlamine after the initial reaction had been shown by TLC to be complete.

Reduction of 6- or 7-nitro-substituted VI (VIa) with Raney nickel in 2-methoxyethanol (procedure G) afforded the corresponding N^2 -(3,4-dichlorophenyl)- N^4 -[2-(diethylamino)ethyl]-2,4(6 and 7)-quinazolinetriamines (VIb) (compounds 71 and 72; Table II) in 65 and 74% yield, respectively. Condensation of VIb with 3,4-dichlorobenzaldehyde, followed by reduction of the Schiff base with sodium tetrahydroborate in 2-methoxyethanol (procedure

(10) T. S. Osdene, P. B. Russel, and L. Rane, J. Med. Chem., 10, 431 (1967).

H), gave the desired N^2 -(3,4-dichlorophenyl)- N^6 - and $-N^7$ -[(3,4-dichlorophenyl)methyl]- N^4 -[2-(diethylamino)-ethyl]-2,4(6 and 7)-quinazolinetriamines (VIIa,b) (compounds 73 and 74; Table II) in 53 and 70% yield, respectively.

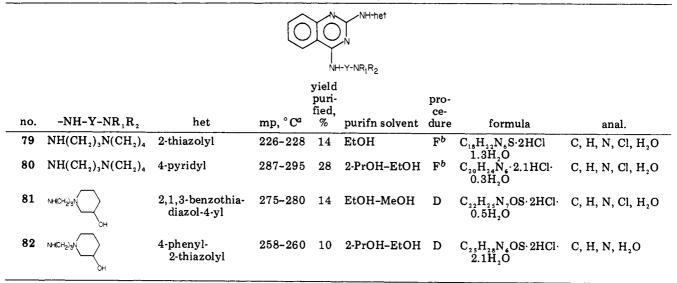
Scheme II illustrates the approach¹¹ used for the preparation of the N^2 -[(dialkylamino)alkyl]- N^4 -phenyl-2,4-quinazolinediamines (X). Hydrolysis of 2,4-dichloro-quinazoline (VIIIa) in 2 N sodium hydroxide¹² provided 2-chloro-4-quinazolinol^{5,11} (VIIIb), which was allowed to condense with the requisite N,N-dialkylalkylenediamine in benzene or ethanol to form the corresponding 2-[[(dialkylamino)alkyl]amino]-4-quinazolinols (IXa) in 44–99% yield (procedures I and J). Chlorination using phosphorus oxychloride, followed by condensation of the crude 4-chloro-N-[(dialkylamino)alkyl]-4-quinazolinamine (IXb) with the desired substituted benzenamine, furnished the various N^4 -[(dialkylamino)alkyl]- N^2 -phenyl-2,4-quinazolinediamines X (compounds 83–116; Table IV) in 12–98% yield (procedures K-M).

All of the requisite 2,4-dichloroquinazolines (IV) were prepared by chlorination⁵ of the corresponding 2.4-(1H,3H)-quinazolinediones with phosphorus oxychloride or a phosphorus oxychloride-phosphorus pentachloride mixture. Among the intermediate quinazolinediones, 2,4(1H,3H)-quinazolinedione is commercially available,¹³ and the 6- and 7-chloro-2,4(1H,3H)-quinazolinediones⁶ were obtained by cyclization⁶ of 4- and 5-chloroanthranilic acid with potassium cyanate. 6,8-Dichloro-2,4(1H,3H)quinazolinedione¹⁴ and 7-nitro-2,4(1H,3H)quinazolinedione¹⁵ were prepared by cyclization^{14,15} of the corresponding anthranilic acids with urea, while 6-nitro-2,4(1H,3H)-quinazolinedione resulted from the nitration¹⁶ of 2,4(1H,3H)-quinazolinedione. The majority of the intermediate N,N-dialkylalkylenediamine and arylamine side chains employed were commercially available; otherwise, they were prepared by published procedures.¹⁷⁻²⁰

- (11) F. H. S. Curd, E. Hoggarth, J. K. Landquist, and F. L. Rose, J. Chem. Soc., 1766 (1948).
- 12) I. G. Farbenind, A.G., British Patent 287 179 (1927).
- (13) Aldrich Chemical Co., Milwaukee, Wisc.
- (14) F. E. Sheibley, J. Org. Chem., 3, 414 (1938).
- (15) E. Huntress and J. Gladding, J. Am. Chem. Soc., 64, 2644 (1942).
- (16) M. T. Bogert and G. Scratchard, J. Am. Chem. Soc., 41, 2058 (1919).
- (17) J. H. Burckhalter, F. H. Tendick, E. M. Jones, P. A. Jones, W. F. Holcomb, and A. L. Rawlins, J. Am. Chem. Soc., 70, 1363 (1948).
- (18) R. L. Bent, J. C. Desslock, F. C. Duennebier, D. W. Fassett, D. B. Glass, T. H. James, D. B. Julian, W. R. Ruby, J. M. Snell, J. H. Sterner, J. R. Thirtle, P. W. Vittum, and A. Weissberger, J. Am. Chem. Soc., 73, 3100 (1951).
- (19) Von H. Loewe, H. Mieth, and J. Urbanietz, Arzneim.-Forsch., 16, 1306 (1966).

					NH-Y-NR1R2			
no.	-NH-Y-NR ₁ R ₂	R	mp, °C	yield purified, %	purifn solvent	procedure	formula	anal.
5 1	NHCH[(CH ₁),] ₂ CHN(CH ₃), ^a NHCH[(CH ₁),] ₁ CHN(CH ₃), ^b	H	250-252 245-247	28 9	EtOH-2-PrOH CH ₃ CN	A A	C ₁₆ H ₂₁ CIN ₄ ·HCI C ₁₆ H ₂₁ CIN ₄ ·HCI·H ₂ O	C, H, N C, H, N, H ₂ O
e	N+	Н	180-185	24	${\rm Et_2O}$	C	C1,H1,CIN4.HCI	v
4 13 19	NHCH[(CH_1)],CHN (C_1H_5) , NHCH[(CH_1)],CHN (C_1H_5) , NH(CH_1),N(CH_1),	ннн	276-279 233-235 136-138	37 30 56	2-PrOH CH ₃ CN C,H.,	440	CI ₈ H ₃ ,CIN ₄ .HCI CI ₈ H ₃ ,CIN ₄ .HCI-0.3H ₄ O CI,H ₄ ,CIN ₄	C, H, N C, H, N, H ₂ O C, H, N
8	NH(CH ₁),N(CH ₁), NH(CH ₁),N(C ₁ H ₅),	H	$135-136 81-82^{d}$	26 33	Ċ,H,, Me,ĊO-H,O	U v	Ci,H,,CIN, Ci,H,,CIN,H2O	C, H, N C, H, N, H ₁ O
6	MHCH-52	6-CI	176-179 dec	55	2-PrOH	B	C ₁₅ H ₁₈ Cl ₂ N ₄ .HCl	v
10	Star Carl	6-C1	295-300 dec	75	2-PrOH	B	C ₁₅ H ₁₈ Cl ₂ N ₄ ·HCl	U
11	N+	7-CI	270-275 dec	37	EtOH-2-PrOH	В	C ₁₅ H ₁₈ Cl ₂ N ₄ ·HCl	э
12	M++C ₂ H ₅	6,8-CI ₂	185-192 dec	62	EtOH	B	C _{1s} H ₁ ,Cl ₃ N ₄ .HCl	с
13 14	NHCH[$(CH_1)_1$, CHN $(C_1H_5)_1^f$ NH $(CH_1)_3$ N $(CH_2)_4$ NH $(CH_1)_1$ N $(CH_2)_4$	500	143-155 135-140 157-169 Aore	48 72 96	EtOH-2-PrOH EtOH Et O	52 62 62	C ₁₅ H ₁₈ Cl ₂ N ₄ ·HCl C ₁₅ H ₁₈ Cl ₂ N ₄ ·HCl C ₁ H ₁₈ Cl ₂ N ₄ ·HCl	000
16	NH(CH ₂) ₂ N(C ₂ H ₅) ₂ NH(CH ₂) ₂ N(C ₂ H ₅) ₂ NH(CH ₂) ₂ N(C ₂ H ₅) ₂	7-CI 7-NO ₂	$218-222^{h}$ 114-116 ⁱ	78 11	Et ₂ O Hexane	1 m U	C ₁ H ₁ C ₁ N ₂ H ₁ C ₁ C ₁ N ₂ H ₁ C ₁ C ₁ N ₂ O ₂) U U

Table I. 2-Chloro-N-[(dialkylamino)alkyl]-4-quinazolinamines


		anal.	C, H, N, H ₂ O	С, Н, N, Н ₂ О	C, H, N, H ₂ O	С, Н, N, Н ₁ О	C, H, N, H ₁ O	С, Н, N	C, H, N, H ₂ O	C, H, N, H ₂ O	С, Н, N	C, H, N, Cl; H ₂ O ^f	C, N, H₂O; H ^g	C, H, N, H ₂ O	C, H, N, H ₂ O	C, H, N, Cl, H ₂ O C, H, N, H ₂ O	С, Н, N	C, H, N, H ₂ O	C, H, N, H ₂ O
		formula	C ₁₁ H ₁₄ ClN ₅ ·2HCl·1.4H ₂ O	C1,H1,G1,N5,2HCI-1.6H1O	C ₁₁ H ₂₄ BrN ₅ ·2HCl-0.8H ₂ O	C ₁₁ H ₃ ,F ₃ N ₅ .2HCl-2.2H ₃ O	$C_{11}H_{15}Cl_{1}N_{5}\cdot 2HCl\cdot 2\cdot 2H_{1}O$	C ₁₁ H ₁ ,Cl ₁ N ₅ .2HCl	C ₁₁ H ₁₅ Cl ₁ N ₅ ·2HCl·1.9H ₁ O	$C_{12}H_{15}Cl_1N_5$ 2HCl-1.3H ₂ O	C ₁₂ H ₁₅ Cl ₂ N ₅ 2HCl	C ₂₆ H ₃₆ N ₆ O·3HCl·2.4H ₂ O	C ₁₈ H ₄₀ N ₆ O·3HCl·1.1H ₂ O	C ₂₁ H ₂₄ CIN ₅ ·2HCI-0.7H ₂ O	C ₁₁ H ₁₃ Cl ₂ N ₅ ·2HCl·1.5H ₂ O	C ₁ ,H ₁ ,Cl ₁ N ₅ ,2HCl·0.4H ₁ O C ₁₄ H ₁ ,Cl ₂ N ₅ ,2HCl·1.6H ₂ O	C24H29Cl2N52HCl	C ₂₄ H ₂₉ Cl ₂ N ₅ ·2HCl·1.1H ₂ O	C24H2,CI2N5.2HCI-0.5H2O
Z		pro- cedure	Q	Q	D	Q	ы	1 24	D	Fd	Ĩ4	н	цт	ъ	E	년 년 1	μ	Fd	ы
HN	R_1R_2	purifn solvent	2-PrOH- EtOH	2-PrOH- EtOH	EtOH- MeOH	2-PrOH	EtOH	2-Р-ОН	2-PrOH	МеОН	МеОН	EtOH	EtOH	CH ₃ CN	CH ₃ CN	MeOH EtOH- MaOH	MeOH	MeOH	МеОН
	NH-Y-NR ₁ R ₂	yield purified, %	45	35	24	12	57	78	9	75	49	55	46	34	11	41 74	42	67	53
Ŷ		mp, °C	268- 272 dec	268- 272 dec	269- 274 dec	268- 270 dec	311- 212 doo	315 dec	000 dec 168- 170 dec	292- 292-	234 dec 328- 390 dec	338 dec 275- 880 4	260 dec 265-268	181-183	249-251	339-342 277- 870 422	219 dec 331- 336 dec	290- 290-	231 uec 332- 334 dec
		Я																	
			H	Н	Н	н	Н	Н	Н	Н	Н	Н	H	Н	Н	H	Н	Н	Н
		X, Z	4-CI	3, 4 -Cl ₂	3-Br	4-CF 3	3,4-Cl ₂	3,4-CI ₂	3,4-CI ₂	3,5-Cl ₂	3,5-Cl ₂	4-0CH ₃ ,	3-CH ₁ NHC ₁ H ₅ 4-OCH ₃ , 3-CH ₂ N(C ₂ H ₅) ₂	4-CI	3,4-Cl ₂	3,4-Cl ₂ 3,4-Cl ₂	3,4-Cl ₂	3,5-Cl ₂	3,5-Cl ₂
		$-NH-Y-NR_1R_2$		Contraction of the second seco	HO CH3	MACH22	NHCH[(CH ¹), ¹ ,CHN(CH ₃), ^a	NHCH[(CH ¹) ¹] ¹ CHN(CH ³) ¹	NHCH[(CH ¹), ¹],CHN(CH ₃), ^c	NHCH[(CH ₁) ₁] ₂ CHN(CH ₃) ₂ ^a	NHCH[(CH ₁), CHN(CH ₃), b	NHCH[(CH ¹) ¹] ¹ CHN(CH ³) ²	NHCH[(CH ₁) ₁],CHN(CH ₃) ₁	NH CZH5	N++	NHCH,CH[(CH,),],NC,H, NHCH[(CH,),],CHN(C_1H_5), ^a	NHCH[(CH ¹), ¹ ,CHN(C ₁ H ₅), ^b	NHCH[(CH ₁) ₁] ₁ CHN(C ₂ H ₅) ₁ ^a	NHCH[(CH ₁),] ₂ CHN(C ₁ H ₅), ^b
		no.	18	19	20	21	22	23	24	25	26	27	28	29	30	31 32	33	34	35

														H_2O^n					
C, H, N, H ₂ O	C, H, N, Cl ⁻ , H ₂ O	С, Н, N	C, H, N C, H, N C, H, N	С, Н, N	C, H, N, H ₂ O	C, H, N, H ₂ O	C, H, N, H ₁ O C, H, N	С, Н, N	C, H, N, H ₂ O	C, H, N, H ₂ O	C, H, N, H ₂ O	C, H, N, CI, H ₂ O C, H, N	H, N; C ^k C, H, N	C, H, N, Cl, F; O, ^m H ₂ O ⁿ	C, H, N, Cl; H ₂ O ^o	C, H, N, Cl, H ₂ O	C, H, N, H ₂ O	C, H, N, H ₂ O	С, Н, N
C24H2,Br2N5,2HCl-1.3H2O	C ₂₄ H ₂₉ Cl ₂ N ₅ ·1.9HCl·1.3H ₂ O	C ₂₀ H ₂₂ CIN ₅ ·2HCI	C ₂₀ H ₁₁ Cl ₂ N ₅ ·2HCl C ₂₀ H ₁₁ Cl ₂ N ₅ ·2HCl C ₂₀ H ₂₂ B ₂ N ₅ ·2HCl	C ₂₀ H ₂₂ CIN ₅ ·2HCI	$C_{21}H_{22}F_{3}N_{5}\cdot 2HCI\cdot 1\cdot 2H_{2}O$	C ₂₂ H ₂₁ F ₆ N ₅ ·2HCl·0.5H ₂ O	C ₂₁ H ₂ ,N ₅ S·2HCl·0.4H ₂ O C ₂₅ H ₃₄ N ₆ O	C ₂₁ H ₂₃ Cl ₂ N ₅ ·2HCl	$C_{22}H_2H_2N_5S$ ·2HCI·0.5 H_2O	C ₂₂ H ₂₆ ClN ₅ O·2HCl·1.5H ₂ O	C ₂₂ H ₂₆ IN 50 2HCl·H ₂ O	C ₂₀ H ₂₄ ClN ₅ -2HCl-0.1H ₂ O C ₂₀ H ₂₃ Cl ₂ N ₅ -2HCl	C ₃₀ H ₂₃ Cl ₂ N ₅ ·2HCl C ₂₀ H ₂₂ Cl ₃ N ₅ ·2HCl	$C_{21}H_{24}F_3N_5$ ·2HCl·1.5 H_2O	C25,H35,N7,3HCl·2H2O	C ₂₆ H ₃₈ N ₆ O·3HCŀ·1.2H ₂ O	C21,H2,Cl2Ns,2HCl.0.7H2O	C ₂₁ H ₂₂ Cl ₃ N ₅ ·2HCl·1.4H ₂ O	C21,H22,C13,N5, 2HCl
Ŀτ	ы	Ρe	Fe D	ње	Fе	Fе	Ъ ^е	ње	Fе	Q	D). Fe	ый	1	Fе	ы	Fre	ы	۲.
2-PrOH- EtOH	2-PrOH	МеОН	MeOH MeOH EtOH-	EtOH-	2-PrOH-	2-PrOH	EtOH Et ₁ O	MeOH-	EtOH EtOH	EtOH- MeOH	2-PrOH- EtOH	2-PrOH MeOH-	EtOH EtOH	EtOH-	EtOH	2-PrOH	MeOH- EtOAc	MeOH	МеОН
59	24	99	48 87 28	74	80	67	61 6	55	62	44	28	20 69	66 12	76	62	45	22	51	73
298- 300 dec	197 dec	297-	296-298 > 300 271-	275 dec 260-265	270-	273 dec 260- 863 322	203 dec 292-294 75-100	297-299	264-265	271- 276 dec	258- 260 dec	$264-265^{i}$ 280-282	298-300 268-	z / z dec 243-245	269- 075 300	z15 aec 233-234	169-172	306- 312 dec	315- 320 dec
Н	Н	Н	нн	Н	Н	Н	н	s)2 H	Н	Н	Н	H	H	Н	Н	Н	5 ² H	6-CI	6-CI
3,5-Br ₂	3,4-Cl ₂	4-CI	3,4-Cl ₂ 3,5-Cl ₂ 3-Br	3-CI	4-CF ₃	3,5-(CF ₃) ₂	4-SCH ₃ 4-OH,	3.4-СІ ₂ М(С ₂ П ₅) ₂ 3,4-СІ ₂	4-SCH ₃	4-CI	4-1	4-CI 3,4-CI ₁	3,5-Cl, 2,4,5-Cl,	4-CF ₃	$4-N[(CH_1)_2]_2$ -	4-OCH3, 2 CH MC H	3.4-Cl ₂ - C ₆ H ₃ -CH ₂ ^p	3,4-Cl ₂	3,5-Cl ₂
)HN(C ₂ H ₅) ₂ ^a		H ₂),	${{ m H}_2 \ { m H}_2$;H ₂),	3H2)4	(1,1),2H2,1),4	3H ₁), 3H ₁),	$CH_2)_4$	CH ₂) ₄			$C_2H_5)_2$ $C_2H_5)_2$	$C_2H_s)_2$ $C_2H_s)_2$	$C_{2}H_{s})_{2}$					
NHCH[(CH ₁) ₁] ₂ CHN(C ₂ H ₅) ₂ ^a	NH NC ₂ H ₉ 2	NH(CH ₂) ₂ N(CH ₂) ₄	NH(CH ₃) ₂ N(CH ₃), NH(CH ₃) ₂ N(CH ₃), NH(CH ₁) ₂ N(CH ₂),	NH(CH ₂) ₂ N(CH ₂) ₄	NH(CH ₂) ₂ N(CH ₂) ₄	NH(CH ₂) ₂ N(CH ₂) ₄	NH(CH ₂) ₂ N(CH ₂) ₄ NH(CH ₂) ₂ N(CH ₂) ₄	NH(CH ₂) ₃ N(CH ₂) ₄	NH(CH ₂) ₃ N(CH ₂) ₄	NF(2H2)HN	HO NE(2HO)HN	NH(CH ₂) ₂ N(C ₂ H ₅) ₂ NH(CH ₂) ₂ N(C ₂ H ₅) ₂	NH(CH ₂) ₂ N(C ₂ H ₅) ₂ NH(CH ₂) ₂ N(C ₂ H ₅) ₂	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	MHCH222	NHCH ₂)2

N,N-Disubstituted 2,4-Quinazolinediamines

Table II	Table II (Continued)									
no.		X, Z	R	mp, °C	yield purified, %	purifn solvent	pro- cedure	formula	anal.	1
61 NH-		3,4-Cl ₂	6-CI	316- 319 dec	37	EtOH- MeOH	ų	C ₁₁ H ₁₂ Cl ₃ N ₅ ·2HCl·1.2H ₂ O	C, H, N, Cl ⁻ , H ₂ O	
62 NH-		3,4-Cl ₂	7-CI	289- 295 dec	51	МеОН	ч	C ₂₁ H ₂₂ Cl ₃ N ₅ ·2HCl·2.1H ₂ O	C, H, N, Cl ⁻ , H ₂ O	
63		3,5-Cl ₂	6-CI	287- 293 dec	52	2-PrOH- MeOH	ы	C ₂₁ H ₂₂ Cl ₃ N ₅ ·2HCl-0.9H ₂ O	C, H, N, H ₂ O	
64 NH-		3,5-Cl ₂	7-CI	240- 250 dec	72	EtOH- MeOH	ы	C ₂₁ H ₂₂ Cl ₃ N ₅ ·2HCl·1.9H ₂ O	C, H, N, Cl ⁻ , H ₁ O	
65 ²⁺	-C2H5	3,4-Cl ₂	6,8-Cl ₂	256-259	38	EtOH	Fe	$C_{2_1}H_{2_1}Cl_4N_5$, 2HCl-0.6H $_2O$	C, H, N, H ₂ O	
66		3,4-Cl ₂	6-NO ₂	273- 276 dec	78	EtOH	ы	$C_{21}H_{21}Cl_2N_6O_2$ 2HCl-2H ₂ O	C, H, N, Cl^{-}, H_2O	
67 N	NHCH $[(CH_1)_1]_1$ CHN $(C_1H_5)_1^c$	3,4-Cl ₂	6-C1	320- 309 dec	24	2-PrOH	н	C ₂₄ H ₂₈ Cl ₃ N ₅ ·2HCl	С, Н, N	
89 N 89	NH(CH ₂) ₃ N(CH ₁) ₄ NH(CH ₂) ₂ N(C ₂ H ₅) ₂	4-CF ₃ 3,4-Cl ₂	6-Cl 6-NO ₂	297-299 270- 270-	48 87	EtOH EtOH	E Fe	C ₂₁ ,H ₂ ,ClF ₃ N,·2HCl C ₂₀ H ₂₂ Cl ₂ N ₆ O ₂ ·2HCl·H ₂ O	C, H, N C, H, N, Cl ⁻ , H ₂ O	
N 02 N 11	NH(CH ₂) ₂ N(C ₂ H ₅) ₂ NH(CH ₂) ₂ N(C ₂ H ₅) ₂	3,4-Cl ₂ 3,4-Cl ₂	7-NO ² 6-NH ²	212 dec 293-296 287-	96 65	2-PrOH EtOH- M2OU	F^d	$C_{2_0}H_{2_1}Cl_2N_6O_2\cdot 1.8HCl\cdot 0.2H_2O$ $C_{2_0}H_{2_4}Cl_2N_6\cdot 2.8HCl\cdot 1.7H_2O$	C, H, N, Cl ⁻ , H ₂ O C, H, N, Cl ⁻ , H ₂ O	
72 N	NH(CH ₁) ₂ N(C ₁ H ₅) ₂	3,4-Cl ₂	7-NH ₂	209 dec 310- 313 dec	74	EtOH	Ċ	$C_{2_0}H_{2_4}Cl_2N_6\cdot 2HCl\cdot 1.1H_2O$	C, H, N, Cl ⁻ , H ₂ O	
73 N	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	3,4-Cl ₂	6-NHCH2	136-137	70	CH ₃ CN	Н	C ₂₇ H ₂₈ Cl ₄ N ₆	C, H, N	
74 N.	NH(CH,),N(C,Hs),	3,4-Cl ₂	7-NHCH2-CI	162-165	53	CH ₃ CN	Н	C2,H3,CJ4N6	С, Н, N	
75 N	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	4-0C ₂ H,	6-CI	125-128	14	CH ₃ CN	н	$C_{27}H_{39}CIN_6O\cdot 3HCI\cdot 2H_2O$	C, H, N, Cl ⁻ , H ₂ O	
76 N	$NH(CH_2)_2N(C_2H_5)_2$	3-CH ₁ N(C ₁ H ₅) 4-OC ₁ H ₅ , 3-CH N(CH)	7-CI	216-218	34	CH ₃ CN	ы	C ₂₇ H ₃ ,ClN ₆ O·3HCl·0.5H ₂ O	C, H, N, Cl ⁻ , H ₂ O	
N 17	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	4-OC,H, 2.CH N/CH	6-CI	207- 910 deo	20	CH ₃ CN	ы	$C_{27}H_{37}CIN_{6}\cdot 3.1HCI\cdot 1.2H_{2}O$	C, H, N, Cl ⁻ , H ₂ O	
78 N	NH(CH ₂) ₂ N(C ₂ H ₅) ₂	$4-0C_{1}H_{5}^{(CH_{2})/4}$ $3-CH_{2}N(CH_{2})_{4}$	7-CI	125- 127 dec	41	CH ³ CN	ы	C ₂ ,H ₃ ,ClN ₆ O-3.1HCl-2.8H ₂ O	C, H, N, Cl ⁻ , H ₂ O	
^a Ison chlorid 6.56. ^s pared a isfactor	^a Isomer A (see Experimental Section, procedure A). Iloride in 2-propanol was added to the reaction mixtu 56. ^g H: calcd, 7.32; found, 7.80. ^h Lit. (ref 5) mp ared as described in ref 5. ^k C: calcd, 50.33; found, factorily determined by microanalytical techniques.	ion, procedure A). the reaction mixtuu ^h Lit. (ref 5) mp 5 led, 50.33; found, 5 ytical techniques.	^b Isomer B. ^c A min re. ^e One equivalent 283-285 °C for the di 50.87. ¹ Prepared usi o H ₂ O: calcd, 6.23; f	cture of isom of concentral hydrochlorid ag procedure ound, 5.51.	ers A and ed hydr e 2.5-hy of ref 5.	1 B. ^d One ochloric acid drate. ⁱ Lil ^m O: calc 4-Dichlorog	equivale l was add c. (ref 5) d, 5.07; henyl)m	^{<i>a</i>} Isomer A (see Experimental Section, procedure A). ^{<i>b</i>} Isomer B. ^{<i>c</i>} A mixture of isomers A and B. ^{<i>d</i>} One equivalent of hydrogen chloride as a 28% solution of hydrogen chloride in 2-propanol was added to the reaction mixture. ^{<i>f</i>} H ₂ O: calcd, 7.19; found 6.56. ^{<i>k</i>} H: calcd, 7.32; found, 7.80. ^{<i>h</i>} Lit. (ref 5) mp 283-285 °C for the dihydrochloride 2.5-hydrate. ^{<i>i</i>} Lit. (ref 5) mp 253-254 °C for the dihydrochloride 6.56. ^{<i>k</i>} H: calcd, 7.32; found, 7.80. ^{<i>h</i>} Lit. (ref 5) mp 283-285 °C for the dihydrochloride 2.5-hydrate. ^{<i>i</i>} Lit. (ref 5) mp 253-254 °C for the dihydrochloride 6.56. ^{<i>k</i>} H: calcd, 7.32; found, 7.80. ^{<i>h</i>} Lit. (ref 5) mp 283-285 °C for the dihydrochloride 6.56. ^{<i>k</i>} H: calcd, 7.32; found, 7.80. ^{<i>h</i>} Lit. (ref 5) mp 283-285 °C for the dihydrochloride 6.56. ^{<i>k</i>} H: calcd, 7.32; found, 7.80. ^{<i>h</i>} Lit. (ref 5) mp 283-285 °C for the dihydrochloride 6.56. ^{<i>k</i>} H: calcd, 5.07; found, 6.58. ^{<i>n</i>} Water in this compound could not be satered as described in ref 5. ^{<i>k</i>} C: calcd, 50.33; found, 50.87. ^{<i>l</i>} Prepared using procedure of ref 5. ^{<i>m</i>} O: calcd, 5.07; found, 5.58. ^{<i>n</i>} Water in this compound could not be satisfactorily determined by microanalytical techniques. ^{<i>o</i>} H ₂ O: calcd, 5.51. ^{<i>p</i>} N ² -[(3,4-Dichlorophenyl)methyl]-N ⁴ -[2-(diethylamino)ethyl]-2,4-quinazolinediamine	solution of hydrogen O: calcd, 7.19; found hloride dihydrate. ^J Pre- pound could not be sat-]-2,4-quinazolinediamine.	

Table III. N⁴-[(Dialkylamino)alkyl]-N²-heterocyclic-2,4-quinazolinediamines

^a All compounds melted with decomposition. ^b See footnote d, Table II.

Suppressive Antimalarial Screening in Mice. The N^2 -aryl- N^4 -[(dialkylamino)alkyl]-2,4-quinazolinediamines VI (compounds 18–78; Table II), the related quinazoline-triamine derivatives VII (compounds 79–82; Table III), and the N^4 -[(dialkylamino)alkyl]- N^2 -phenyl-2,4-quinazoline-diamines X (compounds, 83–116, Table IV) were tested initially against a normal drug-sensitive strain of *P. berghei* in mice by the parenteral route.^{21,22} The compounds were dissolved or suspended in sesame or peanut oil and were administered to mice in a single subcutaneous dose 72 h postinfection. Extension of the mean survival time of the treated mice is interpreted as evidence of antimalarial activity.¹⁰ Insufficient amount of compounds 66 and 78 obtained precluded their evaluation in this screen. The data are summarized in Tables V–VII.

The vast majority of the N^2 -aryl- N^4 -[(dialkylamino)alkyl]-2,4-quinazolinediamines VI and related quinazolinetriamine derivatives VII were also evaluated orally against another normal drug-sensitive strain of *P. berghei* in mice.^{23,24} The drugs were given continuously in the diet of mice for 6 consecutive days, and all drug doses were calculated as the free base equivalent. Results (Tables V and VI) are expressed both in terms of the SD₉₀ and the quinine equivalent *Q*.

Both oral and parenteral base-line data for cycloguanil hydrochloride (III), quinine, and pyrimethamine are included for comparison purposes (Table V).

Results

Structure-Activity Relationships in Mice. Among the N^4 -[(dialkylamino)alkyl]- N^2 -phenyl-2,4-quinazolinediamines, VI, activity is retained over a range of N^4 -[(dialkylamino)alkyl] side chains, provided that the N^2 -phenyl ring contains either the 4-(trifluoromethyl), 3,4-dichloro, or 3,5-dichloro substituent. Thirteen analogues (compounds 21-24, 26, 31-35, 37, 47, and 71; Table II) possessed greater activity against P. berghei infections and were less toxic for mice when administered subcutaneously than the lead compound IIA (compound 51; Table V). Comparison of the subcutaneous data with that of cycloguanil hydrochloride or pyrimethamine indicates that the instant compounds are better tolerated in mice while demonstrating only slightly lowered potency (cures at 80 and 160 mg/kg vs. cures at 40 mg/kg). Although all 56 of the compounds tested by the oral route were less active than cycloguanil hydrochloride or pyrimethamine, 29 exhibited antimalarial activity comparable with or superior to the lead compound IIa (compound 51; Table V), and compound 43 proved to be as active or more active than quinine. In general, there was good agreement between subcutaneous and oral test results in mice.

In view of the overall promise of N^2 -aryl- N^4 -[(dialkylamino)alkyl]-2,4-quinazolinediamines and the activity of these compounds against drug-resistant strains of *P. berghei* (vide infra), N^2 -(3,4-dichlorophenyl)- N^4 -(1-ethyl-3piperidinyl)-2,4-quinazolinediamine, XI (compound **30**;

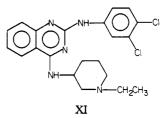


Table II) was selected for preclinical toxicity studies. The drug exhibits strong suppressive and curative activity against *P. berghei* when administered to mice in a single subcutaneous dose of 160-640 mg/kg and is nontoxic for mice. When administered to mice in the diet for 6 days, it proved to be approximately 34 times as active as quinine against *P. berghei* (Table V). Unfortunately, XI and several related compounds were subsequently shown to be phototoxic,²⁵ and plans to study XI in man were abandoned.

⁽²⁰⁾ E. F. Elslager, L. M. Werbel, A. Curry, N. Headen, and J. Johnson, J. Med. Chem., 17, 1915 (1974).

⁽²¹⁾ The parenteral antimalarial screening was carried out by Dr. Leo Rane of the University of Miami, and test results were supplied through the courtesy of Drs. David P. Jacobus, T. R. Sweeney, and E. A. Steck of the Walter Reed Army Institute of Research.

⁽²²⁾ For a description of the test method, see ref 10.

⁽²³⁾ The oral antimalarial screening against P. berghei in mice was carried out by Dr. Paul E. Thompson and co-workers, Department of Pharmacology, Parke-Davis and Co., Ann Arbor, Mich.

⁽²⁴⁾ For a description of the test method, see ref 8 and 9.

⁽²⁵⁾ Private communication from the Walter Reed Army Institute for Research.

	ana. C, H, N, Cl ⁻ , H ₂ O	C, N, Cl ⁻ , H ₂ O; H ^a	C, H, N, CI ⁻ , H ₂ O C, H, N, CI ⁻ , F, H ₂ O C, H, N, Br, CI ⁻ , H ₂ O C, H, N, Br, CI ⁻ , H ₂ O C, H, N, H ₂ O C, H, N, H ₂ O	C, H, N, CI ⁻ , F, H ₂ O	C, H, N, Cl, Cl ⁻ , H ₂ O	C, H, N, Cl, Cl ^{-b}	C, H, N, CI ⁻ , H ₂ O C, H, N, CI ⁻ , H ₂ O
	tormuta C ₂₁ H ₂₃ Cl ₂ N ₅ ·2HCl·1.6H ₂ O	$C_{22}H_{34}F_{3}N_{5}.2HCI-1.8H_{2}O$	$\begin{array}{c} C_{23}H_{1,4}CI_{2}N_{5}\cdot2HCI\cdot1.8H_{2}O\\ C_{23}H_{1,4}F_{3}N_{5}\cdot2HCI\cdot1.8H_{3}O\\ C_{23}H_{3,6}BNN_{5}\cdot1.8HCI\cdotH_{5}O\\ C_{23}H_{3,5}CI_{2}N_{5}\cdot1.8HCI\cdotH_{2}O\\ C_{24}H_{3,5}N_{4}\cdot0.7H_{4}O\\ C_{24}H_{3,2}N_{4}\cdot0.7H_{4}O\end{array}$	C22H24F3N5 2HCI-0.3H2O	$C_{21}H_{23}Cl_2N_5$, 2HCl·0.5H ₂ O	$C_{21}H_{23}Cl_2N_5 \cdot 2.4HCl \cdot 1.5H_2O$	$\begin{array}{c} C_{2,H_{2}}C_{1,N}, ^{2}2HC^{1}0.7H_{2}O\\ C_{2,H_{2}}C_{1,N}, ^{2}2HC^{1}1.1H_{2}O\\ C_{2,H_{2}}C_{1,N}, ^{2}2HC^{1}1.1H_{2}O\\ C_{2,H_{3}}C_{1,N}, ^{2}2HC^{1}2.1H_{2}O\\ C_{2,H_{3}}C_{1,N}, ^{2}2HC^{1}2.1H_{2}O\\ C_{2,H_{3}}D_{1,N}, ^{2}2HC^{1}1.4H_{2}O\\ C_{2,H_{3}}D_{1,N}, ^{2}2HC^{1}1.4H_{2}O\\ C_{2,H_{3}}D_{1,N}, ^{2}2HC^{1}1.6H_{2}O\\ C_{2,H_{3}}D_{2,D}D_{1,N}, ^{2}2HC^{1}1.6H_{2}O\\ C_{2,H_{3}}D_{2,D}D_{2,D}D_{2,D}D_{2,D}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D_{2,D}D_{2,D}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D_{2,D}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D_{2,D}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D\\ C_{2,H_{3}}D_{2,D}D\\ C_{2,H_{3}}D\\ C_{2,H_{3$
pro-	K	К	MLLLK	К	К	К	хжжках хххч
	BtOH	2-PrOH- EtOH	2-PrOH EtOAc EtOAc EtOAc Et ₇ O	2-PrOH	2-PrOH	2-PrOH	2-PrOH 2-PrOH 2-PrOH 2-PrOH 2-PrOH 8-PrOH 2-PrOH 2-PrOH 2-PrOH 2-PrOH 2-PrOH
	61	40	61 75 87 44 43	34	50	31	64 55 55 83 55 83 83 83 83 83 83 83 83 83 83 83 83 83
₹())— [±]	mp, c 272-274	265-267	250-265 205 dec 165 dec 165 dec 85-89	274	332-334	308-309	298-300 dec 295-297 dec > 300 273-275 206-207 245-275 245-275 245-267 dec 295-300 dec 295-300 dec 215-220 dec
	3,4-Cl ₂	4-CF ₃	3,4-Cl ₂ 4-CF ₃ 3-Br 3,5-Cl ₃ 4-N(CH ₃) ₂	4-CF ₃	3,4-Cl ₂	3,5-Cl ₂	3,4-Cl 3,5-Cl 3,5-Cl 3,5-Cl 3,5-Cl 3,5-Cl 4-LF 3,5-Cl 3,5-Cl
	-NH-Y-NK ₁ K ₂	V+(C)+1/2 N-(C)+	NHCH[$(CH_1)_1$], CHN $(CH_1)_1$ NHCH[$(CH_2)_1$], CHN $(CH_3)_1$ NHCH[$(CH_2)_1$], CHN $(CH_3)_1$ NHCH[$(CH_2)_1$], CHN $(CH_3)_1$ NHCH[$(CH_2)_1$], CHN $(CH_3)_1$ NHCH[$(CH_2)_1$], CHN $(CH_3)_1$				NHCH ₂ CH[(CH ₃) ₁),NC ₂ H ₅ NHCH ₂ CH[(CH ₁) ₁],NC ₂ H ₅ NHCH ₂ CH[(CH ₁) ₁],NC ₂ H ₅ NHCH ₂ (CH ₁),NC ₂ H ₅ NHCH[(CH ₂) ₁],CHN(C ₂ H ₃), NHCH[(CH ₃) ₁],CHN(C ₂ H ₃), NHCH[(CH ₃) ₁],CHN(C ₂ H ₃), NHCH[(CH ₃) ₁],CHN(C ₂ H ₃), NHCH[(CH ₂) ₁],CHN(C ₂ H ₃), NHCH[(CH ₂) ₁],CHN(C ₂ H ₃), NHCH[(CH ₂) ₂],CHN(C ₂ H ₃), NHCH[(CH ₂) ₃),CHN(C ₂ H ₃), NHCH[(CH ₂) ₃),CHN(C ₂ H ₃), NHCH[(CH ₂) ₃),CHN(C ₂ H ₃),
	83 83	84	85 86 88 88 89	06	16	92	$\begin{array}{c} 93\\94\\95\\96\\97\\99\\100\\101\\102\end{array}$

Table IV. N^{2} -[(Dialkylamino)alkyl]- N^{4} -phenyl-2,4-quinazolinediamines

C, H, N, CI, CI ⁻ ; H,O [/] C, H, N, CI, CI ⁻ ; H,O	H, N, CI ⁻	H, N,	H, N	H, N,	H, N, CI,	H, N, CI-	H, N,	H, N,	H, N,	H, N,	H,	H,	^c H ₂ O: caled, 5.80; found, 5.39. ^d H ₂ O:
C ₂ ,H ₃ ,Cl ₂ N ₅ , 2HCl·H ₂ O C ₂ ,H ₃ ,Cl ₂ N ₅ , 2HCl·O,2H ₂ O	H, F,	C ₂₀ H ₂₃ Cl ₂ N ₅ 2HCl·H ₂ O	C,H,F,N,	H, CI	H, CI	C ₂ ,H ₂ ,F ₃ N, 2.1HCl·0.4H ₂ O	H, Cl	C, H, CI, N, 2.1HCI 2.1H, O	C, H, N, O, 0.9H, O	C,H,N,O.2.7HCI 2H,O	C,,H,,N,O, 2.2HCl-1.7H,O	C24H36F3N522HCI-2H2O	determined by microanalytical techniques. c H ₂ O: calcd, 5.8
ЯΧ	L	М	M	Ж	К	X	L	Г	M	M	M	M	nalytic
2-PrOH 2-PrOH	EtOAc	2-PrOH	petr ether	2-PrOH	2-PrOH	2-PrOH	2-PrOH	EtOAc	Et,O	Et,O	Et,O	$Et_{2}^{i}O$	ned by microa
85 98	89	43	12	62	99	67	68	78	91	06	84	92	letermin
$> 320^{e}$ 285–288	143 - 150	300	126 - 127	232	256-259	224 - 228	105 - 110	105-108	45 - 50	132-137	125 - 128	115 - 120	not be satisfactorily d ; found, 3.87.
3,4-Cl ₂ 3,5-Cl ₂	4-CF.	3,4-CÍ,	4-CF3	3,4-CÍ,	3,5-CI,	4-CF	3.4-Cľ,	3,5-CI,	3,4,5-(OCH,),	4-OH, 3-CH, N(C,H,),	4-NO,	4-CF ₃	this compound could no C. $f H_2O$: calcd, 3.46; f
NH(CH ₂) ₃ N(CH ₂) ₅ NH(CH ₂) ₅ N(CH ₂) ₅	NH(CH,),N(CH,)	NH(CH,),N(C,H,),	NH(CH,),N(C,H,),	NH(CH,),N(C,H,),	NH(CH,),N(C,H,),	NH(CH,),N(C,H,),	NHĊH(ČH,)(ĆH,),N(C,H,),	NHCH(CH,)(CH,),N(C,H,),	NHCH(CH,)(CH,),N(C,H,),	NHCH(CH,)(CH,),N(C,H,),	NHCH(CH,)(CH,),N(C,H,),	NHCH(CH ₃)(CH ₂) ₃ N(C ₂ H ₃)	^a H: caled, 5.73; found, 5.27. ^b Water in this compound could r caled, 5.50; found, 4.95. ^e Shrinks at 238 °C. ^f H ₂ O: caled, 3.46
103 104	105	106	107	108	109	110	111	112	113	114	115	116	^a H: calc calcd, 5.50;

An early report on the "reverse" N^2 -[(dialkylamino)alkyl]- N^4 -phenyl-2,4-quinazolinediamine analogues (X) indicated that, although related compounds had been reported to be devoid of activity against *P. gallinaceum* infections in the chick, compound 85 (Table VII) exhibited curative activity at sc doses of 160–640 mg/kg and, moreover, was shown not to exhibit phototoxic liability. Therefore, a more thorough exploration of this series was conducted, and the results are reported in Table VII.

Examination of the overall results for the N^2 -[(dialkylamino)alkyl]-N⁴-phenyl-2,4-quinazolinediamines (Table VII) indicates that, although antimalarial activity is retained, the level of potency is generally inferior to that of the N^2 -aryl- N^4 -[(dialkylamino)alkyl]-2,4-quinazolinediamines [compare compounds 19, 22, 26, 30, 31, 52, 55 (Table V) vs. 83, 85, 88, 91, 93, 106, 107, respectively (Table VII)]. However, two members of this series N^2 -[dialkylamino)alkyl]- N^4 -phenyl-2,4-quinazolinediamines 85 and 93; Table VII) did possess greater activity and showed less toxicity for the mice than the lead compound, IIA (compound 51; Table V). Comparison of the activity of the N^2 -[(dialkylamino)alkyl]- N^4 -phenyl-2,4-quinazolinediamines with that of cycloguanil hydrochloride or pyrimethamine indicates that, although many compounds were better tolerated by mice, none were as active vs P. berghei as the two reference drugs.

Drug-Resistance Studies in Mice. To determine whether the diaminoquinazolines represented a unique chemical type with regard to apparent mode of action, one of the more promising members of the series, namely N^2 -(3,4-dichlorophenyl)- N^4 -[2-(1-methyl-2-pyrrolidinyl)ethyl]-2,4-quinazolinediamine (compound 19), was selected for evaluation against representative drug-resistant lines of P. berghei in the mouse.^{26,27} The drug was administered continuously in the diet at levels of 0.0313, 0.008, 0.004, and 0.002% for 6 days to mice infected with the drugsensitive parent line P and the following drug-resistant lines: line T, completely (>300-fold) resistant to cycloguanil hydrochloride; line S, completely (>600-fold) resistant to 4,4'-sulfonyldianiline (DDS); and line C, 77-fold resistant to chloroquine. The results (Figure 1) indicate that this material is essentially fully active against the cycloguanil (T) and DDS (S) resistant lines, albeit possessing some cross-resistance against the chloroquine line C. These results provide support for the hypothesis that compound 19 and related diaminoquinazolines have a different mode of action from cycloguanil and pyrimethamine.

Conclusion

The N^4 -[(dialkylamino)alkyl]- N^2 -phenyl-2,4quinazolinediamines exhibit antimalarial activity over a wide range of structural variations. The inability to separate phototoxicity from antimalarial activity and the pressure of other structural classes with much greater potency has required that we terminate efforts in this area.

Experimental Section^{28,29}

Preparation of 2-Chloro-N-[(dialkylamino)alkyl]-4quinazolinamines, V (1-17; Table I). Procedure A. To a

⁽²⁶⁾ Testing against resistant strains of *P. berghei* was carried out by Dr. Paul E. Thompson and co-workers, Department of Pharmacology, Parke-Davis Co., Ann Arbor, Mich.

⁽²⁷⁾ For a description of the test method, see ref 8 and 9.

⁽²⁸⁾ Melting points (corrected) were taken on a Thomas-Hoover capillary melting point apparatus.

⁽²⁹⁾ Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.

Table V.Parenteral and Oral Suppressive Antimalarial Effects of N^4 -[(Dialkylamino)alkyl]- N^2 -phenyl-2,4-quinazolinediamines against Trophozoite-Induced P. berghei in Mice

							d	iet, 6 days	
compd	640	MST; C or T 320	^a after single	sc dose, mg 80	/kg 40		no. of mice	SD ₉₀ , ^b (mg/kg)/ day	Q^c
18	12.2; C2	14.4	10.7	4.4	1.1	0.8	28	9.8	7.0
19	22.3; C3 29.8; C4	20.8; C2	$\begin{array}{c} 10.2 \\ 13.2 \end{array}$	8.0	$\begin{array}{c} 0.8 \\ 4.0 \end{array}$	3.0	28	10.5	7.
20	28.9; C3 20.3; C3	15.0	$13.9 \\ 11.4 \\ 11.7$	7.8	3.9 5.2	1.6	21	6	12.4
21	$21.9; C2 \\ 25.8; C4$	15.5; C2	$11.7 \\ 10.5; C2$	3.2	$\substack{4.5\\1.2}$	1.0	21	16	4.
22	C5 C5	25.9; C4	22.9; C4 25.9; C3	11.4; C3	4.5 4.1	0.3	14	7.8	9.
23	C5 C5	25.9; C4	25.4; C3 27.4; C3	10.4; C1	9.7 9.9	0.9	14	8.5	8.
24	C5 C5	24.3; C3	20.1; C1 16.5; C2	6.4	4.8 3.8	0.4	28	9.2	8.
25	C5 C5	24.9; C4	$17.5 \\ 16.9$	10.9	9.7 9.3	5.1	21	9.3	8.
26	C5 C5	C5 27.8; C4	19.1; C2 24.9; C4	11.6 9.0	4.0 13.3	3.6 3.6			
27		C5	27.9; C4 3.7	23.9; C4 2.7	$\begin{array}{c} 12.7 \\ 0.5 \end{array}$	$\begin{array}{c} 1.7 \\ 0.3 \end{array}$	7	>69	<1.1
28	T5	Т5	13.0; C3 16.3; C2	13.0; C3	7.7 7.2	7.5	14	155	0.1
29	28.3; C3 28.8; C3	20.0	10.6 11.4	3.0	0.4 0.6	0.2	21	38	2.
30	13.8; C3 24.2; C2	13.8	6.2 7.3	1.0	0.6 0.5	0.4	28	2.2	34
31	C5	C5	23.9; C4 27.9; C4	9.1	$7.5 \\ 7.3$	0.7	21	8.4	8.9
32	C5 C5	C5	25.9; C3 25.9; C4	14.1	$\begin{array}{c} 9.1 \\ 8.5 \end{array}$	7.9	21	8.5	8.3
33	C5 C5	22.9; C4	13.9; C1 13.7; C1	10.4; C1	$\begin{array}{c} 10.1 \\ 10.5 \end{array}$	0.9	21	8.5	8.3
34	C5 C5	C5	$26.9; C2 \\ 23.4; C3$	13.4; C1	7.7 7.5	2.3	14	9.0	8.
35	C5 C5	C5	$23.9; C4 \\ 24.9; C3$	21.9; C4	9.6; C2 8.9; C2	5.5	21	8.5	8.
36	C5 C5	26.2; C2	8.7 9.1	4.3	$\begin{array}{c} 1.1 \\ 0.7 \end{array}$	0.3	14	3.3	2.3
37	C5 C5	C5	$22.8; C2 \\ 23.1; C2$	8.0	5.0 4.8	1.0	21	17.5	4.
38	25.4; C3 24.6; C2	18.2; C1	6.1 6.7	1.1	0.7 1.1	0.1	14	68	1.
39	15.9 13.7	9.3	$6.5 \\ 7.1 \\$	3.1	2.1 2.3	0.3	14	70	1.1
10	10.7 10.3	5.9	$3.5 \\ 4.1$	1.7	0.9 1.3	0.5	14	80	0.1
41	8.4 8.1	5.0	4.4 4.0	0.4	0.2 0.8	0.2	14	91	0.5
42	$10.2 \\ 11.1 \\ 10.2 \\ 11.1 \\ 10.2 \\ $	4.2 4.2	2.8 3.5	1.4	0.6 0.7	0.4	14	97 87	0.1
43 44	$16.2 \\ 13.2 \\ 1.0$	10.2	$4.8 \\ 3.4 \\ 0.2$	2.4	$0.4 \\ 0.8 \\ 0.2$	0.2	21 14	37 105	2.0 0.1
44 45	1.0 T5	10.3	5.9 4.7	3.3	0.2 0.9 0.3	0.7	$\frac{14}{21}$	35	2.2
46	C1; T2	C1; T2	10.7	2.1	1.7	0.3	0.0	10	
17 18	C5 T5		C4 6.8		$\begin{array}{c} 5.2 \\ 1.0 \end{array}$		$\frac{28}{14}$	$\begin{array}{c} 12 \\ 47 \end{array}$	6.3 1.0
** 19	26.1; C2 23.9; C2	17.5; C2	10.4 11.3	4.6	2.2 2.5	0.2	14 28	11	6.8
50	20.1; C2 24.1; C1	13.1; C1	8.0 5.8	4.0	1.2 0.8	1.0	21	25	3.0
51	T5	C3; T2	11.1C2	6.2	4.1 4.6	1.6	21	35	2.3
52 53	$C5 \\ 22.1; C2$	12.2	7.0 8.2	3.2	1.0 0.2	0.2	21 14	24 120	3. 0.(
54	22.1, C2 20.8; C3 1.2	1 <i>4</i> 1. <i>4</i> 1	9.0 0.4	0.4	2.0 0.4	0.2	74	140	0.0
55	C4 C4	C4	C1 8.9	7.3	1.7 1.1	0.3	14	91	0.8
56	6.8; T3 6.3; T3	5.2	4.8 4.2	3.4	1.0 0.8	0.2	14	50	1.
57	C2; T1 C1; T2	C2; T1	8.6 9.1	5.6	2.8 2.7	0.4	14	40	1.

Alah C dama

Table V (Continued)

							d	iet, 6 days	
			after single				no. of	SD ₉₀ , ^b (mg/kg)/	
compd	640	320	160	80	40	20	mice	day	Q¢
58	T5		0.9; T1		0.7				
59		14.2; C2	6.1	2.7	1.1	0.5	21	18.5	4.0
		13.6; C2		2.5		0.5			
60	C5	21.1; C1	11.1; C1	5.0	3.6	0.6	21	20	3.8
	C5		10.3; C1		4.0				
61			0.3		0.1	0.1	14	46	1.6
62		0.3		0.3		0.1	14	63	1.2
63	7.8; C3	6.4	1.0	0.6	0.2	0.2	14	36	2.1
• ·	4.8; C3		1.0		0.4				
64	1.6		0.4		0.2		14	73	1.0
65			0.5		0.3	0.3			
66							14	34	2.2
67	12.9; C4	27.2; C2	13.9; C1	14.9	13.3	1.3			
••	18.4; C3		12.9; C1		12.9				
68	26.5; C2	14.6;C1	4.6	1.6	0.4	0.2	14	22	3.4
	23.3; C3		4.0		0.4				
69	20.6	10.4	7.0	1.2	0.4	0.2	14	30	2.5
=0	00 0 C0	10.9	7.3	1.5	0.7	0.3		• •	• •
70	26.9; C3	9.5	0.9	0.9	0.3	0.3	21	9.2	8.1
-1	21.9; C4	05	1.1	•	0.3	1.0			
71	C3; T2	C5	29.8; C4	6.8	3.8	1.6	14	47	1.6
# 0	20 0 0 0 0	C5	C5	6.8	3.8	2.0	01	00 F	
72	29.8; C4	16.8; C3	13.2	6.0	3.2	0.6	21	30.5	2.4
7 0		16.9; C3	13.5	6.3	3.5	0.9		60	
73		5.6	3.8	0.4	0.2	0.2	14	69	1.1
74	8.9	1 7	3.8	0.4	0.4	0.2		0.0	0.0
(4	8.9	1.7	1.3	0.3	0.1	0.1	14	82	0.9
		2.0	1.0	0.6	0.2	0.2			
75	Т5	2.5 5.8; T4	0.7	0.3 3.2	0.3	0.3	14	4 5	1.6
10	T5	0.6, 14	4.3; T1	3.2	0.8	0.2	14	45	1.6
76	15 T5		4.3; T1		0.8 0.6		7	>30	<2.5
77	13.3; T3	7 8. 00	0.8 4.8	1.0	0.6	0.2	7 7	>30 >33	<2.5
11		7.8; T2	4.8 4.6	1.0	0.6	0.2	1	>00	< 2.3
78	12.8; T3		4.0		0.2		7	>34	<2.2
cycloguanil	T 5	C3; T2	C5	21.6; C2	13.4; C1	7.9	40	>34 2.1	< 2.2 35
hydrochloride	10	C3; T2 C3; T2	C5 C5	21.6; C2 21.9; C2	13.4; C1 13.4; C1	7.9 8.1	40	4. I	99
pyrimethamine	C1; T2		C5 C5				10	0.00	270
guinine ^e	5.4	C2; T3 3.2	2.0	C3 1.4	C1 1.0	7.7 0.2	$\begin{array}{c} 42\\224\end{array}$	$0.28 \\ 74.5$	270
quinnie	0.4	J. 2	2.0	1.4	1.0	0.2	444	14.0	1.0

^a MST is the mean survival time (days) of treated mice (MSTT) minus the mean survival time (days) of control mice (MSTC). In the present study, the MSTC ranged from 6.1 to 6.5 days. T signifies the number of toxic deaths occurring on days 2-5 after infection which are attributed to drug action. C indicates the number of mice surviving at 60 days postinfection and termed "cured"; data to establish parasitological cure based on subinoculation are unavailable. Each entry at each dose level represents results with a five-animal group. ^b All doses were calculated as the free base equivalent. SD_{90} represents the daily dose (mg/kg) required for 90% suppression of the parasitemia in treated mice relative to control mice. The SD_{90} was estimated graphically using semilog paper. ^c The quinine equiv Q is the ratio for the SD_{90} of quinine hydrochloride to the SD_{90} of the test substance under comparable experimental conditions. ^d N²-[(3,4-Dichlorophenyl)methyl]-N⁴-[2-(diethylamino)ethyl]-2,4-quinazolinediamine. ^e Tested parenterally as the sulfate and by diet as the hydrochloride.

 Table VI.
 Parenteral and Oral Suppressive Antimalarial Effects of N^4 -[(Dialkylamino)alkyl]- N^2 -heterocyclic-2,4-quinazolinediamines against Trophozoite-Induced P. berghei in Mice

				•	13			diet, 6 days	
		MST; C or	T ^a after single	sc dose, n	1g/kg		no. of	SD ₉₀ , ^b (mg/	
no.	640	320	160	80	40	20	mice	kg)/day	Q^c
79	0.9; T3		0.3	ň., 1	0.3				
80	T5		0.9; T2		0.3		7	>37	< 2.0
81	0.0		0.0		0.0				
82	0.8		0.4		0.2		7	>147	< 0.5

a-c See corresponding footnotes in Table V.

stirred solution of 29.0 g (0.014 mol) of 2,4-dichloroquinazoline in 375 mL of nitrobenzene was added dropwise 24.7 g (0.014 mol) of N,N-diethyl-1,4-cyclohexanediamine with a concomitant rise in temperature from 27 to 40 °C. The reaction mixture was allowed to stir for 3 h and then to remain at ambient temperature overnight. The precipitate was collected, washed with ether, and boiled twice in 250 mL of *i*-PrOH to give 19.8 g (37%) of N'-(2chloro-4-quinazolinyl)-N,N-diethyl-1,4-cyclohexanediamine hydrochloride (4): mp 276-279 °C dec; TLC (sample dissolved in water, made basic with NaOH, and extracted with $CHCl_3$ and the extract spotted on alumina and eluted with EtOAc) showed a single spot, R_f 0.5, and is designated isomer A (cis or trans isomer).

The combined nitrobenzene-ether wash from above deposited additional precipitate upon standing, which was collected and recrystallized from CH₃CN to give 6.6 g of product, mp 232-236 °C dec. The *i*-PrOH washes from above also deposited precipitates, which were collected, combined, and dried to give an additional 9.8 g of product (5): mp 233-235 °C; TLC (same system

Table VII. Parenteral and Oral Suppressive Antimalarial Effects of N^2 -[(Dialkylamino)alkyl]- N^4 -phenyl-2,4quinazolinediamines against Trophozoite-Induced *P. berghei* in Mice

	MST	; C or T ^a a	fter single s	c dose,	mg/kg	
no.	640	320	160	80	40	20
83	C1; T2	C1; T1	6.9	0.5 0.7	0.5 0.5	0.3 0.3
84	7.7	11.2; T2 4.1	$\begin{array}{c} 7.1 \\ 1.5 \end{array}$	0.7	0.3	0.3
		4.3	1.7	0.5	0.3	0.3
85	C3; T2	9.9; C3	12.6; C2 12.9; C2	7.9	$4.1 \\ 3.7$	0.3
86	C3; T1 0.7		12.9, 02 0.7		1.1	
87	0.7		0.7		-0.1	
88	5T		2.6 5.7	1.2	$0.0 \\ 1.7$	-0.2
89	1.1		5.7 0.6		-0.2	
90	3.4	0.9	0.2	-0.1	0.2	
01	3.1	0.0	0.3 0.9	0.9	-0.1 0.9	0.9
91	9.5 10.6	2.9	2.2	0.9	-0.4	0.5
92	4.4	2.4	0.4	0.2	0.2	0.4
0.9	6.3 C5	C5	$0.3 \\ 13.4; C1$	6.7	$\begin{array}{c} 0.1 \\ 2.1 \end{array}$	0.5
93	C5	C5 C5	10.4, 01	6.9	$\frac{2.1}{2.1}$	$0.3 \\ 0.7$
94	C3, T2	C3; T2	5.7	2.5	0.5	0.5
95	21.9; C4	C3; T2 8.9; C3	5.9; T1 7.3	2.7 0.5	$\begin{array}{c} 0.5 \\ 0.5 \end{array}$	0.3 0.3
90	21.9, 04	9.4; C3	3.9; C1	0.7	0.5	0.3
96	C5	14.4; C3	17.2; C1	2.9	0.5	0.3
97	C5	14.9; C3 7.9	15.6;C2 0.7	3.1 0.5	0.5 0.5	$\begin{array}{c} 0.3 \\ 0.3 \end{array}$
51	00	8.1	0.5	0.5	0.3	0.3
98	C3; T2	12.9	10.3	2.5	0.3	0.3
99	C3; T2	12.7 9.4; C2	10.1 8.6; C2	2.7 0.7	0.5 0.5	0.5 0.3
55	00, 12	9.9; C3		0.5	0.5	0.3
100	C3; T2	C5	9.7	0.7	0.5	0.5
101		C5 11.7	9.5 5.7	$0.5 \\ 1.1$	0.5 0.7	0.3 0.5
101		11.1	5.7	1.3	0.7	0.7
102	1.2	1.0	0.8	0.4	0.4	0.0
103	3.0 4.1	1.6	0.4 0.1	-0.4	$-0.4 \\ 0.1$	0.2
104	1.6		0.2		0.2	
105	2.4	2.0	-0.2	0.0	-0.2	0.2
106	$\begin{array}{c} 10.3 \\ 5.4 \end{array}$	3.2	0.2; 1T 0.9	0.2	$\begin{array}{c} 0.2 \\ 0.4 \end{array}$	0.2
	5.9			_	-0.1	
107	5.3	2.8	0.2	-0.2	0.2 - 0.1	0.2
108	5.5 9.8; C1	8.4	$\begin{array}{c} -0.1 \\ 4.6 \end{array}$	2.8	-0.1 0.8	0.0
	10.5; C1		5.2		0.2	
109	14.5; C2	5.0	3.0	1.4	0.2	0.2
110	15.7; C2 10.1	9.2	$2.7 \\ 0.6$	0.8	0.9 -0.2	0.0
	7.5		0.3		0.6	
111	4.7	1.3	1.9	0.3	0.3 0.4	0.1
112	5.8 4.9	3.1	$-0.2 \\ 1.1$	-0.1	-0.4	0.1
	4.4		1.2		0.8	
113	3.5	0.5	0.3 0.6	0.3	$-0.3 \\ 0.2$	0.3
114	5.0 3.1; C3	7.4	3.8	1.4	0.2	0.0
	5.6		1.6		$\begin{array}{c} 0.2 \\ 0.8 \end{array}$	0.0
115	5T 4.3	5T	$2.6 \\ 3.2$	1.4	0.8	0.0
116	1.6		0.0		-0.6	

^a See footnote a, Table IV.

as above) showed single spots for both crops, $R_f = 0.2$, and they are designated isomer B (trans or cis isomer). The yield of isomer B was 16.4 g (30%), and the total yield for both isomers was 36.2 g (67%).

Procedure B. To a solution of 12.5 g (0.054 mol) of 2,4,6trichloroquinazoline in 500 mL of ether was added dropwise a solution of 7.4 g (0.058 mol) of 1-methyl-2-pyrrolidineethanamine in 20 mL of ether. The mixture was stirred for 20 h and concentrated to 150 mL. The precipitate that formed was collected and recrystallized from *i*-PrOH to give 10.8 g (55%) of 2,6-dichloro-N-[2-(1-methyl-2-pyrrolidinyl)ethyl]-4-quinazolinamine monohydrochloride (9), mp 176-179 °C dec.

Procedure C. To a solution of 8.3 g (0.040 mol) of 2,4-dichloroquinazoline in 100 mL of ether was added dropwise 4.7 g (0.040 mol) of 1-pyrrolidineethanamine. The mixture was stirred for 1.5 h, and the precipitate that formed was collected, added to dilute NaOH solution, and extracted with ether. The extracts were combined, dried (anhydrous MgSO₄), and concentrated to a solid in vacuo. Recrystallization from cyclohexane provided 6.2 g (56%) of 2-chloro-N-[2-(1-pyrrolidinyl)ethyl]-4-quinazolinamine (6), mp 136-138 °C.

The reactions forming compounds 14, 12, and 17 were run in ether-ethanol (25:1), ethanol, and methanol, respectively, due to the insolubility of the starting materials in ether.

The free base of 3 could not be crystallized, and the hydrochloride salt was made by bubbling gaseous HCl through an ether solution of 3 and collecting the resulting precipitate.

The other requisite 2-chloro-N-[(dialkylamino)alkyl]-4quinazolinamines not listed in Table I were used directly in the next step without isolation (see procedures D and E).

Preparation of N^4 -[(dialkylamino)alkyl]- N^2 -phenyl- and -heterocyclic-2,4-quinazolinediamines, VI (18-82; Tables II and III). Procedure D. To a stirred solution of 29.9 g (0.15 mol) of 2,4-dichloroquinazoline in 515 mL of nitrobenzene was added dropwise 19.2 g (0.15 mol) of 1-methyl-2-pyrrolidineethanamine with a concomitant rise in temperature from 25 to 35 °C and formation of a precipitate. The mixture was allowed to cool to room temperature and treated with sufficient i-PrOH to dissolve the solid. To one-fifth of the resulting solution³⁰ was added 4.9 g (0.030 mol) of 3,4-dichlorobenzenamine and the mixture was heated to 180 °C, allowing the *i*-PrOH to boil off. After 1 h the reaction mixture was cooled to 25 °C and the precipitate that accumulated was collected, washed with ether, ground with Me₂CO, and recrystallized from an *i*-PrOH-EtOH (1:5) mixture using decolorizing charcoal to give 5.4 g (35%) of N^2 -(3,4-dichlorophenyl)- N^4 -[2-(1-methyl-2-pyrrolidinyl)ethyl]-2,4-quinazolinediamine dihydrochloride 1.6 hydrate (19), mp 268-272 °C.

Procedure E. A solution of 4.5 g (0.023 mol) of 2,4-dichloroquinazoline and 2.9 g (0.023 mol) of 1-ethyl-3-piperidinamine in 150 mL of EtOH was warmed to 40 °C for 15 min and allowed to stir at room temperature for 15 h. The reaction mixture was treated with 3.7 g (0.023 mol) of 3,4-dichlorobenzenamine and 2 mL of concentrated HCl and heated under reflux for 5 h. The reaction mixture was allowed to cool, and the precipitate that formed was collected and recrystallized from MeCN to give, after drying in vacuo (50 °C), 8.1 g (71%) of N^2 -(3,4-dichlorophenyl)- N^4 -(1-ethyl-3-piperidinyl)-2,4-quinazolinediamine dihydrochloride 1.5 hydrate (30), mp 249-251 °C.

The reactions to provide compounds 66 and 69 were run without using concentrated hydrochloric acid in the final step.

Procedure F. A mixture of 6.2 g (0.017 mol) of N-(2-chloro-4-quinazolinyl)-N,N-diethyl-1,4-cyclohexanediamine monohydrochloride 0.3-hydrate (4) and 2.7 g (0.017 mol) of 3,5-dichlorobenzenamine in 50 mL of EtOH was heated under reflux for 3 h and cooled to room temperature. The precipitate that accumulated was collected and recrystallized from MeOH to give 4.7 g (53%) of N^2 -(3,5-dichlorophenyl)- N^4 -[4-(diethylamino)cyclohexyl]-2,4-quinazolinediamine dihydrochloride 0.5-hydrate (35): mp 332-334 °C; TLC (alumina developed in EtOAc; product spotted as the free base) showed a single spot, R_f 0.4, and is designated isomer B.

Compounds 46, 58, and 75–78 could not be induced to crystallize from their reaction mixtures. Therefore, for compound 46, the mixture was concentrated to a paste in vacuo and triturated with hot MeCN, and the resulting solid was dissolved in H_2O , made basic with 2 N NaOH, and extracted with ether. The extracts were dried (MgSO₄) and HCl was bubbled through the solution

⁽³⁰⁾ The solution was assumed to contain 9.8 g (0.030 mol) of 2chloro-N-[2-(1-methyl-2-pyrrolidinyl)ethyl]-4-quinazolinamine monohydrochloride.

to form a hygroscopic precipitate. The free base was remade as above, and the ether extracts were concentrated in vacuo to give 46 as an amorphous solid.

For compound 58, the reaction mixture was poured into 600 mL of ether containing 5 mL of a 28% HCl in *i*-PrOH solution, and the resulting oil was dissolved in H₂O, made basic with 2 N NaOH, and extracted with ether. The extracts were dried (MgSO₄) and concentrated to an oil in vacuo, and the oil was dissolved in a minimum amount of a 28% HCl in *i*-PrOH solution. The solution was poured into 1 L of ether, and the precipitate was collected and recrystallized to give 58.

For compounds 75–78, the reaction mixtures were concentrated in vacuo to dryness and the residues were recrystallized to give the products.

Preparation of N^2 -(3,4-Dichlorophenyl)- N^4 -[2-(diethylamino)ethyl]-2,4(6 and 7)-quinazolinetriamines, VIb (71-72; Table II). Procedure G. To a suspension of 6.7 g (0.013 mol) of N²-(3,4-dichlorophenyl)-N⁴-[2-(diethylamino)ethyl]-7-nitro-2,4-quinazolinediamine dihydrochloride (70) in 400 mL of MeOH was added a slurry of 2.0 g (0.037 mol) of NaOMe in 100 mL of MeOH. Upon heating a solution resulted, which was poured with stirring into 2.5 L of H₂O containing 10 mL of 50% NaOH solution. The resulting precipitate was collected, washed with H_2O , and dried to give 5.5 g (96%) of the free base of 70. A solution of 4.8 g (0.011 mol) of this material in 100 mL of 2-methoxyethanol was hydrogenated over 0.5 g of Raney nickel at 51 psig and 26 °C for 23.6 h. The mixture was filtered and the filtrate was concentrated to dryness in vacuo. The residue was dissolved in ether and filtered, and an excess of a 28% solution of HCl in i-PrOH was added to the filtrate. The precipitate was collected, washed with ether, and recrystallized from EtOH to give 4.0 g (74%) of N^2 -(3,4-dichlorophenyl)- N^4 -[2-(diethylamino)ethyl]-2,4,7-quinazolinetriamine dihydrochloride 1.1-hydrate (72), mp 310-313 °C dec.

Preparation of N²-(3,4-Dichlorophenyl)-N⁶-[(3,4-dichlorophenyl)methyl]-N4-[2-(diethylamino)ethyl]-2,4(6 and 7)-quinazolinetriamine, VIIa,b (73 and 74; Table II). Procedure H. A suspension of 5.0 g (0.0090 mol) of N^2 -(3,4-dichlorophenyl)-N4-[2-(diethylamino)ethyl]-2,4,6-quinazolinetriamine 2.8 hydrochloride 1.7 hydrate (71) in 300 mL of H₂O was made strongly alkaline with a 50% NaOH solution and extracted with 300 mL of CHCl₃. The extract was washed with H₂O, dried $(anhydrous K_2CO_3)$, and concentrated to dryness in vacuo. The residue was treated with 1.9 g (0.011 mol) of 3,4-dichlorobenzaldehyde, and the mixture was heated on a steam bath under vacuum for 30 min and triturated in benzene. The yellow solid was collected and the filtrate deposited additional material upon standing. The two crops were combined and recrystallized from MeCN to give 3.2 g (62%) of N^2 -(3,4-dichlorophenyl)- N^6 -[(3.4dichlorophenyl)methylene]-N⁴-[2-(diethylamino)ethyl]-2,4,6quinazolinetriamine, mp 159-161 °C.

To a solution of 3.1 g (0.0054 mol) of the above intermediate in 100 mL of 2-methoxyethanol was added 0.8 g (0.021 mol) of sodium tetrahydroborate in small portions over a period of 2 h. The mixture was stirred at room temperature for 1 h and poured into iced H₂O. The precipitate was collected, dried, and recrystallized from MeCN to give 2.2 g (70%) of N^2 -(3,4-dichlorophenyl)- N^6 -[(3,4-dichlorophenyl)methyl]- N^4 -[2-(diethylamino)ethyl]-2,4,6-quinazolinetriamine (73), mp 136–137 °C.

Preparation of 2-[[(Dialkylamino)alkyl]amino]-4quinazolinols. Procedure I. A mixture of 15.0 g (0.083 mol) of 2-chloro-4-quinazolinol and 10.8 g (0.083 mol) of N,N-diethyl-1,3-propanediamine in 85 mL of benzene was heated under reflux for 16 h. The reaction mixture was allowed to cool to room temperature, and the precipitate was collected, dissolved in a minimum amount of EtOH, and poured into 600 mL of H₂O. The resulting suspension was made basic with a saturated Na₂CO₃ solution and stirred for 1.5 h. The precipitate was collected and dried to give 19.5 g (86%) of crude 2-[[3-(diethylamino)propyl]amino]-4-quinazolinol,³¹ which was used directly in the chlorination step.

Procedure J. A mixture of 10.8 g (0.060 mol) of 2-chloro-4quinazolinol, 10.2 g (0.060 mol) of N,N-diethyl-1,4-cyclohexanediamine, and 1 mL of a 25% solution of HCl in *i*-PrOH in 40 mL of EtOH was heated under reflux for 6 h, treated while hot with additional HCl in *i*-PrOH until the solution was acidic, and allowed to cool to room temperature overnight. The precipitate that formed was collected and the filtrate was poured into 500 mL of ether. The gum that formed was triturated with additional ether to give a second solid. The two solids were combined and dissolved in a minimum amount of H₂O. The solution was made basic with a saturated Na₂CO₃ solution and extracted with CHCl₃. The extracts were combined, dried (anhydrous Na₂SO₄), and concentrated in vacuo to give 10.0 g (53%) of crude 2-[[4-(diethyl-amino)cyclohexyl]amino]-4-quinazolinol, which was used directly in the chlorination step: TLC (alumina plates developed in EtOH) indicated the presence of cis and trans isomers, R_t 0.30 and 0.48.

2-[[4-(Diethylamino)-1-methylbutyl]amino]-4quinazolinol. A mixture of 15.0 g (0.083 mol) of 2-chloro-4quinazolinol and 25.5 g (0.16 mol) of N^1 , N^1 -diethyl-1,4-pentanediamine was heated with stirring on a steam bath for 14 h, dissolved in 75 mL of EtOH, and added to 500 mL of H₂O. The aqueous mixture was made basic with a saturated Na₂CO₃ solution and extracted with EtOAc. The extracts were combined, dried (anhydrous Na₂SO₄), and concentrated in vacuo to give 26.9 g (97%) of the product as a brown oil, which was used directly in the chlorination step: ¹H NMR and IR were consistent with the structure; VPC showed the material to contain 92.8% of a major component.

The other requisite 2-[[(dialkylamino)alkyl]amino]-4quinazolinols were prepared in a manner similar to procedures I-J above, with the intermediates being partially purified and chlorinated directly to the corresponding 4-chloro-N-[(dialkylamino)alkyl]-2-quinazolinamines without microanalyses.

Preparation of N²-[(Dialkylamino)alkyl]-N⁴-phenyl-2,4quinazolinediamines, X (83-116; Table IV). Procedure K. A mixture of 3.0 g (0.010 mol) of 2-[[3-(diethylamino)propyl]amino]-4-quinazolinol and 50 mL of POCl₃ was heated under reflux for 1.5 h, concentrated in vacuo to a thick syrup, and poured into stirred ice-water. The mixture was chilled, made basic with a 50% NaOH solution, and poured into ether. The layers were separated and the aqueous phase was extracted twice with ether. The extracts were combined, dried (anhydrous K₂CO₃), and concentrated in vacuo to give 1.7 g (0.0057 mol, 52%) of N'-(4chloro-2-quinazolinyl)-N,N-diethyl-1,3-propanediamine as a brown oil. This residue was combined with 0.9 g (0.0057 mol) of 3,4dichlorobenzenamine, 3.0 mL of a 25% solution of HCl in i-PrOH, and 50 mL of *i*-PrOH, and the mixture was heated under reflux for 3 h. The red solution was chilled, and the precipitate that formed was collected, washed with cold i-PrOH, and dried in vacuo (90 °C) to give 1.7 g (62%) of N^4 -(3,4-dichlorophenyl)- N^2 -[3-(diethylamino)propyl]-2,4-quinazolinediamine dihydrochloride 1.6 hydrate (108), mp 232 °C.

Procedure L. A mixture of 8.2 g (0.029 mol) of 2-[[4-(dimethylamino)cyclohexyl]amino]-4-quinazolinol and 100 mL of POCl₃ was heated under reflux for 2 h, concentrated in vacuo to a thick syrup, and poured into stirred ice-water. The mixture was chilled, made basic with a 50% NaOH solution, and poured into ether. The mixture was filtered to remove NaCl, the layers of the filtrate were separated, and the aqueous phase was extracted twice with ether. The extracts were combined, dried (anhydrous K_2CO_3), and concentrated in vacuo to give 8.0 g (87%) of 94% pure (by VPC) N'-(4-chloro-2-quinazolinyl)-N,N-dimethyl-1,4cyclohexanediamine as a paste. A mixture of 4.0 g (0.12 mol) of this residue, 2.3 g (0.13 mol) of 3-bromobenzenamine, 4.0 mL of a 25% solution of HCl in i-PrOH, and 70 mL of i-PrOH was heated under reflux for 3 h and then chilled. The cold solution was poured into 5 volumes of ether, and the hygroscopic precipitate was collected and immediately triturated with EtOAc. The solid was filtered and dried for 24 h in vacuo over P_2O_5 and for an additional 24 h in vacuo at 80 °C to give 5.7 g (87%) of N^4 -(3-bromophenyl)- N^2 -[4-(dimethylamino)cyclohexyl]-2,4quinazolinediamine 1.8-hydrochloride hydrate (87), mp dec from 165 °C.

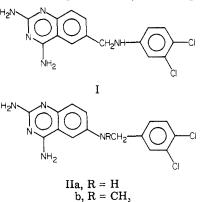
Procedure M. A mixture of 26.9 g (0.082 mol) of 92.8% pure (by VPC) $2\cdot[[4-(diethylamino)-1-methylbutyl]amino]-4$ quinazolinol and 700 mL of POCl₃ was heated under reflux for2 h, concentrated in vacuo to a thick syrup, and poured into stirredice-water. The mixture was chilled, made basic with 50% NaOH

⁽³¹⁾ Literature (ref 11) reports a melting point of 96–97 °C for the hydrate of this compound.

solution, and poured into ether. The mixture was filtered to remove NaCl, the layers were separated, and the aqueous phase was extracted with ether. The extracts were combined, dried (anhydrous K_2CO_3), and concentrated in vacuo to give 25.1 g (91%) of 95.6% pure (by VPC) N^4 -(4-chloro-2-quinazolinyl)- N^1,N^1 -diethyl-1,4-pentanediamine as a brown oil. A mixture of 4.1 g (0.012 mol) of this residue, 1.7 g (0.012 mol) of 4-nitrobenzenamine, 4.0 mL of a 25% solution of HCl in *i*-PrOH, and 60 mL of *i*-PrOH was heated under reflux for 6.25 h, concentrated in vacuo to a paste, and added to 1.5 L of H₂O. The mixture was made basic with 2 N NaOH and extracted with ether. The extracts were combined, dried (anhydrous K_2CO_3), and concentrated in vacuo to an oil. The crude product was dissolved in 200 mL of ether, and HCl was bubbled through the solution for 15 min. The solid which formed was collected and dried to give 5.6 g (84%) of N^2 -[4-(diethylamino)-1-methylbutyl]- N^4 -(4-nitrophenyl)-2,4-quinazolinediamine 2.2-hydrochloride 1.7-hydrate (115), mp 125–128 °C with preliminary softening.

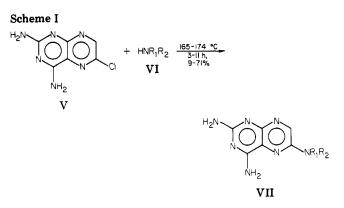
Compounds 89, 107, and 113 were of sufficient stability and purity after concentration of the ethereal solution to avoid formation of the hydrochloride salt.

Acknowledgment. The authors are indebted to Dr. Leo Rane of the University of Miami and Dr. Paul E. Thompson and co-workers for the antimalarial testing. We also thank C. E. Childs and associates for the microanalyses and Dr. F. MacKellar and co-workers for determination of the spectral data.

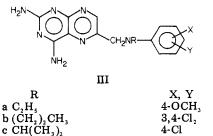

Folate Antagonists. 18. Synthesis and Antimalarial Effects of N^6 -(Arylmethyl)- N^6 -methyl-2,4,6-pteridinetriamines and Related N⁶,N⁶-Disubstituted 2,4,6-Pteridinetriamines¹⁻³

Edward F. Elslager, Judith L. Johnson, and Leslie M. Werbel*

Chemistry Department, Warner-Lambert/Parke-Davis, Pharmaceutical Research Division, Ann Arbor, Michigan 48106. Received August 4, 1980


 N^{6} -(Arylmethyl)- N^{6} -methyl-2,4,6-pteridinetriamines (1-15) and related N^{6} -substituted 2,4,6-pteridinetriamines (16-20) were obtained by the condensation of 6-chloro-2,4-pteridinediamine with N-methylarylmethanamine and other selected secondary amines. The requisite N-methylarylmethanamines (21-32) were prepared by the hydrogenation over Pt/C of the corresponding arylcarboxaldehyde in the presence of methanamine. Several of the N^{6} -(aryl-methyl)- N^{6} -methyl-2,4,6-pteridinetriamines exhibited exceptional suppressive antimalarial activity against a drug-sensitive line of *Plasmodium berghei* in mice. N^{6} -Methyl- N^{6} -(1-naphthalenylmethyl)-2,4,6-pteridinetriamine (9), the most active of these compounds, was also shown to be curative at 3.16 mg/kg in a single oral dose against *P. cynomolgi* in the rhesus monkey. This compound was also shown to be effective against a chloroquine-resistant line of *P. berghei* in the mouse but showed cross-resistance to a pyrimethamine-resistant strain. Most of the 2,4,6-pteridinetriamines showed strong antibacterial action against *Streptococcus faecalis* and *Staphylococcus aureus*.

Members of a series of 6-[(phenylamino)methyl]-2,4quinazolinediamines represented by I were reported to be



even more potent as antimalarial agents than the corresponding 6-[(phenylmethyl)amino]-2,4-quinazolinediamines represented by II.⁴

- (1) This is paper 49 of a series on antimalarial drugs. For paper 48, see E. F. Elslager, C. Hess, J. Johnson, D. Ortwine, V. Chu, and L. M. Werbel, J. Med. Chem., preceding paper in this issue.
- (2) This investigation was supported by the U.S. Army Medical Research and Development Command Contract DA 17-72-C-2077. This is contribution no. 1587 to the Army Research Program on Malaria.
- (3) A preliminary report of the work appeared in Med. Chem., Proc. Int. Symp. Med. Chem., 4th, 1974, 227 (1974).
- (4) D. F. Worth, J. Johnson, E. F. Elslager, and L. M. Werbel, J. Med. Chem. 21, 331, 1978.

We have recently reported⁴ that the corresponding 6-[(arylamino)methyl]-2,4-pteridinediamines (IIIa-c) pre-

pared as nonclassical analogues of aminopterin and methotrexate, while displaying potent prophylactic effects against *Plasmodium gallinaceum* infections, were generally poorly active against trophozoite-induced *P. berghei* infections in mice.