CHEMISTRY LETTERS, pp. 1829-1832, 1982.

```
ELECTROCHEMICAL S-S BOND FISSION OF 4-(2-BENZOTHIAZOLYLDITHIO)AZETIDINONES
(KAMIYA'S DISULFIDES)<sup>1)</sup>
```

Sigeru TORII,* Hideo TANAKA, Takashi SIROI, Michio SASAOKA, Norio SAITOH, Junzo NOKAMI,[†] and Nobuhito TADA[†]

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700 [†]Okayama University of Science, Ridai, Okayama 700

An electrochemical S-S bond fission of 4-(2-benzothiazolyldithio)azetidinones derived from penicillin G has been achieved by the selection of an appropriate electrolysis system, providing either 2β -halomethylpenicillins, 3β -halocephams, or 4-methoxysulfinylazetidinone derivatives.

In connection with penicillin-cephalosporin conversion, disulfides <u>1</u>, readily accesible from natural penicillins by Kamiya's method,^{2a)} are one of most actively investigated intermediates.²⁾ Namely, the disulfides <u>1</u> can be converted by the action with bromine or CuCl₂ in CH₂Cl₂ to the corresponding 2\beta-halomethylpenicillins <u>2</u> (X = Br, Cl), which are a good precursor of useful cephalosporin antibiotics.²⁾

Recently, an alternative procedure of the S-S bond fission of <u>1</u> by the electrolysis in a $(CH_3)_4NBr-ClCH_2COOH-aqueous CH_3CN (Pt electrodes) system has been reported.³⁾ This electrolysis system provides 3β-bromocepham <u>3</u> (X = Br, 18-45%) along with a small amount of deacetoxycephalosporins <u>4</u> after$

isomerization of the primary products 2 (X = Br) on the chromatographic purification.⁴⁾ This prompted us to report our distinguishable results on the electrolytic S-S bond cleavage of the disulfides 1, leading to halopenicillins 2 (X = Br, Cl), halocephams 3 (X = Br, I), and/or 4-methoxysulfinylazetidinone 7, respectively.⁵⁾

The electrolysis was carried out in an undivided cell fitted with two Pt electrodes $(1.5 \times 2 \text{ cm}^2)$. A typical electrolysis procedure (entry 1 in the Table) is as follows: A solution of the disulfide <u>la</u> (R¹ = PhCH₂, R² = CH₃, 86 mg, 0.17 mmol) and MgBr₂ (85 mg, 0.19 mmol) in CH₃CN (6 ml), tetrahydrofuran (THF, 1.5 ml) and H₂O (0.3 ml) was electrolyzed at 10 mA/cm² at 23-25 °C. After passage of 4 F/mol of electricity (35 min), the usual workup followed by column chromatography (SiO₂, benzene/AcOEt: 5/1) yielded <u>2a</u> (R¹ = PhCH₂, R² = CH₃, X = Br, 52%) and <u>3a</u> (R¹ = PhCH₂, R² = CH₃, X = Br, 44%) along with bis(2-benzothia-zolyl)disulfide (31 mg). Some of the results together with the electrolysis conditions are summarized in the Table.

Among various kinds of bromide salts, $MgBr_2$ was the most effective one for this purpose. Thus, use of alkaline metal salts, e.g., LiBr, NaBr, and KBr or HBr in place of $MgBr_2$ afforded a mixture of 2a and 3a in 73-46% yields (entries 2-5), while ammonium bromides are ineffective, affording only dimer <u>6</u> and/or decomposition products (entries 6 and 7).⁶⁾ In contrast to the reported results,⁷⁾ electrolysis of <u>1a</u> with MgCl₂ in the same medium brought about the exclusive formation of the corresponding chloropenicillin <u>2b</u> (R¹ = PhCH₂, R² = CH₃, X = Cl) (entry 8). However, iodide salts, e.g., MgI₂ and NaI are less effective, leading to a small amount of iodocepham <u>3c</u> (R¹ = PhCH₂, R² = CH₃, X = I, < 20%) along with dimer <u>6</u> (26-41%) (entries 9 and 10). Interestingly, the electrolytic conversion of <u>1a</u> to <u>2b</u> could be achieved by using two-phase electrolysis system, comprising aqueous chloride salts and CH₂Cl₂ (entries 11 and 12). Similar attempts with bromide salts and iodide salts in the two-phase electrolysis system failed (entries 13 and 14).

Apparently, the product ratio of halopenicillins 2 to halocepham 3 varied remarkably depending on the choice of halide salts as well as the electrolysis conditions. The ratio of 2a to 3a (X = Br) was also affected by the employed temperature as follows: temperature, 2a/3a (total yields): 23-25 °C, 54/46 (96%); 5-9 °C, 80/20 (100%); -3~-5 °C, 88/12 (90%). The results so far obtained suggest that in the initial stage of the electrolysis, kinetically favored halopenicillins 2 (X = Br, Cl, and I) are formed via episulfonium ion 9 (Scheme 2) by the action with the anodically generated X^+ or X_2 (X = Br, Cl, and I) in a similar fashion to the reported chemical conversion.^{2a)} Then, the isomerization of 2 (X = Br and I), having a good leaving group at the C-2' position, to 3 would take place in the electrolysis media and partly under the workup conditions. However, the chloropenicillin 2b (X = Cl) would be stable enough in the electrolysis media to be recovered intact. The transformation of 2a (X = Br) into <u>3a</u> could be performed by standing in N,N-dimethylformamide (DMF) at room temperature overnight^{2a)} and subsequent chromatography on a Al₂O₃ column with benzene/AcOEt (1/1) afforded deacetoxycephalosporin $\frac{4}{4}$ (R¹ = PhCH₂, R² = CH₃,

halide salt ^{b)}	solvents ^{c)}	Products, yields % ^{d)}				
		$\frac{2}{2} + \frac{3}{2} (\frac{2}{3})$	<u>5</u>	<u>6</u>	<u>1</u>	
MgBr ₂	А	96 (54/46)				
LiBr	А	73 (38/62)			18	
NaBr	А	74 (35/65)			22	
KBr	А	58 (50/50)		25	21	
HBr	А	46 (65/31)			14	
Et ₄ NBr	А				15	
NH ₄ Br	А			52	32	
MgCl ₂	А	66 (100/0)			15	
NaI	А	20 (0/100)		41	14	
MgI ₂	А	trace		26	68	
NaCl	В	72 (100/0)	5		26	
MgCl ₂	В	65 (100/0)			30	
NaBr	В				90	
NaI	В				100	
	halide salt ^{b)} MgBr ₂ LiBr NaBr KBr HBr Et ₄ NBr NH ₄ Br MgCl ₂ NaI MgI ₂ NaCl MgCl ₂ NaBr NaBr NaI	halide saltsolventsMgBr2ALiBrANaBrANaBrAKBrAHBrAHBrAMgCl2ANaClBMgCl2BNaBrBNaIB	halide saltsolventsProdu $2 + 3$ ($2/3$) $2 + 3$ ($2/3$)MgBr2A96 (54/46)LiBrA73 (38/62)NaBrA74 (35/65)KBrA58 (50/50)HBrA46 (65/31)Et_4NBrANH4BrAMgCl2A66 (100/0)MaIB72 (100/0)MgCl2B65 (100/0)NaIBNaIB	halide saltsolventsProducts, yi $2 + 3 (2/3)$ 5 MgBr2A96 (54/46)LiBrA73 (38/62)NaBrA74 (35/65)NaBrA74 (35/65)KBrA58 (50/50)HBrA46 (65/31)Et4NBrANH4BrAMgCl2A66 (100/0)NaIA20 (0/100)MgCl2B65 (100/0)MaBrBNaIBNaIBNaIBNaIBNaIBNaIBNaIBNaIBNaIBNaIB	halide saltsolventsProducts, yields $2 + 3 (2/3)$ 5 6 MgBr2A96 (54/46)LiBrA73 (38/62)NaBrA74 (35/65)KBrA58 (50/50)KBrA46 (65/31)Et_4NBrANAIA66 (100/0)MgI2A66 (100/0)MaIB72 (100/0)5MaBrBMaIBMaIBMaIBMaIBMaIB	halide saltsolventsProducts, yields $%^{d}$ $2 + 3 (2/3)$ $5 6 1$ MgBr2A96 (54/46)LiBrA73 (38/62)NaBrA74 (35/65)NaBrA74 (35/65)HBrA58 (50/50)HBrA46 (65/31)HBrALitageAMgBr2AA96 (54/46)NaBrA73 (38/62)18NaBrA74 (35/65)22KBrA58 (50/50)25 21HBrA46 (65/31)14Et4NBrA52 32MgCl2AA20 (0/100)41MgI2ANaIB72 (100/0)526MgCl2B65 (100/0)NaIB90NaIB100

Table Electrolysis of Disulfide <u>la</u> $(R^1 = PhCH_2, R^2 = CH_3)$ with Halide Salts^{a)}

a) Carried out at 10 mA/cm², passing 4 F/mol of electricity, at 23-27 °C. b) A stoichiometric amount of halide salts was added. ^{c)} A: $CH_3CN/THF/H_2O$ (6/1.5/0.3); B: CH_2Cl_2/H_2O (5/3); ^{d)} Isolated yields after column chromatography (SiO₂, benzene/AcOEt: 5/1).

95%).

With regard to the isomerization (2 + 9 + 3) in the aqueous medium, it is notable that the solvolyzed products <u>8</u> (Nu = OH and NHCOCH₃) could not be detected, which are expected to be generated by the attack of the solvents to <u>9</u>.^{2b)} Several attempts to trap the intermediate <u>9</u> by using aqueous or protic solvents, e.g., aqueous acetone, aqueous THF, aqueous DMF, and methanol, failed, but the electrolysis of <u>1a</u> (250 mg, 0.5 mmol) in methanol (50 ml) containing conc. H₂SO₄ (0.4 ml) afforded 4-methoxysulfinylazetidinone <u>7</u> (R¹ = PhCH₂, R² = CH₃, 53%), which is a new class of intermediate for β-lactam antibiotic synthesis.⁸

References

- 1) Penicillin-Cephalosporin Conversion V.
- 2) (a) T. Kamiya, T. Teraji, Y. Saitoh, M. Hashimoto, O. Nakaguchi, and T. Oku, Tetrahedron Lett., 3001 (1973); (b) Y. Hamashima, S. Yamamoto, S. Uyeo, M. Yoshioka, M. Murakami, H. Ona, Y. Nishitani, and W. Nagata, ibid., 2595 (1979); (c) R. G. Micetich and R. B. Morin, "Recent Advances in the Chemistry of β-lactam Antibiotics", Ed. by J. Elks, Chem. Soc. Burlington House, London, 1977, p. 232; (d) "Topics in Antibiotic Chemistry", Vol. 4, Ed. by P. G. Sammes, John Wiley & Sons, N. Y., 1980, and references cited therein.
- 3) (a) A. Balsamo, P. Benedini, I. Giorgi, B. Macchia, and F. Macchia, Tetrahedron Lett., 23, 2991 (1982); (b) Details on the S-S bond fission by the halide salts promoted electrolysis have been already discussed: S. Torii, H. Tanaka, and M. Ukida, J. Org. Chem., <u>44</u>, 1554 (1979); S. Torii, N. Sayo, and H. Tanaka, Tetrahedron Lett., 4471 (1979).
- 4) Although they have experienced some difficulties on the isolation of the intermediates 2, we could obtained 2 ($R^1 = PhCH_2$, $R^2 = CH_3$, X = Br and Cl) smoothly after column chromatography on SiO₂. They have confirmed their intermediates 2 by the transformation into the corresponding S-oxides (see ref. 3a).
- 5) The outline of this work has been presented by T. S. at the 45th annual meeting of Chem. Soc. Jpn. in Tokyo, on April 4. 1982: The Abstracts of Papers, Vol. 2, p. 1033.
- 6) Similar results have been obtained in the electrolysis of <u>1</u> in a $(CH_3)_4NBr-aqueous CH_3CN system (see ref. 3a).$
- 7) The electrolytic conversion of $\underline{1}$ into chloropenicillins $\underline{2}$ (X = Cl) has been attempted by using chloride salts, but has not yet been realized (see ref. 3a).

8) The electrolytic ene-type chlorination of <u>7</u> proceeded smoothly to give a potent intermediate (<u>i</u>). Further transformation of (<u>i</u>) into useful β-lactam antibiotics is under O O progress.
R¹CNH S-OCH₃

(Received September 13, 1982)

1832