

РП: S0040-4020(97)00891-0

First Stable α -Diols and Hemiketals from the α -Halo Pyruvamide Series

Alenka Majcen - Le Maréchal^a, Philippe Le Grel^b, Albert Robert^{b*} and Janja Pavc^a

^aUniversity of Maribor, Faculty of Mechanical Engineering, Institute for Textile Chemistry. Maribor, Slovenia

^bLaboratoire de Synthèse et Electrosynthèse Organiques UMR 6510. Campus de Beaulieu. 35042 Rennes Cédex. France

Abstract: The addition of water or alcohol to 3-halopyruvamides, having a special interest in enzymology, permitted us to isolate stable α -diols and hemiketals, until then detected only by spectroscopic means. The reaction is not diastereoselective, but selective precipitation of only one diastereoisomer shifts the equilibrium between the two isomers. Isolated compounds were fully characterised and results discussed. © 1997 Elsevier Science Ltd.

INTRODUCTION

The addition of water or alcohol to ketone, giving respectively hydrate or hemiketal, is an equilibrium which generally favours the starting materials. The unstable tetrahedral adducts can only be, in some particular cases, either spectroscopically detected or sometimes isolated. This is essentially the case when :

- addition of ROH relieves some strain, for example during the formation of the hydrate of cyclopropanone by assuming sp² to sp³ rehybridation :^{1,2}
- some strong electron withdrawing atoms in the α -position stabilize the hemiketal as it is the case with perfluoro and perchloro compounds ;^{2,3}
- carbonyl function is adjacent to the position to be attacked, what is related to important enzymatic transformations of pyruvic acid and pyruvamide.

These last two compounds and some derivatives have been the focus of great interest, in particular to clarify enzyme-substrate interaction and also to develop inhibitors of pyruvate dependent enzymes.^{5,6} However, no stable hemiketal has ever been isolated up to now in this class of chemicals. In the present article we report the diastereoselective synthesis and full characterisation of the first stable hydrate and hemiketals obtained starting from original α -halopyruvamides that we have recently described.⁷

^{*} E.mail : Albert.Robert@univ-rennes1.fr. Fax : 00 33 2 99 28 67 38.

RESULTS AND DISCUSSION

The title compounds are easily obtained by refluxing the starting pyruvamide in the appropriate solvent for one hour (except for water for which temperature must not exceed 60°C) (Scheme 1). During cooling a white microcrystalline powder of high purity is formed. Yields of the first purified fraction are spread between 48 to 74% depending on the substituents (Table 1).

X = Cl, Br

4 R = H; 5 R = CH₃; 6 R = CH₂CH₃; 7 R = CH(CH₃)₂. a: R¹ = pClC₆H₄, R² = H, X = Cl; b: R¹ = C₆H₅, R² = H, X = Cl; c: R¹ = pNO₂C₆H₄, R² = H, X = Cl; d: R¹ = pCH₃C₆H₄, R² = H, X = Cl; e: R¹, R² = -(CH₂)₄-, X = Cl; f: R¹ = C₆H₅, R² = H, X = Br; g: R¹ = pClC₆H₄, R² = H, X = Br; h: R¹ = pNO₂C₆H₄, R² = H, X = Br; i: R¹ = R² = C₆H₅, X = Cl; i: R¹ = pCH₃C₆H₄, R² = H, X = Br; k: R¹ = C₆H₅, R² = H, R = CD₃, X = Cl.

Scheme 1

Microanalysis indicates a one to one stoichiometry ROH / pyruvamide. IR and NMR data confirm that the nucleophile is covalently bonded to the central carbonyl. Scheme 2 illustrates the main spectroscopic modifications observed for hemiketal with respect to pyruvamide:

- the ketone IR vibration at 1720 cm⁻¹ disappears while 1670 cm⁻¹ amide absorption remains nearly unchanged; a new sharp OH vibration appears at about 3440 cm⁻¹:
- sp² ketone carbon at 190 ppm is replaced by a low field sp³ quaternary signal at 98 ppm :
- CH signal is shifted upfield for more than one ppm (from 6.50 to 5.40) due to disappearance of the deshelding effect by the neighbouring carbonyl;
- the chemical shift of the new hydroxylic proton at about 6.40 ppm (identified by deuterium exchange) proved to be independent from concentration which indicates that it should be hydrogen bonded to the carbonyl, increasing the stability of hemiketals;
- E.I.Mass spectra of both pyruvamid and hemiketal are strictly identical because of a rapid elimination of alcohols during sublimation of the sample.

In all studied cases only one diastereoisomer is obtained. The first collected fraction represents generally about 50% yield in hemiketal and is clean enough to be directly microanalysed as it arises from crystallisation (The formed powder had to be rapidly washed with the alcohol employed and dried). However, if the remaining solution is kept standing, it delivers gradually new fractions of the same diastereoisomer that can be successively collected. To investigate this interesting stereochemical aspect, we ran some NMR experiments in CD₃OD, which have given the following indications : a) when a pyruvamide **3b** is dissolved in CD₃OD, an equilibrium takes place in about an hour giving about 10% of **3b** and the two diastereoisomeric hemiketals **5k** in similar proportions ; b) dissolution of diastereoisomericaly pure hemiketal **6b** in CD₃OD leads to the same mixture through trans-hemiketalisation ; c) both diastereoisomers have exactly the same ¹H NMR, but are easily distinguished by ¹³C NMR, giving two sets of signals for each carbon.

From this experiment it is clear that the obtention of only one diastereoisomer by simple filtration results from a gradual and selective crystallisation which displaces continuously the equilibrium towards the formation of this diastereoisomer. We succeeded in isolating only one diastereoisomer so that we have not sufficient information to establish its stereochemistry.

N° of compound	RI	R ²	X	R	Yields [%]*
5a	pClC ₆ H ₄	Н	Cl	CH ₃	50
5 c	pNO ₂ C ₆ H ₄	Н	Cl	CH ₃	74
5 g	pClC ₆ H ₄	Н	Br	CH ₃	50
6a	pClC ₆ H ₄	Н	Cl	CH ₂ CH ₃	56
6 b	C ₆ H ₅	Н	Cl	CH ₂ CH ₃	55
6 d	pCH ₃ C ₆ H ₄	Н	Cl	CH ₂ CH ₃	51
6e	-(CH ₂) ₄ -	-(CH ₂) ₄ -	Cl	CH ₂ CH ₃	52
7a	pClC ₆ H ₄	Н	Cl	$CH(CH_3)_2$	52
7 c	pNO ₂ C ₆ H ₄	Н	Cl	CH(CH ₃) ₂	48

Table 1. Yields of Hemiketals 5, 6 and 7

* This yield corresponds to the first collected fraction by filtration representing only one diastereoisomer. The

stereochemistry of the two asymetric carbons was not established.

CONCLUSION

Despite being tetrahedric compounds, diols and hemiketals obtained from α -substituted α -halopyruvamides are quite stable compounds in the solid state. Their rapid formation starting from racemic pyruvamide is not diastereoselective as we proved it by NMR experiments. However the equilibrated reaction delivers exclusively one diastereoisomer by selective crystallisation. Title compounds can be considered as a protected form of very reactive α -halopyruvamides, showing a special interest in enzymology and also interesting as starting material for the synthesis of potentially biologically active compounds.

EXPERIMENTAL

General. ¹H NMR spectra were recorded at 80 MHz on a Bruker WP 80 spectrometer or at 300 MHz on a Bruker AM 300 spectrometer and ¹³C NMR spectra at 75 MHz on a Bruker AM 300 spectrometer using tetramethylsilane as internal reference. High resolution mass spectra were obtained with a Varian Mat 311 mass spectrometer. IR spectra were determined with a Perkin-Elmer 225 or 1420 spectrometer. Melting points were taken with a Kofler hot stage apparatus.

All NMR spectra of hemiketals 5,6 and 7 were realised starting from the first isolated fraction, which corresponds to one isomer. A low solubility of these hemiketals forced us to record our spectra in DMSO. Because of the transformation of hemiketals in this solvent to pyruvamide and later to other unidentified products, spectra must be recorded immediately. As indicated in discussion, we have realised a study in deuterated methanol, starting first from pyruvamide **3b** and then from a pure hemiketal **6b**. NMR data of both diastereoisomers are indicated under **5k**.

General Procedure for the Preparation of Oxiranes 1.

The starting oxiranes 1 were easily prepared by treating the corresponding cyano ester oxiranes⁸ with ammonia according to a described procedure .⁸

General Procedure for the Preparation of Cyanohydrines 2.

Hydrochloric acid (12 mol/L or 37 %; 10 mL and 7 mL for \mathbb{R}^1 , $\mathbb{R}^2 = -(CH_2)4$ -) or hydrobromic acid respectively (18 mol/L or 47.0 %; 10 mL) was added to the solution of the oxirane 1 (5.3 mmol) dissolved in MeCN (20 mL and 11mL for \mathbb{R}^1 , $\mathbb{R}^2 = -(CH_2)4$ -) and left at room temperature for 12h. The reaction mixture was diluted with water (100 ml) and extracted with diethylether (100 ml x 3). The combined extracts were dried (Na₂SO₄) and evaporated to give 2 as a solid after diethylether workup. Sometimes cyanhydrines 2 crystallised in situ after 2 to 4 days at room temperature. The product was removed by filtration, washed with water (to pH = 7), dried in vacuo (50°C) and recrystallised in MeCN. The crude product is pure enough for the preparation of pyruvamides 3. **2a** (R¹ = pClC₆H₄, R² = H, X = Cl) : (63% yield) ; m.p. 206°C (MeCN) ; IR (Nujol) 3460. 3340. 2240, 1675 cm ⁻¹ ; ¹H NMR (CD₃CN) $\delta_{\rm H}$ 5.50 (s, 1H, CHCl), 6.30 (br, 1H, OH), 6.50 (br, 1H) and 6.80 (br, 1H)(CONH₂), 7.37(m, 4H, C₆H₄) ; ¹³C NMR (CD₃CN) $\delta_{\rm C}$ 65.03 (d, ¹J = 157, CHCl), 77.35 (d, ²J = 6.74, COH), 118.23 (CN), 129.30, 131.98, 134.04, 136.00 (pClC₆H₄), 167.34 (CONH₂) ; HRMS : Found 232.9836. Calc. for C₉H₇NO₂Cl₂ (M⁺ - HCN) : 232.9824 ; Anal. calc. for C₁₀H₈N₂O₂Cl₂: C. 46.36 ; H, 3.11 ; N, 10.82 ; Cl, 27.37 ; Found : C, 46.56, H, 3.05 ; N, 10.91 ; Cl, 27.41.

2b ($\mathbb{R}^1 = \mathbb{C}_6\mathbb{H}_5$, $\mathbb{R}^2 = \mathbb{H}$, $\mathbb{X} = \mathbb{C}\mathbb{I}$) : (75% yield) ; m.p. 203°C (MeCN) ; IR (Nujol) 3460, 3340, 2240. 1680 cm ⁻¹ ; ¹H NMR (CD₃CN) δ_{H} 5.65 (s, 1H, CHCl), 6.20 (br, 1H, OH), 6.40 (br, 1H) and 6.90 (br. 1H)(CONH₂), 7.50(m, 5H, C₆H₅) ; ¹³C NMR (CD₃CN) δ_{c} 65.83 (d. ¹J = 157, CHCl),77.55 (d, COH). 118.46 (CN), 129.26, 130.12, 130.16, 135.16 (C₆H₅), 167.37 (CONH₂) ; HRMS : Found 197.0251. Calc. for C9H₈NO₂Cl (M⁺ - HCN) : 197.0244 ; Anal. calc. for C₁₀H₉N₂O₂Cl C, 53.46 ; H, 4.04 ; N, 12.47 : Found : C, 53.44, H, 4.10 ; N, 12.51.

2c ($\mathbb{R}^1 = pNO_2C_6H_4$, $\mathbb{R}^2 = H$, X = Cl) : (48% yield) ; m.p. 178°C (MeCN) : IR (Nujol) 3420. 3310. 2239, 1670 cm ⁻¹ ; ¹H NMR (CDCl₃,CF₃COOH) δ_H 5.60 (s. 1H, CHCl), 7.10 (br. 1H.) and 7.20 (br. 1H)(CONH₂), 7.90(m, 4H, pNO₂C₆H₄) ; ¹³C NMR (CDCl₃, CF₃COOH) δ_c 63.85 (d. ¹J = 157, CHCl). 76.66 (d, ²J = 5.27, COH), 115.47 (d, ³J=2.18, CN), 124.53, 131.22, 140.51, 149.27 (C₆H₄), 169.19 (s. CONH₂) ; HRMS : Found 242.0090. Calc. for C9H₇N₂O₄Cl (M⁺ - HCN) : 242.0094 ; Anal. calc. for C₁₀H₈N₃O₄Cl: C, 44.54 ; H, 2.99 ; N, 15.58 ; Found : C, 44.47, H, 3.27 ; N, 15.33.

2d (R¹ = pCH₃C₆H₄, R² = H, X = Cl) : (80% yield) ; m.p. 200°C (MeCN) : IR (Nujol) 3460. 3340. 2240, 1675 cm ⁻¹ ; ¹H NMR (CDCl₃, CF₃COOH) $\delta_{\rm H}$ 2.32 (s, 3H, CH₃), 5.45 (s, 1H, CHCl), 6.90 (br. 1H,) and 7.20 (br, 1H)(CONH₂), 7.20 (m, 4H, C₆H₄) ; ¹³C NMR (CDCl₃, CF₃COOH) $\delta_{\rm c}$ 21.29 (q. ¹J=127, pCH₃), 65.46 (d, ¹J = 157, CHCl), 77.02 (COH). 115.90 (CN). 129.26, 129.45, 129.97, 141.56 (C₆H₄), 169.47 (CONH₂) ; HRMS : Found 211.0399. Calc. for C₁₀H₁₀NO₂Cl (M⁺ - HCN) : 211.0399 : Anal. calc. for C₁₁H₁₁N₂O₂Cl : C, 55.35 ; H, 4.65 ; N, 11.74; Found : C, 55.31, H, 4.58 ; N, 12.02.

 $2e (R^{1}, R^{2} = - (CH_{2})_{4} -, X = CI) : (54 \% \text{ yield}) : \text{m.p. } 118^{\circ}C (MeCN) : IR (Nujol) 3450, 3340, 3100, 2240, 1680 \text{ cm}^{-1} : {}^{1}H NMR (CDCl_{3}, CF_{3}COOH) \delta_{H} 2.10 (m, 8H. - (CH_{2})_{4} -), 7.30 (br. 1H), 7.65 (br. 1H) (CONH_{2}); {}^{1}3C NMR (CDCl_{3}, CF_{3}COOH) \delta_{C} 23.10 (t, {}^{1}J = 135), 23.49 (t, {}^{1}J = 132), 38.42 (t, {}^{1}J = 132), 37.94 (t, {}^{1}J = 132) (- (CH_{2}) -)_{4}, 76.66 (d, COH), 82.61 (m, CCl), 169.40 (s, CONH_{2}) : HRMS : Found 159.0440. Calc. for C7H9NOC1 (M⁺ - CONH_{2}) : 159.04509; Anal. calc. for C_{8}H_{11}N_{2}O_{2}Cl: C. 47.41; H, 5,47; N, 13.83; Cl, 17.49; Found C, 47.32; H, 5.41; N, 13.81; Cl, 17.55.$

2f (R¹ = C6H5, R² = H, X = Br) : (63% yield) ; m.p. 209°C (MeCN) ; IR (Nujol) 3450, 3320, 2238. 1680 cm ⁻¹ ; ¹H NMR (CDCl₃, CF₃COOH) $\delta_{\rm H}$ 5.55 (s, 1H, CHBr), 6.95 (br, 1H) and 7.20 (br, 1H) (CONH₂), 7.30 to 7.50 (m, 5H, C6H5) ; ¹³C NMR (CDCl₃, CF₃COOH) $\delta_{\rm C}$ 55.61 (d, ¹J = 157, CHBr), 76.44 (d, ²J = 6.24, COH), 115.45 (d, ³J=2.13, CN) 128.66, 129.19, 130.38, 132.48 (C6H5), 168.31 (CONH₂) ; HRMS : Found 240.9730. Calc. for C9H₈NO₂Br (M⁺ - HCN) : 240.9738 ; Anal. calc. for C₁₀H₉N₂O₂Br: C, 44.63 ; H, 3.37 ; N, 10.41 ; Br, 29.70 . Found : C, 44.73, H, 3.46 ; N, 10.85 : Br. 30.00.

2g (R¹ = pClC₆H₄, R² = H, X = Br) : (80% yield) : m.p. 190°C (MeCN) : IR (Nujol) 3450, 3320. 2240, 1665 cm⁻¹; ¹H NMR (CDCl₃, CF₃COOH) $\delta_{\rm H}$ 5.60 (s. 1H, CHBr), 7.00 (br. 1H.) and 7.25 (br. 1H) (CONH₂), 7.25 to 7.60 (m, 4H, pClC₆H₄); ¹³C NMR (CDCl₃, CF₃COOH) δ_c 53.78 (d, ¹J = 157, CHBr). 76.43 (d, ²J = 6.52, COH), 116.00 (d, ³J=2.10, CN), 129.72, 131.29, 131.94, 137.42. (pClC₆H₄), 168.31 (CONH₂); HRMS : Found 274.9339. Calc. for C9H7NO₂BrCl (M⁺ - HCN) : 274.9349 ; Anal. calc. for C₁₀H₈N₂O₂BrCl: C, 39.57 ; H, 2.66 ; N, 9.23; Cl, 11.68. Found : C, 39.57, H. 2.64 ; N, 9.36; Cl, 11.51.

2h (R¹ = pNO₂C₆H₄, R² = H, X = Br) : (68% yield) ; m.p. 174°C (MeCN) ; IR (Nujol) 3415. 3310. 2250, 1670 cm ⁻¹ ; ¹H NMR (CDCl₃, CF₃COOH) $\delta_{\rm H}$ 5.70 (s, 1H, CHBr), 7.20 (br, 1H) and 7.30 (br. 1H) (CONH₂) 7.70 to 8.20 (m, 4H, pNO₂C₆H₄) ; ¹³C NMR (CDCl₃, CF₃COOH) $\delta_{\rm c}$ 52.72 (d. ¹J = 158. CHBr), 75.90 (d, ²J = 6.25, COH), 114.00 (d, ³J=1.77, CN), 123.47. 130.79, 140.60. 148.21 (pNO₂C₆H₄), 168.03 (s, CONH₂) ; HRMS : Found 285.9580. Calc. for C9H7N₂O4Br (M⁺ - HCN) : 285.9589 ; Anal. calc. for C₁₀H₈N₃O4Br: C, 38.24 ; H, 2.57 ; N, 13.38 ; Found : C, 37.61, H. 2.77 : N. 13.09.

2i ($\mathbb{R}^1 = \mathbb{R}^2 = C_6H_5$, X = Cl) : (78% yield) ; m.p. 200°C (MeCN) ; IR (Nujol) 3410, 3320, 3270, 3180, 2250, 1680 cm ⁻¹ ; ¹H NMR (CDCl₃, CF₃COOH) δ_H 7.15 to 7.90 (m, 12H) (C₆H₅ and CONH₂) : ¹³C NMR (CDCl₃, CF₃COOH) δ_c 77.50 (m, CCl), 77.13 (d. ²J = 7.21, COH), 116.33 (s. CN) 127.98 to 140.28 (C₆H₅), 168.46 (CONH₂) ; HRMS : Found 256.0548. Calc. for C₁5H₁₁NOCl (M⁺ - CONH₂) : 256.0529 ; Anal. calc. for C₁6H₁₃N₂O₂Cl C, 63.90 ; H, 4.36 ; N, 9.32 ; Cl, 11.79 ; Found : C. 64.34. H. 4.38 ; N, 9.46 ; Cl, 11.17.

General Procedure for the Preparation of Pyruvamides 3.

Nickel acetate (1.25 g, 7 mmol) was added to a stirred solution of chlorohydrin 2 (2.2 mmol) dissolved in MeCN (12,5 mL). After 1h at room temperature the mixture was diluted with water (20 mL) and extracted with diethylether (20 mL x 3). The organic layer was dried over Na_2SO_4 and evaporated. The solid 3 obtained was purified by sublimation and characterized by its spectroscopic spectra.

3a (R¹ = pClC₆H₄, R²= H, X = Cl) : (90 % yield), m.p. 152°C (MeCN) : IR (Nujol) 3370. 3300. 3180, 1720, 1660 cm ⁻¹; ¹H NMR (CD₃CN) $\delta_{\rm H}$ 6.65 (s, 1H. CHCl), 6.60 (br. 1H) and 7.30 (br. 1H) (CONH₂), 7.50 (m, 4H, C₆H₄); ¹³C NMR (CD₃CN) $\delta_{\rm c}$ 60.82 (CHCl), 129.9, 130.50. 130.57. 135.6 (C₆H₄), 161.75 (CONH₂), 189.95 (CO) ; HRMS : Found 232.9859. Calc. for C₉H₇Cl₂NO₂ : M⁺ 232.9854. Anal. calc.for C₉H₇Cl₂NO₂: C, 46.58 ; H, 3.04; N, 6.04; Cl. 30.56. Found : C, 46.94, H. 2.99 : N, 6.10 ; Cl, 29.89.

3b (R¹ = C6H5, R²= H, X = Cl) : (85 % yield), m.p. 121°C (MeCN) : IR (Nujol) 3380, 3300, 3180, 1725, 1655 cm ⁻¹; ¹H NMR (CD₃CN) $\delta_{\rm H}$ 6.75 (s, 1H, CHCl), 6.60 (br, 1H) and 7.3 (br, 1H) (CONH₂). 7.6 (m, 5H, C6H5); ¹³C NMR (CD₃CN) $\delta_{\rm c}$ 62.07 (CHCl), 129.90, 130.49, 130.56, 130.62 (C6H5), 162.00 (CONH₂), 190.00 (CO) ; HRMS : Found 197.023. Calc. for C9H₈ClNO₂ : M⁺ 197.0243. Anal. calc. for C9H₈ClNO₂ : C, 54.70; H, 4.08; N, 7.09; Cl, 17.94. Found : C, 54.79, H, 4.14 ; N, 7.27 ; Cl, 17.85.

3c (R¹ = pN02C6H4, R²=H, X = Cl) : (82 % yield) ; m.p. 130°C (MeCN) : IR (Nujoi) 3371, 3300. 3180, 1731, 1697 cm⁻¹; ¹H NMR (CDCl₃, CF₃COOH) $\delta_{\rm H}$ 6.50 (s, 1H, CHCl), 7.30 (br, 1H) and 7.40 (br, 1H) (CONH₂), 8.00 (m, 4H, C₆H₄) ; ¹³C NMR (CDCl₃, CF₃COOH) $\delta_{\rm c}$ 57.75 (d.¹J=156, CHCl). 123.93, 130.50, 130.54, 140.32, 148.54 (C₆H₄), 161.91 (CONH₂). 187.25 (CO) : HRMS : Found 242.00943. Calc.for C9H₇ClN₂O₄ : M⁺ 242.00941. 3170, 1725, 1650 cm ⁻¹; ¹H NMR (CDCl₃, CF₃COOH) δ_{H} 2.35 (s, 3H, CH₃) 6,40 (s. 1H, CHCl), 7.25 (br, 2H, CONH₂), 7.25 (m, 4H, C₆H₄); ¹³C NMR (CDCl₃, CF₃COOH) δ_{c} 21.14(q, ¹J=127, CH₃) 59.66 (d, ¹J = 155, CHCl), 128.75, 129.49, 130.05, 140.30 (C₆H₄), 162.40 (CONH₂), 187.91 (CO); HRMS : Found 211.0400. Calc. for C₁₀H₁₀ClNO₂ : M⁺ 211.0390. Anal. calc. for C₁₀H₁₀ClNO₂ : C, 55.35: H. 4.65; N, 6.62; Found : C, 55.31; H, 4.58; N, 6.34.

3e (R¹, R² = - (CH₂)₄ -, X = Cl) : (40 % yield) : m.p. 53°C (MeCN) : IR (Nujol) 3380, 3270, 3170. 1645 cm ⁻¹ ; ¹H NMR (CDCl₃, CF₃COOH) $\delta_{\rm H}$ 1.75 to 2.50 (m. 8H. -(CH₂)₄ -), 7.30 (br. 1H). 7.50 (br. 1H) (CONH₂,); ¹³C NMR (CDCl₃, CF₃COOH) $\delta_{\rm C}$ 23.70 (2t. ¹J = 131, - (CH₂)₄ -), 39.61 (2t. ¹J = 134, -(CH₂)₄-), 77.17 (m, CCl), 164.27 (CONH₂), 190.00 (CO) : HRMS : Found 139.06240. Calc. for C7H9NO₂ (M⁺-HCl):139.06332.

3f ($\mathbb{R}^1 = \mathbb{C}_6H_5$, $\mathbb{R}^2 = H$, X = Br) : (70 % yield) ; m.p. 150°C (MeCN) : IR (Nujol) 3390, 3300, 3180, 1715, 1655 cm ⁻¹; ¹H NMR (CD₃CN) δ_H 6.70 (s, 1H, CHBr) ; 6.55 (br. 1H) and 7.3 (br. 1H) (CONH₂). 7.5 (m, 5H, C₆H₅) ;¹³C NMR (CD₃CN) δ_c 49.49 (d, ¹J = 157, CHBr), 126.58, 129.47, 131.58 and 139.72, (C₆H₅), 161.72 (CONH₂), 189.80 (CO) ; HRMS : Found 240.9734. Calc. for C9H₈NO₂Br : M⁺-HCl 240.9737. Anal. calc. for C9H₈NO₂Br: C, 44.66 ; H, 3.33 ; N, 5.79 ; Br, 33.02 . Found : C, 44.46 : H. 3.34 ; N, 6.09 ; Br, 32.59.

 $3g (R^1 = pClC_6H_4, R^2 = H, X = Br) : (74 \% yield) ; m.p. 148°C (MeCN) ; IR (Nujol) 3380, 3300, 3180, 1715, 1655 cm ⁻¹; ¹H NMR (CD₃CN) <math>\delta_H$ 6.25 (br, 1H, CONH₂), 6.55 (s. 1H, CHBr), 7.10 (br. 1H, CONH₂), 7.45 (m, 4H, pClC₆H₄) ; HRMS : Found 274.9349. Calc. for C9H₇ClBrNO₂ : M⁺ 274.9339. Anal. calc. for C9H₇ClBrNO₂ : C, 39.09; H, 2.55; N, 5.07. Found : C, 38.86, H, 2.60 ; N, 4.69.

3h (R¹ = pNO₂C₆H₄, R² = H, X = Br) : (65 % yield) ; m.p. 134°C (MeCN) ; IR (Nujol) 3320, 3110, 1725, 1650 cm⁻¹; ¹H NMR (CD₃CN) $\delta_{\rm H}$ 6.60 (br. 1H, CONH₂), 6.65 (s, 1H, CHBr), 7.30 (br. 1H, CONH₂), 7.90 (m, 4H, C₆H₄) ;,¹³C NMR (CD₃CN) $\delta_{\rm c}$ 46.55 (d, ¹J = 158, CHBr), 123.50, 124.34, 131.80, 142.77 (pNO₂C₆H₄), 161.52 (CONH₂), 189.14 (CO) ; HRMS : Found 285.9589. Calc. for C9H7BrN₂O4 : M⁺ 285.9593.

 $\begin{aligned} &3j~(R^1 = pCH_3C_6H_4, R^2 = H, X = Br): (81~\%~yield); \text{ m.p. } 150^\circ\text{C}~(MeCN); \text{ IR}~(Nujol)~3380,~3300, \\ &3180,~1720,~1655~\text{cm}^{-1};~^1H~NMR~(CD_3CN)~\delta_H~2.35~(s,~3H,~CH_3),~6.40~(br,~1H,~CONH_2),~6.54~(s,~1H,~CHBr~),~7.30~(br,~1H,~CONH_2),~7.50~(m,~4H,~C_6H_4);^{13}\text{C}~NMR~(CDC1_3,~CF_3COOH)~\delta_c~20.32~(q,~CH_3) \\ &48.71~(d,~^1J = 157,~CHBr),~126.59,~129.47,~131.57,~139.71~(C_6H_4),~160.75~(CONH_2),~188.76~(CO); \\ &HRMS: Found~254.9895.~Calc.~for~C_{10}H_{10}BrNO_2:~M^+~254.9887.~Anal.~calc.~for~C_{10}H_{10}BrNO_2~C,~46.90) \\ &;~H,~3.94~;~N,~5.47~;~Found:~C,~47.50~;~H,~4.26~;~N,~5.62. \end{aligned}$

General Procedure for the Preparation of α -Diols 4.

A stirred solution of pyruvamide 3 (1 mmol) in water (10 mL) was heated (60 °C) for 45 minutes. After cooling the solvent was partially removed in vacuo to give the crude solid product which was filtered off. washed with water and dried.

4a (R¹ = pClC₆H₄, R² = H, X = Cl) : (49% yield) ; m.p. 151°C (H₂O) ; IR (Nujol) 3465, 3356, 1667. 1648 cm⁻¹ ; ¹H NMR (DMSO) δ_H 5.30 (s, 1H, CHCl), 6.49 (br, 1H, OH) and 6.66 (br, 1H, OH), 7.38 to 7.53 (m, 6H, pClC6H4 and CONH2). Anal. calc. for C9H9NO3Cl2 : C, 43.22 ; H, 3.60 ; N, 5.60 : Cl. 28.35. Found : C, 43.50 ; H, 3.43 ; N, 5.97 ; Cl, 28.13.

4b (R¹ = C₆H₅, R² = H, X = Cl) : (55 % yield) ; m.p. 120°C (H₂O) ; IR (Nujol) 3467, 3356, 1667. 1645 cm⁻¹ ; ¹H NMR (DMSO) $\delta_{\rm H}$ 5.20 (s, 1H, CHCl), 6.34 (br, 1H, OH), 6.48 (s, 1H, OH), 7.21 to 7.43 (m, 7H, C₆H₅ and CONH₂) ; Anal. calc. for C₉H₁₀NO₃Cl : C, 50.13 ; H, 4.64 ; N, 6.50 ; Found : C. 49.70 ; H, 4.64 ; N, 6.66.

General Procedure for the Preparation of Hemiketals 5, 6, 7.

A stirred solution of pyruvamide 3 (1 mmol) in the corresponding alcohol (10 mL) was heated under reflux for 1 hour. After cooling the first fraction of crystals was removed to give the crude product which was generaly pure enough for microanalysis after washing with alkohol and drying.

5a (R¹ = pClC₆H₄, R²= H, R = CH₃, X = Cl) : (50 % yield) ; m.p. 145°C (CH₃OH) ; IR (Nujol) 3465, 3351, 1668, cm⁻¹ ; ¹H NMR (DMSO) δ_{H} 3.03 (s, 1H, OCH₃). 5.35 (s, 1H, CHCl), 6.69 (br. 1H. OH), 7.45 (m, 4H, pClC₆H₄), 7.85 (s, 1H) and 7.90 (s, 1H) (CONH₂) : ¹³C NMR (DMSO) δ_{C} 49.89 (q, ¹J = 143.80, OCH₃), 65.03 (d, ¹J = 154.85, CHCl), 97.83 (s, COH), 127.77, 130.99, 133.06, 135.94. (pClC₆H₄), 169.44 (CO) ; Anal. calc. for C₁₀H₁₁NO₃Cl₂ : C, 45.48 ; H, 4.20 ; N, 5.30 ; Cl, 26.85. Found : C, 45.84 ; H, 4.18 ; N, 5.03 ; Cl, 26.83.

5c (R¹ = pNO₂C₆H₄, R²= H, R = CH₃, X = Cl) : (74 % yield) ; m.p. 148°C (CH₃OH) : IR (Nujol) 3419, 3304, 1668, cm⁻¹ ; ¹H NMR (DMSO) δ_{H} 3.03 (s, 3H, OCH₃), 5.54 (s, 1H, CHCl), 6.60 (br. 1H. OH), 7.87 (s, 1H) and 7.89 (s, 1H) (CONH₂), 7.99 (m, 4H, pNO₂C₆H₄) ; ¹³C NMR (DMSO) δ_{c} 51.28 (q. ¹J = 143.26, OCH₃), 63.00 (d, ¹J = 155.07, CHCl), 98.92 (s, COH),123.74, 131.81, 144.80, 148.13 (pNO₂C₆H₄) 170.88 (CO) ; Anal. calc. for C₁₀H₁₁N₂O₅Cl : C, 43.70 ; H, 4.05 ; N, 10.20 ; Cl. 12.91. Found: C, 43.65; H, 4.06 ; N, 10.10 ; Cl, 12.80.

5g (R¹ = pClC₆H₄, R²= H, R = CH₃, X = Br) : (50 % yield) ; m.p. 155°C (CH₃OH) ; IR (Nujol) 3415, 3308, 1658, cm⁻¹ ; ¹H NMR (DMSO) $\delta_{\rm H}$ 3.03 (s, 1H. OCH₃), 5.44 (s, 1H, CHBr), 6.69 (br. 1H. OH), 7.45 (m, 4H, pClC₆H₄), 7.85 (s, 1H) and 7.80 (s, 1H) (CONH₂) : ¹³C NMR (DMSO) $\delta_{\rm C}$ 46.74 (q, ¹J = 143.00, OCH₃), 47.89 (d, ¹J = 156.35, CHBr), 91.05 (s, COH). 128.64, 130.52, 131.36, 133.76. (pClC₆H₄), 161.34 (CO) ; Anal. calc. for C₁₀H₁₁NO₃Cl₂ : C. 45.48 ;Anal. calc. for C₁₀H₁₁NO₃ClBr : C. 38.93 ; H, 3.59 ; N, 4.54. Found : C, 40.90 ; H, 3.97 ; N, 4.61.

5k (R¹ = C₆H₅, R² = H, R = CD₃, X = Cl,): ¹H NMR (CD₃OD) $\delta_{\rm H}$, 5.2 (s. 1H, CHCl), 7.3-7.6 (m, 7H, C₆H₅ and CONH₂).; ¹³C NMR (CD₃OD) $\delta_{\rm c}$ 48.00 (OCD₃, signals mixed with CD₃OD), 65.16 (CHCl), 100.07 (COD), 128.59 129.33, 130.87, 137.51 (C₆H₅), 173.08 (CO), and for other diastereoisomer $\delta_{\rm c}$ 48.00 (OCD₃, signals mixed with CD₃OD), 67.71 (CHCl), 100.12 (COH), 128.87, 129.59, 130.47, 138.15 (C₆H₅), 173.95 (s, CO).

6a (R¹ = pClC₆H₄, R² = H, R = CH₂CH₃, X = Cl) : (56 % yield) ; m.p. 150°C (EtOH) ; IR (Nujol) 3444, 3334, 1662, cm⁻¹ ; ¹H NMR (DMSO) $\delta_{\rm H}$ 1.06 (t, 3H, CH₃), 3.22 (q, 1H) and 3.60 (q, 1H) (CH₂), 5.35 (s, 1H, CHCl), 6.65 (br, 1H, OH), 7.45 (m, 6H, pClC₆H₄ and CONH₂); ¹³C NMR (DMSO) C 15.13 (q, ¹J=125.92, CH₃), 57.86 (t, ¹J=144, CH₂), 65.09 (d, ¹J=153.68, CHCl), 97.49 (s, COH), 127.72.

130.62, 131.00, 135.98 (m, pClC6H4), 169.90 (CONH2). Anal. calc. for C₁₁H₁₃NO₃Cl₂ : C, 47.50 : H. 4.71 ; N, 5.04 ; Cl, 25.49. Found : C, 47.31 ; H, 4.79 ; N, 5.06 ; Cl, 25.64.

6b (R¹ = C₆H₅, R²= H, R = CH₂CH₃, X = Cl) : (55 % yield) ; m.p. 142°C (EtOH) ; IR (Nujol) 3442. 3323, 1667, cm⁻¹ ; ¹H NMR (DMSO) $\delta_{\rm H}$ 1.18 (t, 3H, ¹J=7.00, CH₃), 3.28 (q, 1H, ¹J=8.18, CH₂). 3.65 (q, 1H, ¹J=8.20, CH₂), 5.39 (s, 1H, CHCl), 6.56 (br, 1H, OH), 7.47 (m, 7H, C₆H₅ and CONH₂): ¹³C NMR (DMSO) $\delta_{\rm C}$ 15.13 (q, 1J=126.10, CH₃), 57.73 (t, ¹J=142, CH₂), 66.04 (d, ¹J=153.03, CHCl). 97.55 (s, COH), 127.65, 128.25, 129.19, 136.95 (m, C₆H₅), 170.01 (CONH₂): Anal. calc. for C₁₁H₁4NO₃Cl : C, 54.21 ; H, 5.75 ; N, 5.75 ; Cl, 14.58. Found : C, 54.26 ; H, 5.84 ; N, 5.56 ; Cl, 14.74.

6d (R¹= pCH₃C₆H₄, R²= H, R = CH₂CH₃, X = Cl) : (51 % yield) ; m.p. 170°C (EtOH) ; IR (Nujol) 3446, 3335, 1661, cm⁻¹ ; ¹H NMR (DMSO) δ_{H} 1.07 (t, 3H, ¹J=2.0, CH₃), 2.26 (s, 3H, pCH₃) 3.24 (q. 1H) and 3.61 (q, 1H) (CH₂), 5.32 (s, 1H, CHCl), 6.62 (br. 1H, OH), 7.22 (m, 6H, C₆H₄ and CONH₂). 13C NMR (DMSO) C 15.11 (q, ¹J=126.00, CH₃), 21.30 (q, pMe), 57.70 (t, ¹J=143, CH₂), 65.74 (d. ¹J=153.05, CHCl), 97.58 (s, COH), 129.32, 129.44, 130.50, 135.22 (m, C₆H₄), 179.05 (CONH₂). Anal. calc. for C₁₂H₁₆NO₃Cl: : C, 55.92 ; H, 6.26 ; N, 5.44 ; Cl. 13.76. Found : C, 55.55 ; H, 6.34 : N, 5.61 : Cl, 14.08.

6e (R¹, R² = -(CH₂)4 -, R = CH₂CH₃, X = Cl) : (52 % yield) : m.p. 96°C (EtOH) : IR (Nujol) 3465. 3351, 3167, 1682 cm⁻¹ ; ¹H NMR (DMSO) $\delta_{\rm H}$ 1.09 (t, 3H, ¹J=7.01, CH₃), 1.77 (m, 4H) (- (CH₂)₄₋) and 2.29 (m, 4H), 3.26 (m, 1H, ¹J=7.06, CH₃), 3.57 (m. 1H, ¹J = 7. CH₂), 6.21 (br. 1H, OH), 7.28 (s. 1H) and 7.57 (s, 1H) (CONH₂,) ; ¹³C NMR (DMSO) $\delta_{\rm C}$ 15.17 (q. ¹J = 126.08, CH₃), 22.25 (m) and 22.43 (m) and 36.96 (m) and 37.55 (m) (- (CH₂)₄ -), 58.24 (t, ¹J = 141.35, CH₂), 85.03 (s. CCl), 98.51 (s. COH). 170.70 (s,CONH₂); Anal. calc for C9H₁₆NO₃Cl : C, 48.74 : H, 7.27 : N, 6.32 . Found : C, 48.29 : H, 7.37 ; N, 6.55.

7a (R¹ = pClC₆H₄, R² = H, R = CH(CH₃)₂, X = Cl) : (52 % yield) ; m.p. 156°C (iPrOH) ; IR (Nujol) 3464, 3350, 1668, cm⁻¹ ; ¹H NMR (DMSO) $\delta_{\rm H}$ 1.00 (d, 3H. ¹J=6.15, CH₃), 1.09 (d, 3H. ¹J=6.06, CH₃). 3.80 (m, 1H, CH) (CH(CH₃)₂), 5.35 (s, 1H, CHCl), 6.52 (br. 1H, OH), 7.40 (m, 4H, pClC₆H₄), 7.43 (s. 1H) and 7.50 (s, 1H) (CONH₂) ; ¹³C NMR (DMSO) $\delta_{\rm C}$ 23.05 (d, ¹J=106.58, CH₃). 24.40 (d, ¹J=102.74, CH₃) 65.40 (d, ¹J=154.10, CHCl), 65.74 (d, ¹J=141.66, CH(CH₃)₂). 97.32 (s, COH), 127.70, 131.04, 132.98, 135.97 (pClC₆H₄), 170.59 (CO) ; Anal. calc. for C₁₂H₁₅NO₃Cl : C, 49.33 ; H, 5.17 ; N, 4.79 : Cl, 24.27. Found : C, 49.38 ; H, 5.12 ; N, 5.03 ; Cl, 23.88.

7c (R¹ = pNO₂C₆H₄, R² = H, R = CH(CH₃)₂, X = Cl) : (48 % yield) ; m.p. 153°C (iPrOH) : IR (Nujol) 3460, 3348, 1667, cm⁻¹; ¹H NMR (DMSO) δ_{H} 1.15 (d, 3H, CH₃), 1.23 (d, 3H, CH₃) and 3.90 (m. 1H, CH), 5.35 (s, 1H, CHCl), 6.78 (br, 1H, OH), 7.65 (m, 4H, pClC₆H₄), 7.58 (s, 1H) and 7.65 (s, 1H) (CONH₂) ; Anal. calc. for C₁₂H₁₅N₂O₅Cl : C, 47.61, H, 4.99 ; N, 9.25 ; Cl, 11.71. Found : C, 46.78 ; H. 4.86 ; N, 9.46 ; Cl, 11.8.

Acknowledgement: This research was supported by the Ministry of Science and Technology of Slovenia (research project J1-7075-795/96) and by the French foreign Ministry through the Proteus project. We thank Sandra Javernik and Mateja Pogorevc (Proteus exchange student) for their participation.

REFERENCES

- March, J. Advanced Organic Chemistry : Reactions, Mechanisms and Structure ; John Wiley & Sons, Inc. : New York, 1992, pp. 882 - 890.
- Patai, S. The Chemistry of Functional Groups. In *The Chemistry of the Carbon Group*. Zabicky, J. Eds; John Wiley and Sons, Inc.: London, 1970; pp. 15-20.
- 3. Linder, P.E.; Lemal, D.M. Tetrahedron Lett. 1996, 37, 9165 9168.
- 4. Hageman, H.; Klamann, D. O/O UND O/S Acetale, Georg Thieme, Stuttgart, 1991, pp. 591 627.
- 5. Ficher, G.; Sieber, M.; Schellenberger, A.; Bioorg. Chem., 1982, 11, 478 484.
- 6. Hübner, König, S.; Schellenberger, A. Biomed Biochim Acta, 1988, 47, 9 18.
- Majcen Le Marechal, A.; Pavc, J.; Robert, A.; Le Grel, P. J.Chem. Soc. Perkin Trans. 1, 1994, 2045
 2046.
- 8. Robert, A.; Foucaud, A. Bull. Soc. Chim. Fr., 1969, 2537 2544.

(Received in Belgium 2 May 1997; accepted 30 July 1997)