A Flexible Synthesis of Indoline, Indolizidine, and Pyrrolizidine Derivatives

Igor Bytschkov,^[a] Holger Siebeneicher,^[a] and Sven Doye*^[a]

Keywords: Alkynes / Aminations / Homogeneous catalysis / Palladium / Titanium

New and flexible procedures for the synthesis of indoline, indolizidine, and pyrrolizidine derivatives are described. By these new procedures, the target compounds can be synthesized with high diversity from three building blocks (*ortho*bromo- or *ortho*-chloro-iodobenzenes, terminal alkynes, and primary amines). The synthetic strategies presented include Sonogashira couplings, Cp_2TiMe_2 -catalyzed hydroaminations of alkynes, and Pd-catalyzed aminations of aryl halides as key steps. Since many of the employed starting materials

Introduction

During the last few years, catalytic hydroamination reactions of alkenes and alkynes have been investigated extensively.^[1] While the hydroamination of alkenes is still limited to more or less activated alkenes, great progress has been achieved in the case of alkynes over the last four years.^[2] Among the various catalysts identified for hydroamination reactions of alkynes, group-IV metal complexes play an outstanding role because they offer the possibility to convert both terminal and internal alkynes into the corresponding imines.^[3] Furthermore, good regioselectivities of amine additions are observed in reactions of unsymmetrically substituted 2-alkyl-1-arylalkynes in the presence of titanium complexes such as [Cp₂TiMe₂],^[4] giving access to the corresponding anti-Markovnikov products.^[5] These advantages, combined with the fact that 2-alkyl-1-arylalkynes can easily be obtained by Sonogashira coupling reactions.^[6] have already been utilized for a flexible, three-step synthesis of biologically interesting 2-arylethylamine derivatives employing aryl halides, terminal alkynes, and primary amines as building blocks.^[7] A representative example of the strategy, including a final reduction of the initially formed hydroamination product (imine), is given in Scheme 1. In this context, it is worth to mention that the hydroamination step and the final reduction are performed as a one-pot operation.

Furthermore, it has been shown that titanium complexes also catalyze intramolecular hydroamination reactions.^[8] By a corresponding approach, γ - and δ -aminoalkynes can be converted into cyclic amines by [Cp₂TiMe₂]-catalyzed cycliare commercially available or easily accessible, a huge number of indoline, indolizidine, and pyrrolizidine derivatives is theoretically obtainable by the standard reaction sequences developed. Since the experimental procedures are simple and mostly catalytic, applications of the described methods for automated synthesis are also imaginable.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Scheme 1. Representative example for the flexible synthesis of 2arylethylamine derivatives from aryl halides, terminal alkynes, and primary amines

zation and subsequent reduction with NaBH₃CN in the presence of $ZnCl_2 \cdot Et_2O$.^[8d] Interestingly, aminoalkynes with a phenyl substituent directly bound to the alkyne sp center give access to products also possessing the biologically attractive 2-arylethylamine substructure (Scheme 2).

Being aware of the importance of indoline, indolizidine, and pyrrolizidine derivatives with regard to biological activity and organic synthesis,^[9] we recently decided to combine and extend both strategies to develop a new and flexible synthetic pathway to molecules containing the corresponding substructures as well as a 2-phenylethyl-

Institut f
ür Organische Chemie der Universit
ät Hannover Schneiderberg 1B, 30167 Hannover, Germany Fax: (internat.) +49-(0)511/762-3011 E-mail: sven.doye@oci.uni-hannover.de

Scheme 2. Representative examples of the synthesis of 2-phenylethylamine derivatives from aminoalkyl(phenyl)alkynes

amine moiety (Scheme 3). For that purpose, we planned to use ortho-bromo- or ortho-chloro-functionalized 2-alkyl-1phenylalkynes and aminoalkyl(phenyl)alkynes in place of simple 2-alkyl-1-phenylalkynes and aminoalkyl(phenyl)alkynes as starting materials for the one-pot hydroamination reduction sequence. In this case, the reduced hydroamination products should be suitable substrates for a final palladium-catalyzed intramolecular amination reaction (Buchwald-Hartwig reaction),[10] giving access to the desired target molecules. Since the slightly modified starting materials should still be obtainable in a straightforward manner from simple, and in most cases commercially available, building blocks (e.g., 1-bromo- or 1-chloro-2-iodobenzenes and terminal alkynes) the desired strategy should offer high synthetic flexibility. For that reason, a corresponding approach (Scheme 3) should be suitable for the fast generation of many indoline, indolizidine, and pyrroliz-

Indolizidines (n = 2)

Scheme 3. A flexible approach towards the synthesis of indoline, indolizidine, and pyrrolizidine derivatives containing a 2-phenylethylamine substructure from 1-bromo- or 1-chloro-2-iodobenzenes, terminal alkynes, and primary amines Table 1. Synthesis of *ortho*-bromo- and *ortho*-chloro-substituted 2-alkyl-1-phenylalkynes by Sonogashira coupling

^[a] Reaction conditions: aryl halide (10.0 mmol), alkyne (10.0 mmol), $[PdCl_2(PPh_3)_2]$ (0.2 mmol, 2.0 mol %), CuI (0.4 mmol, 4.0 mol %), PPh₃ (0.4 mmol, 4.0 mol %), HN(*i*Pr)₂, 84 °C, 6 h; yields represent isolated yields of pure compounds.

idine derivatives containing a 2-phenylethylamine substructure (a library), that could be used for further applications in organic synthesis as well as for biological tests.

Results and Discussion

Starting from readily available and more or less highly functionalized 1-bromo- or 1-chloro-2-iodobenzenes 1-5 and terminal alkynes we first synthesized a number of *or*-

tho-bromo- and ortho-chloro-substituted 2-alkyl-1-phenylalkynes by Sonogashira coupling reactions. The reactions were usually performed under standard Sonogashira conditions, giving access to the corresponding alkynes 6-14 in high yields (Table 1). As expected, reactions took place exclusively at the more reactive iodo-substituted carbon centers of the aromatic bis- or tris-halides.

Since the side chain-functionalized compound 10 possesses a hydroxy group, which is not tolerated under the

Table 2. Synthesis of *ortho*-bromo- and *ortho*-chloro-substituted 2-phenylethylamine derivatives by regioselective hydroamination and subsequent in situ reduction

^[a] Reaction conditions: a) alkyne (4.0 mmol), amine (4.0 mmol), $[Cp_2TiMe_2]$ (c = 0.48 mol/L in toluene, 0.2 mmol, 5.0 mol %), 110 °C, 24 h; b) NaBH₃CN (8.0 mmol), ZnCl₂·Et₂O (c = 1.0 mol/L in Et₂O, 4.0 mmol), MeOH, 25 °C, 12 h. Yields represent isolated yields of pure compounds. ^[b] 10.0 mol % [Cp₂TiMe₂] was used for the hydroamination step. ^[c] [Cp*₂TiMe₂] (c = 0.50 mol/L in toluene, 0.4 mmol, 10.0 mol %) was used as catalyst for the hydroamination step. ^[d] 30% of the Markovnikov regioisomer was obtained. ^[e] 29% of the Markovnikov regioisomer was obtained. ^[f] 39% of the Markovnikov regioisomer was obtained.

conditions of $[Cp_2TiMe_2]$ -catalyzed hydroamination reactions, this substrate was converted into the corresponding benzyl ether **15** under standard conditions prior to further transformations (Scheme 4).

Scheme 4. Protection of the hydroxy group of 10 as a benzyl ether

Subsequently, the obtained alkynes 6-9 and 11-15 were regioselectively hydroaminated in the presence of catalytic

Table 3. Palladium-catalyzed cyclization to indoline derivatives

amounts (5.0 mol %) of [Cp2TiMe2] at 110 °C in the presence of various amines. The initially formed imine products were not isolated but were directly reduced to yield the stable ortho-bromo- and ortho-chloro-functionalized 2phenylethylamine derivatives 16-26 (Table 2). Particularly interesting are reactions employing para-methoxyaniline (PMP-NH₂, Entries 1, 6, 10) and *para*-methoxybenzylamine (PMB-NH₂, Entries 3, 11) because these amines represent potential ammonia equivalents. However, for reactions involving sterically less demanding amines such as para-methoxybenzylamine (Entries 3, 11) and *n*-hexylamine (Entry 5) it was necessary to use [Cp*2TiMe2] as catalyst for a successful hydroamination step.^[11] As observed before, the obtained regioselectivities of the hydroamination reactions are poor in these cases. In all corresponding reactions, large amounts (29-39%) of the corresponding Markovnikov re-

^[a] Reaction conditions: amine (2.0 mmol), $[Pd_2(dba)_3]$ (0.1 mmol, 5.0 mol %), ligand precursor (0.2 mmol, 10.0 mol %), KOtBu (3.0 mmol), 1,4-dioxane, 110 °C, 12 h. Yields represent isolated yields of pure compounds. ^[b] Reaction conditions: amine (2.0 mmol), $[Pd(PPh_3)_4]$ (0.1 mmol, 5.0 mol %), K₂CO₃ (4.0 mmol), NaOtBu (4.0 mmol), toluene, 110 °C, 5 h.

gioisomers were isolated along with the desired products (48-58%).

Finally, the *ortho*-bromo- and *ortho*-chloro-substituted 2phenylethylamines 16-23 and 26 were converted into indoline derivatives 27-35 in the presence of a palladium catalyst. Depending on the nature of the halide (Br or Cl), different catalyst systems were used. The bromo derivative 16was treated with NaOtBu and [Pd(PPh_3)_4], while the chloro derivatives required the presence of KOtBu, [Pd₂(dba)₃], and a carbene ligand (Table 3). Product 35 is especially interesting, because the protected oxygen functionality in the side chain offers the possibility for further transformations (e.g. cyclizations). Furthermore, the N-protected indolines 27, 29, 32, and 35 can be seen as precursors for the corresponding unprotected derivatives.

This flexible synthetic strategy is characterized by the fact that the indoline target compounds can be synthesized from three building blocks in only four steps. Since many of these building blocks are commercially available, a huge number of indoline derivatives is theoretically accessible by following the developed standard reaction sequence. Since the experimental procedures are simple and mostly catalytic, application of the method to automated synthesis is also imaginable.

As can be seen from Table 1 and 2, it was also possible to perform the first three steps of the reaction sequence starting from 1-bromo-3-chloro-4-iodobenzene (5). In this case, the presence of the additional bromo substituent in the 2-phenylethylamine products 24 and 25 (Table 2) offers the possibility to introduce further functionalities. For that purpose, we chose a Pd-catalyzed intermolecular amination reaction employing benzophenone imine which took place at the bromo-substituted centers in 24 and 25 and established a nitrogen functionality at the aromatic systems

Scheme 5. Synthesis of NH₂-substituted indoline derivatives

(Scheme 5).^[12] The obtained imine products **36** and **37** could then be converted into nitrogen-functionalized indoline derivatives **38** and **39** by a second Pd-catalyzed intramolecular amination reaction. A final cleavage of the C–N double bonds gave access to the corresponding derivatives **40** and **41** containing unprotected NH₂ groups (Scheme 5).

Indolizidine and pyrrolizidine derivatives were found to be accessible in a related manner from *ortho*-bromoand *ortho*-chloro-functionalized aminoalkyl(phenyl)alkynes **42–47**, which could be synthesized in a flexible manner from 1-bromo- or 1-chloro-2-iodobenzenes by literature procedures, with a Sonogashira reaction as the key step.^[8d,13] Again, a one-pot hydroamination reduction se-

Table 4. Synthesis of pyrrolidine and piperidine derivatives from *ortho*-bromo- and *ortho*-chloro-substituted aminoalkyl(phenyl)al-kynes by hydroamination and subsequent in situ reduction

[a] Reaction conditions: a) aminoalkyne (4.0 mmol), [Cp₂TiMe₂]
(c = 0.48 mol/L in toluene, 0.2 mmol, 5.0 mol%), 110 °C, 4-6 h;
b) NaBH₃CN (8.0 mmol), ZnCl₂·Et₂O (c = 1.0 mol/L in Et₂O, 4.0 mmol), MeOH, 25 °C, 12 h. Yields represent isolated yields of pure compounds.

Table 5. Palladium-catalyzed cyclization to indolizidine and pyrrolizidine derivatives

^[a] Reaction conditions: amine (1.0 mmol), $[Pd_2(dba)_3]$ (0.05 mmol, 5.0 mol %), ligand precursor (0.1 mmol, 10.0 mol %), KOtBu (1.5 mmol), 1,4-dioxane, 110 °C, 3–12 h. Yields represent isolated yields of pure compounds. ^[b] Reaction conditions: amine (1.0 mmol), $[Pd(PPh_3)_4]$ (0.05 mmol, 5.0 mol %), K₂CO₃ (2.0 mmol), NaOtBu (2.0 mmol), toluene, 110 °C, 6 h.

quence was used to produce the corresponding *ortho*bromo- and *ortho*-chloro-substituted 2-phenylethylamine derivatives containing pyrrolidine and piperidine substructures (48-53) in good yields (Table 4).

Palladium-catalyzed cyclization reactions employing the piperidine derivatives 51-53 smoothly gave the desired indolizidines 57-59 in good yields, while the pyrrolidine derivative 50 did not react successfully (Table 5). An explanation for this lack of reactivity may be seen in the combination of two factors: (i) the presence of an electron-rich and therefore less reactive aromatic system, and (ii) the greater ring strain in this substrate than in the corresponding piperidine derivative 53. However, the other molecules containing a five-membered cyclic amine structure (48, 49)

did undergo successful cyclization. Interestingly, under optimized conditions, better yields were obtained from chlorobenzenes (Table 5, Entries 2, 5, 6) than from bromobenzenes (Table 5, Entries 1, 4).

Conclusion

In summary, the procedures developed for the synthesis of indoline, indolizidine, and pyrrolizidine derivatives again show that clever combinations of recently developed, modern catalytic organic transformations offer flexible and efficient synthetic pathways to biologically interesting classes of molecules. The major advantage of the described (and related) synthetic strategies is the fact that thousands of products are theoretically accessible from a relative small number of readily available building blocks by a standard procedure. Interestingly, the [Cp₂TiMe₂]-catalyzed hydroamination of alkynes demonstrates once more that it does not represent just another curiosity from organometallic laboratories but should be regarded as a new and powerful tool for organic synthesis. In our opinion, this judgment is underlined by the fact that all yields reported in this publication are isolated yields.

Experimental Section

General Remarks: All reactions were performed under argon in flame-dried Duran glassware (e.g., Schlenk tubes fitted with Teflon stopcocks). Toluene was distilled from molten sodium under argon. Methanol was dried with molecular sieves (3 Å). [Cp₂TiMe₂] was synthesized according to ref.^[4a] 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride according to ref.^[14] aminoalkynes 42-47 according to ref.^[8d,13] and compound 4 according to ref.^[15] All other reagents were purchased from commercial sources and were used without further purification. Unless otherwise noted, yields refer to isolated yields of pure compounds as gauged by TLC and ¹H and ¹³C NMR spectroscopy. All products were characterized by ¹H NMR, ¹³C NMR, and infrared (IR) spectroscopy, and mass spectrometry (MS). New compounds were further characterized by high-resolution mass spectrometry (HRMS) or CHN elemental analysis. NMR spectra were recorded with a Bruker Avance 400 MHz spectrometer. All ¹H NMR spectra are reported in δ units ppm downfield from tetramethylsilane internal standard. All ¹³C NMR spectra are reported in δ units ppm relative to the central line of the triplet for CDCl₃ at $\delta = 77.0$ ppm. Infrared spectra were recorded with a Bruker Vector 22 spectrometer by an attenuated total reflection (ATR) method. Mass spectra were recorded with a Finnigan MAT 312 or a VG Autospec (EI) with an ionization potential of 70 eV or a Micromass LCT (ESI). Elemental analysis were carried out on an Elementar Vario EL machine. PE: light petroleum ether, b.p. 40-60 °C.

Sonogashira Coupling. General Procedure A: CuI (77 mg, 0.4 mmol, 4.0 mol %), $[(PPh_3)_2PdCl_2]$ (141 mg, 0.2 mmol, 2.0 mol %), PPh₃ (105 mg, 0.4 mmol, 4.0 mol %), and $HN(iPr)_2$ (30 mL) were placed in a round-bottomed flask containing a magnetic stirring bar. After addition of the aryl halide (10.0 mmol), the mixture was stirred for 30 min at 25 °C, and the alkyne (10.0 mmol) was then added. After this had been stirred at 84 °C for a further 6 h, saturated NH₄Cl solution was added. The mixture was extracted with *tert*-butyl methyl ether (3 ×). The combined organic layers were dried with

 $MgSO_4$ and concentrated under vacuum. The residue was purified by flash chromatography (SiO₂).

Alkyne 6: General Procedure A was used to synthesize alkyne 6 from 1-bromo-2-iodobenzene (1) and 1-hexyne. After purification by flash chromatography (PE), compound 6 (1.85 g, 7.80 mmol, 78%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.3 Hz, 3 H), 1.48–1.67 (m, 4 H), 2.47 (t, J =7.0 Hz, 2 H), 7.10 (td, J = 7.7, 1.7 Hz, 1 H), 7.21 (td, J = 7.6, 1.6 Hz, 1 H), 7.42 (dd, J = 7.7, 1.6 Hz, 1 H), 7.55 (dd, J = 8.0, 1.0 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta =$ 13.6 (CH₃), 19.2 (CH₂), 22.0 (CH₂), 30.6 (CH₂), 79.3 (C), 95.6 (C), 125.4 (C), 126.1 (C), 126.8 (CH), 128.6 (CH), 132.2 (CH), 133.3 (CH) ppm. IR: $\tilde{v} = 3061$, 2957, 2931, 2871, 2234, 1588, 1558, 1468, 1433, 1026, 749 cm⁻¹. MS (25 °C): m/z (%) = 238 (74) [M⁺(⁸¹Br)], 236, (77) [M⁺(⁷⁹Br)], 223 (36), 221 (39), 195 (50), 193 (51), 182 (26), 180 (23), 142 (100), 128 (71), 115 (65), 91 (24). HRMS: calcd. (C₁₂H₁₃Br) 236.0201; found 236.0195.

Alkyne 7: General Procedure A was used to synthesize alkyne 7 from 1-chloro-2-iodobenzene (2) and 1-pentyne. After purification by flash chromatography (PE), compound 7 (1.76 g, 9.85 mmol, 99%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.08$ (t, J = 7.3 Hz, 3 H), 1.66 (sept, J = 7.2 Hz, 2 H), 2.45 (t, J = 7.0 Hz, 2 H), 7.14–7.20 (m, 2 H), 7.34–7.38 (m, 1 H), 7.40–7.45 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 13.5$ (CH₃), 21.8 (CH₂), 22.1 (CH₂), 77.7 (C), 96.0 (C), 126.3 (CH), 128.4 (CH), 129.1 (CH), 133.3 (CH), 135.7 (C), 140.2 (C) ppm. IR: $\tilde{v} = 3069$, 2963, 2933, 2233, 1473, 1065, 1033, 749 cm⁻¹. MS (25 °C): *mlz* (%) = 180 (77) [M⁺(³⁷Cl)], 178 (97) [M⁺(³⁵Cl)], 163 (52), 149 (100) [M⁺ - C₂H₅], 143 (79) [M⁺ - Cl], 136 (60), 128 (80), 115 (57), 111 (23), 101 (18), 87 (17), 75 (30). HRMS: calcd. (C₁₁H₁₁Cl) 178.0549; found 178.0555.

Alkyne 8: General Procedure A was used to synthesize alkyne 8 from 1-chloro-2-iodobenzene (2) and 1-hexyne. After purification by flash chromatography (PE), compound 8 (1.89 g, 9.82 mmol, 98%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.3 Hz, 3 H), 1.47–1.66 (m, 4 H), 2.47 (t, J =7.0 Hz, 2 H), 7.15–7.20 (m, 2 H), 7.35–7.37 (m, 1 H), 7.43–7.44 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 13.6$ (CH₃), 19.3 (CH₂), 21.9 (CH₂), 30.7 (CH₂), 77.5 (C), 96.1 (C), 123.9 (C), 126.3 (CH), 128.4 (CH), 129.1 (CH), 133.3 (CH), 135.7 (C) ppm. IR: $\tilde{\nu} = 3068$, 2958, 2931, 2872, 2234, 1591, 1562, 1473, 1428, 1065, 1033, 750 cm⁻¹. MS (25 °C): *m/z* (%) = 192 (58) [M⁺], 177 (65), 163 (35), 149 (100), 142 (53), 129 (67), 115 (56), 91 (16), 77 (14). HRMS: calcd. (C₁₂H₁₃Cl) 192.0697; found 192.0706.

Alkyne 9: General Procedure A was used to synthesize alkyne 9 from 1-chloro-2-iodobenzene (2) and cyclopropylacetylene (c = 70% in toluene). After purification by flash chromatography (PE), compound 9 (1.75 g, 9.91 mmol, 99%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.83-0.93$ (m, 4 H), 1.47-1.55 (m, 1 H), 7.12-7.19 (m, 2 H), 7.77-7.36 (m, 1 H), 7.38-7.41 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 0.4$ (CH), 8.9 (CH₂), 72.6 (C), 99.2 (C), 123.7 (C), 126.2 (CH), 128.3 (CH), 129.0 (CH), 133.2 (CH), 135.7 (C) ppm. IR: $\tilde{v} =$ 3013, 2230, 1474, 1436, 1055, 749 cm⁻¹. MS (25 °C): *mlz* (%) = 176 (92) [M⁺], 141 (100) [M⁺ - Cl], 139 (67), 115 (67), 87 (22), 79 (19). HRMS: calcd. (C₁₁H₉Cl) 176.0393; found 176.0383. C₁₁H₉Cl (176.6): calcd. C 74.79, H 5.14; found C 74.50, H 5.09.

Alkyne 10: General Procedure A was used to synthesize alkyne 10 from 1-chloro-2-iodobenzene (2) and 5-hexynol. After purification by flash chromatography (PE/EtOAc, 10:1), compound 10 (2.08 g, 9.97 mmol, 99%) was isolated as a colorless oil. ¹H NMR

(400 MHz, CDCl₃): $\delta = 1.67 - 1.82$ (m, 4 H), 2.51 (t, J = 6.7 Hz, 2 H), 3.70 (t, J = 6.0 Hz, 2 H), 7.14-7.21 (m, 2 H), 7.35-7.37 (m, 1 H), 7.41-7.43 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 19.3$ (CH₂), 24.8 (CH₂), 31.7 (CH₂), 62.3 (CH₂), 77.8 (C), 95.6 (C), 123.6 (C), 126.3 (CH), 128.5 (CH), 129.0 (CH), 133.2 (CH), 135.6 (C) ppm. IR: $\tilde{v} = 3307$, 2937, 2935, 2233, 1561, 1473, 1429, 1062, 1032, 750 cm⁻¹. MS (60 °C): m/z (%) = 210 (27) [M+(³⁷Cl)], 208 (26) [M+(³⁵Cl)], 190 (10), 173 (72), 164 (78), 149 (80), 141 (47), 129 (100), 114 (59), 99 (17), 91 (15), 75 (21). HRMS: calcd. (C₁₂H₁₃ClO) 208.0655; found 208.0653.

Alkyne 11: General Procedure A was used to synthesize alkyne 11 from 1-chloro-2-iodo-4-trifluoromethylbenzene (3) and cyclopropylacetylene (c = 70% in toluene). After purification by flash chromatography (PE), compound 11 (2.37 g, 9.69 mmol, 97%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta =$ 0.86-0.97 (m, 4 H), 1.48-1.55 (m, 1 H), 7.40 (dd, J = 8.4, 1.8 Hz, 1 H), 7.47 (d, J = 8.4 Hz, 1 H), 7.66 (d, J = 2.0 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 0.3$ (CH), 9.0 (CH₂), 71.6 (C), 101.3 (C), 123.4 (CF₃, q, J = 272 Hz), 124.7 (C), 124.8 (CH, q, J = 3 Hz), 129.1 (C, q, J = 33 Hz), 129.6 (CH), 130.1 (CH, q, J = 4 Hz), 139.4 (C, q, J = 1 Hz) ppm. IR: $\tilde{\nu} = 3098$, 3016, 2235, 1607, 1327, 1126, 1078, 825 cm⁻¹. MS (25 °C): m/z (%) = 244 (100) [M⁺], 209 (93) [M⁺ - Cl], 175 (57) [M⁺ - CF₃], 139 (50), 99 (13), 87 (12), 74 (11). HRMS: calcd. (C₁₂H₈ClF₃) 244.0267; found 244.0268.

Alkyne 12: General Procedure A was used to synthesize alkyne 12 from 1-chloro-2-iodo-4-methoxybenzene (4) and 1-hexyne. After purification by flash chromatography (PE/EtOAc, 20:1), compound 12 (2.11 g, 9.47 mmol, 95%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.3 Hz, 3 H), 1.46–1.56 (m, 2 H), 1.58-1.65 (m, 2 H), 2.46 (t, J = 6.9 Hz, 2 H), 3.76 (s, 3 H), 6.75 (dd, J = 8.9, 3.1 Hz, 1 H), 6.95 (d, J = 3.0 Hz, 1 H), 7.24 (d, J = 8.8 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 13.6 (CH_3), 19.2 (CH_2), 21.9 (CH_2), 30.6 (CH_2), 55.5 (CH_3),$ 77.6 (C), 95.9 (C), 115.3 (CH), 117.6 (CH), 124.3 (C), 127.3 (C), 129.7 (CH), 157.7 (C) ppm. IR: $\tilde{v} = 2957, 2933, 2872, 2232, 1593,$ 1567, 1468, 1398, 1290, 1209, 1172, 1028, 804 cm $^{-1}.$ MS (60 $^{\circ}\mathrm{C}):$ m/z (%) = 223 (100), 207 (47), 194 (18), 187 (42), 179 (99), 172 (92), 166 (20), 158 (50), 145 (29), 128 (25), 115 (41), 101 (19). HRMS: calcd. (C13H15ClO) 222.0811; found 222.0811. C13H15ClO (222.7): calcd. C 70.11, H 6.79; found C 70.17, H 6.62.

Alkyne 13: General Procedure A was used to synthesize alkyne 13 from 1-bromo-3-chloro-4-iodobenzene (5) and 1-hexyne. After purification by flash chromatography (PE), compound 13 (2.55 g, 9.39 mmol, 94%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.3 Hz, 3 H), 1.45–1.55 (m, 2 H), 1.58–1.65 (m, 2 H), 2.45 (t, J = 7.0 Hz, 2 H), 7.27 (d, J =8.5 Hz, 1 H), 7.30 (dd, J = 8.3, 1.8 Hz, 1 H), 7.54 (d, J = 1.8 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 13.6$ (CH₃), 19.3 (CH₂), 21.9 (CH₂), 30.5 (CH₂), 76.7 (C), 97.4 (C), 121.3 (C), 123.0 (C), 129.6 (CH), 131.8 (CH), 134.0 (CH), 136.6 (C) ppm. IR: $\tilde{\nu} = 2957, 2951, 2234, 1579, 1542, 1420, 1082, 1065, 816 \text{ cm}^{-1}$. MS (25 °C): m/z (%) = 272 (100) [M⁺(⁸¹Br)], 270 (99) [M⁺(⁷⁹Br)], 257 (99), 255 (83), 229 (99), 227 (93), 216 (63), 214 (43), 193 (20), 191 (19), 176 (99), 162 (88), 156 (92), 150 (60), 141 (58), 131 (68), 87 (21), 75 (23). HRMS: calcd. (C₁₂H₁₂BrCl) 269.9811; found 269.9812. C₁₂H₁₂BrCl (271.6): calcd. C 53.07, H 4.45; found C 52.70, H 4.45.

Alkyne 14: General Procedure A was used to synthesize alkyne 14 from 1-bromo-3-chloro-4-iodobenzene (5) and cyclopropylacetylene (c = 70% in toluene). After purification by flash chromatography (PE), compound **14** (2.48 g, 9.70 mmol, 97%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.83-0.94$ (m, 4 H), 1.45–1.52 (m, 1 H), 7.24 (d, J = 8.4 Hz, 1 H), 7.29 (dd, J = 8.3, 1.9 Hz, 1 H), 7.51 (d, J = 1.9 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 0.4$ (CH), 8.9 (CH₂), 71.8 (C), 100.5 (C), 121.2 (C), 122.8 (C), 129.6 (CH), 131.8 (CH), 134.0 (CH), 136.6 (C) ppm. IR: $\tilde{v} = 3091$, 3011, 2236, 1578, 1540, 1471, 1082, 1054, 1028, 814 cm⁻¹. MS (25 °C): *m/z* (%) = 256 (100) [M⁺(⁸¹Br)], 254 (93) [M⁺(⁷⁹Br)], 221 (69), 219 (72), 175 (79), 139 (86), 118 (76). HRMS: calcd. (C₁₁H₈BrCl) 253.9498; found 253.9499. C₁₁H₈BrCl (255.5): calcd. C 51.70, H 3.16; found C 51.57, H 3.18.

Alkyne 15: Sodium hydride (288 mg, c = 60% in oil, 7.8 mmol) and THF (5.0 mL) were placed in a round-bottomed flask containing a magnetic stirring bar. After addition of a solution of alkyne 10 (1.25 g, 6.0 mmol) in THF (5.0 mL), the mixture was stirred at 25 °C for 30 min, and benzyl bromide (927 µL, 7.2 mmol) and a catalytic amount of potassium iodide were then added. After this had been stirred at 25 °C for 12 h, water was added. The mixture was extracted with *tert*-butyl methyl ether $(3 \times)$. The combined organic layers were dried with MgSO4 and concentrated under vacuum. After purification by flash chromatography (PE/EtOAc, 20:1) on SiO₂, compound 15 (1.60 g, 5.35 mmol, 89%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.70 - 1.87$ (m, 4 H), 2.49 (t, J = 6.8 Hz, 2 H), 3.53 (t, J = 6.2 Hz, 2 H), 4.51 (s, 2 H), 7.12-7.19 (m, 2 H), 7.23-7.36 (m, 6 H), 7.40-7.42 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 19.4$ (CH₂), 25.3 (CH₂), 28.8 (CH₂), 69.8 (CH₂), 72.8 (CH₂), 77.8 (C), 95.7 (C), 123.8 (C), 126.3 (CH), 127.5 (CH), 127.6 (CH), 128.3 (CH), 128.5 (CH), 129.1 (CH), 133.2 (CH), 135.7 (C), 138.6 (C) ppm. IR: $\tilde{v} = 3063$, 3030, 2936, 2859, 2234, 1495, 1473, 1453, 1429, 1104, 1065, 751, 734, 696 cm⁻¹. MS (70 °C): m/z (%) = 298 (11) [M⁺], 207 (21), 191 (11), 163 (4), 149 (27), 139 (17), 125 (60), 115 (18), 105 (19), 91 (100), 77 (8). HRMS: calcd. (C19H19ClO) 298.1124; found 298.1126.

Hydroamination/Reduction. General Procedure B: A Schlenk tube fitted with a Teflon stopcock and containing a magnetic stirring bar was charged with amine (4.0 mmol), alkyne (4.0 mmol), and a solution of $[Cp_2TiMe_2]$ (0.41 mL, c = 0.48 mol/L in toluene, 0.2 mmol, 5.0 mol %). The mixture was heated to 110 °C for 24 h (TLC monitoring). Then, a mixture of NaBH₃CN (503 mg, 8.0 mmol) and $ZnCl_2 \cdot Et_2O$ (4.0 mL, c = 1.0 mol/L in Et_2O , 4.0 mmol) in MeOH (10 mL) was added. After this had been stirred at 25 °C for 12 h, HCl (2 N) and CH₂Cl₂ were added. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 ×). KOH (2 N) was added to the aqueous layer until pH = 12 was reached. The basic aqueous layer was extracted with CH_2Cl_2 (2 ×). The combined organic layers were extracted with KOH (2 N) and brine. After drying with Na₂SO₄ and concentration under vacuum, the residue was purified by flash chromatography (SiO_2) .

Amine 16: General Procedure B was used to synthesize amine 16 from 4-methoxyaniline and alkyne 6. $[Cp_2TiMe_2]$ (10.0 mol %) was used for the hydroamination step. After purification by flash chromatography (PE/EtOAc, 10:1), compound 16 (1.07 g, 2.95 mmol, 74%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (t, J = 7.2 Hz, 3 H), 1.24–1.57 (m, 6 H), 2.88 (dd, J = 13.8, 6.4 Hz, 1 H), 2.97 (dd, J = 13.7, 7.1 Hz, 1 H), 3.25 (br. s, 1 H), 3.63–3.67 (m, 1 H), 3.72 (s, 3 H), 6.53 (d, J = 9.0 Hz, 2 H), 6.73 (d, J = 8.9 Hz, 2 H), 7.01–7.05 (m, 1 H), 7.16–7.21 (m, 2 H), 7.51 (d, J = 7.8 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.1$ (CH₃), 22.8 (CH₂), 28.2 (CH₂), 34.6 (CH₂), 41.6

(CH₂), 54.4 (CH), 55.8 (CH₃), 114.5 (CH), 114.9 (CH), 124.9 (C), 127.2 (CH), 127.8 (CH), 131.5 (CH), 132.8 (CH), 138.9 (C), 142.0 (C), 151.8 (C) ppm. MS (70 °C): m/z (%) = 363 (22) [M⁺(⁸¹Br)], 361 (23) [M⁺(⁷⁹Br)], 306 (8), 304 (7), 272 (32), 192 (100), 175 (20), 171 (14), 169 (14), 149 (23), 136 (17), 134 (18), 85 (50). HRMS: calcd. (C₁₉H₂₄BrNO) 361.1041; found 361.1042.

Amine 17: General Procedure B was used to synthesize amine 17 from 4-methylaniline and alkyne 7. After purification by flash chromatography (PE/EtOAc, 10:1), compound 17 (955 mg, 3.32 mmol, 83%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.9 Hz, 3 H), 1.33-1.57 (m, 4 H), 2.21 (s, 3 H), 2.86 (dd, J = 13.7, 6.6 Hz, 1 H), 3.00 (dd, J = 13.7, 6.7 Hz, 1 H), 3.38 (br. s, 1 H), 3.70 (m, 1 H), 6.51 (d, J = 8.0 Hz, 2 H), 6.94 (d, J = 8.0 Hz, 2 H), 7.09-7.16 (m, 2 H), 7.19-7.23 (m, 1 H), 7.32-7.34 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, $CDCl_3$): $\delta = 14.1 (CH_3), 19.2 (CH_2), 20.3 (CH_3), 37.0 (CH_2), 38.9$ (CH₂), 53.3 (CH), 113.1 (CH), 126.0 (C), 126.6 (CH), 127.5 (CH), 129.5 (CH), 129.7 (CH), 131.5 (CH), 134.3 (C), 137.1 (C), 145.4 (C) ppm. IR: $\tilde{v} = 3407, 3016, 2956, 2929, 2869, 1617, 1517, 1474,$ 1442, 1036, 805, 748 cm⁻¹. MS (70 °C): m/z (%) = 287 (30) [M⁺], 244 (30) $[M^+ - C_3H_7]$, 209 (19), 162 (100), 132 (19), 125 (19), 120 (24), 106 (13), 91 (24). HRMS: calcd. (C₁₈H₂₂ClN) 287.1441; found 287.1441. C18H22CIN (287.8): calcd. C 75.11, H 7.70, N 4.87; found C 75.00, H 7.71, N 5.02.

Amine 18: General Procedure B was used to synthesize amine 18 from 4-methoxybenzylamine and alkyne 8. $[Cp_{2}^{*}TiMe_{2}]$ (c = 0.50mol/L in toluene, 0.4 mmol, 10.0 mol %) was used as catalyst for the hydroamination step. After purification by flash chromatography (PE/EtOAc, 3:1), compound 18 (770 mg, 2.32 mmol, 58%) and its Markovnikov regioisomer (396 mg, 1.19 mmol, 30%) were isolated as colorless oils. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.9 Hz, 3 H), 1.23–1.47 (m, 6 H), 2.78–2.91 (m, 3 H), 3.66 (d, J = 12.8 Hz, 1 H), 3.72 (d, J = 12.9 Hz, 1 H), 3.77 (s, 3 H),6.80 (d, J = 8.5 Hz, 2 H), 7.12 (d, J = 8.7 Hz, 2 H), 7.12–7.21 (m, 3 H), 7.33 (dd, J = 7.0, 2.1 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.0$ (CH₃), 22.9 (CH₂), 27.9 (CH₂), 33.9 (CH₂), 39.0 (CH₂), 50.7 (CH₂), 55.2 (CH₃), 56.7 (CH), 113.7 (CH), 126.5 (CH), 127.5 (CH), 129.1 (CH), 129.5 (CH), 131.6 (CH), 133.0 (C), 134.3 (C), 137.7 (C), 158.4 (C) ppm. IR: $\tilde{v} = 3338, 2953, 2928$, 2857, 2834, 1611, 1585, 1510, 1464, 1243, 1172, 1035, 822, 748 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₂₀H₂₆ClNO+H) 332.1781; found 332.1796. C₂₀H₂₆ClNO (331.9): calcd. C 72.38, H 7.90, N 4.22; found C 72.39, H 7.79, N 4.16. Characterization of the Markovnikov regioisomer: ¹H NMR (400 MHz, CDCl₃): $\delta = 0.84$ (t, J = 6.8 Hz, 3 H), 1.22–1.36 (m, 6 H), 1.65 (q, J = 7.5 Hz, 2 H), 3.47 (d, J = 12.7 Hz, 1 H), 3.54 (d, J = 12.8 Hz, 1 H), 3.79 (s, 3 H), 4.20 (t, J = 6.6 Hz, 1 H), 6.84 (d, J = 8.7 Hz, 2 H), 7.17 (td, J = 7.6, 1.5 Hz, 1 H), 7.19 (d, J = 8.5 Hz, 2 H), 7.28 (td, J = 7.5, 1.2 Hz, 1 H) 7.34 (dd, J = 8.0, 1.2 Hz, 1 H), 7.54 (dd, J = 7.8, 1.5 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 14.0 (CH₃), 22.5 (CH₂), 25.7 (CH₂), 31.8 (CH₂), 37.1 (CH₂), 51.0 (CH₂), 55.2 (CH₃), 58.3 (CH), 113.7 (CH), 127.0 (CH), 127.7 (CH), 128.1 (CH), 129.3 (CH), 129.5 (CH), 132.8 (C), 133.9 (C), 141.8 (C), 158.6 (C) ppm. IR: $\tilde{v} = 3338$, 2953, 2929, 2856, 1611, 1585, 1510, 1463, 1440, 1244, 1173, 1034, 821, 752 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₂₀H₂₆ClNO+H) 332.1781; found 332.1780. C₂₀H₂₆ClNO (331.9): calcd. C 72.38, H 7.90, N 4.22; found C 72.71, H 7.58, N 4.89.

Amine 19: General Procedure B was used to synthesize amine 19 from *tert*-butylamine and alkyne 9. After purification by flash chromatography (PE/EtOAc, 1:1), compound 19 (635 mg, 2.52 mmol, 63%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃):

 $δ = -0.15 \text{ to } -0.09 \text{ (m, 1 H)}, 0.06-0.12 \text{ (m, 1 H)}, 0.25-0.31 \text{ (m, 1 H)}, 0.34-0.41 \text{ (m, 1 H)}, 0.71-0.81 \text{ (m, 1 H)}, 1.05 \text{ (s, 9 H)}, 2.35 \text{ (q, } J = 8.2 \text{ Hz}, 1 \text{ H)}, 2.89 \text{ (dd, } J = 13.0, 7.8 \text{ Hz}, 1 \text{ H)}, 3.04 \text{ (dd, } J = 13.2, 6.2 \text{ Hz}, 1 \text{ H)}, 7.10-7.17 \text{ (m, 2 H)}, 7.24-7.27 \text{ (m, 1 H)}, 7.30-7.32 \text{ (m, 1 H)} \text{ ppm. }^{13}\text{C NMR} (100.6 \text{ MHz}, \text{DEPT, CDCl}_3):$ $δ = 3.6 (CH_2), 4.8 (CH_2), 18.4 (CH), 30.2 (CH_3), 43.0 (CH_2), 50.3 (C), 56.2 (CH), 126.2 (CH), 127.3 (CH), 129.2 (CH), 132.3 (CH), 134.2 (C), 137.9 (C) \text{ ppm. IR: } \tilde{v} = 3074, 2963, 1474, 1441, 1388, 1361, 1051, 747 \text{ cm}^{-1}. \text{ MS} (25 °C): m/z (%) = 237 (14) [M^+ + H - CH_3], 154 (15), 126 (84), 91 (11), 77 (4), 70 (100). HRMS: calcd. (C14H_{20}CIN) 237.1284; found 237.1236. C15H_{22}CIN (251.8): calcd. C 71.55, H 8.81, N 5.56; found C 71.10, H 8.79, N 5.35.$

Amine 20: General Procedure B was used to synthesize amine 20 from 1-hexylamine and alkyne 9. $[Cp_{2}TiMe_{2}]$ (c = 0.50 mol/L in toluene, 0.4 mmol, 10.0 mol %) was used as catalyst for the hydroamination step. After purification by flash chromatography (PE/ EtOAc, $7:1 \rightarrow 1:1$), compound **20** (738 mg, 2.64 mmol, 66%) and its Markovnikov regioisomer (323 mg, 1.15 mmol, 29%) were isolated as bright yellow oils. ¹H NMR (400 MHz, CDCl₃): $\delta = -0.15$ to -0.10 (m, 1 H), 0.13-0.19 (m, 1 H), 0.30-0.36 (m, 1 H), 0.46 - 0.53 (m, 1 H), 0.73 - 0.81 (m, 1 H), 0.87 (t, J = 6.7 Hz, 3 H), 1.24-1.45 (m, 8 H), 2.05 (td, J = 9.1, 6.7 Hz, 1 H), 2.53-2.60 (m, 1 H), 2.73-2.80 (m, 1 H), 2.98 (d, J = 6.8 Hz, 2 H), 7.12-7.19(m, 2 H), 7.25–7.27 (m, 1 H), 7.33–7.34 (m, 1 H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{DEPT}, \text{CDCl}_3)$: $\delta = 2.4 (\text{CH}_2), 4.0 (\text{CH}_2), 14.0 (\text{CH}_3),$ 16.3 (CH), 22.6 (CH₂), 26.9 (CH₂), 30.2 (CH₂), 31.7 (CH₂), 40.0 (CH₂), 47.8 (CH₂), 63.1 (CH), 126.4 (CH), 127.5 (CH), 129.4 (CH), 131.9 (CH), 134.2 (C), 137.5 (C) ppm. IR: $\tilde{v} = 3668, 3074, 3000,$ 2924, 2854, 1571, 1473, 1442, 1121, 1051, 1019, 747, 681 cm⁻¹. MS $(25 \text{ °C}): m/z (\%) = 279 (3) [M^+], 238 (7), 208 (6), 154 (100), 125$ (32), 91 (16), 70 (32). HRMS (ESI, CH₃CN): calcd. $(C_{17}H_{26}CIN+H)$ 280.1832; found 280.1824. $C_{17}H_{26}CIN$ (279.9): calcd. C 72.96, H 9.36, N 5.01; found C 72.60, H 9.00, N 4.69. Because of the presence of impurities in the obtained Markovnikov regioisomer, this product was not fully characterized.

Amine 21: General Procedure B was used to synthesize amine 21 from 4-methoxyaniline and alkyne 11. After purification by flash chromatography (PE/EtOAc, 10:1), compound 21 (1.08 g, 2.92 mmol, 73%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.78 - 0.87$ (m, 1 H), 2.97 (dd, J = 12.9, 7.0 Hz, 1 H), 3.01-3.07 (m, 1 H), 3.25 (dd, J = 12.7, 5.6 Hz, 1 H), 3.42 (br. s, 1 H), 3.72 (s, 3 H), 6.56 (d, J = 8.9 Hz, 2 H), 6.74 (d, J = 8.9 Hz, 2 H), 7.37 (dd, J = 8.4, 1.9 Hz, 1 H), 7.43 (d, J =8.4 Hz, 1 H), 7.50 (d, J = 1.6 Hz, 1 H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{DEPT}, \text{CDCl}_3): \delta = 2.7 (\text{CH}_2), 4.0 (\text{CH}_2), 16.4 (\text{CH}),$ 36.6 (CH₂), 55.7 (CH₃), 58.5 (CH), 114.9 (CH), 115.0 (CH), 123.8 (CF₃, q, J = 272 Hz), 124.3 (CH, q, J = 4 Hz), 128.9 (CH, q, J = 4 Hz), 128.9 (C, q, J = 33 Hz), 129.8 (CH), 138.0 (C), 138.0 (C), 141.6 (C), 152.2 (C) ppm. IR: $\tilde{v} = 3401$, 3081, 3000, 2932, 2832, 1611, 1582, 1509, 1328, 1275, 1232, 1167, 1122, 818 cm⁻¹. MS (70 °C): m/z (%) = 369 (59) [M⁺], 328 (4), 193 (13), 176 (100), 158 (60), 143 (82), 115 (12), 81 (15), 77 (9). HRMS: calcd. (C₁₉H₁₉ClF₃NO) 369.1107; found 369.1107. C₁₉H₁₉ClF₃NO (369.8): calcd. C 61.71, H 5.18, N 3.79; found C 61.66, H 5.29, N 4.09.

Amine 22: General Procedure B was used to synthesize amine **22** from 4-methylaniline and alkyne **12**. After purification by flash chromatography (PE/EtOAc, 10:1), compound **22** (1.25 g, 3.77 mmol, 94%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (t, J = 7.1 Hz, 3 H), 1.26–1.60 (m, 6 H), 2.21 (s, 3 H), 2.82 (dd, J = 13.7, 6.5 Hz, 1 H), 2.96 (dd, J = 13.7, 6.5 Hz, 1 H), 3.39 (br. s, 1 H), 3.66–3.69 (m, 1 H), 3.71 (s, 3 H), 6.51 (d, J = 8.4 Hz, 2 H), 6.66 (dd, J = 8.7, 3.0 Hz, 1 H), 6.73

(d, J = 3.0 Hz, 1 H), 6.94 (d, J = 8.2 Hz, 2 H), 7.22 (d, J = 8.8 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.0$ (CH₃), 20.3 (CH₃), 22.7 (CH₂), 28.2 (CH₂), 34.5 (CH₂), 39.0 (CH₂), 53.5 (CH), 55.4 (CH₃), 113.0 (CH), 113.2 (CH), 117.1 (CH), 125.8 (C), 126.0 (C), 129.7 (CH), 130.0 (CH), 138.0 (C), 145.4 (C), 158.1 (C) ppm. IR: $\tilde{v} = 3401$, 2954, 2930, 2858, 1617, 1518, 1476, 1298, 1240, 1063, 1026, 803 cm⁻¹. MS (70 °C): m/z (%) = 333 (7) [M⁺(³⁷Cl)], 331 (6) [M⁺(³⁵Cl)], 274 (5), 223 (47), 207 (14), 176 (100), 172 (17), 155 (10), 134 (27), 120 (32), 86 (10). HRMS (ESI, CH₃CN): calcd. (C₂₀H₂₆CINO+H) 332.1781; found 332.1765. C₂₀H₂₆CINO (331.9): calcd. C 72.38, H 7.90, N 4.22; found C 72.49, H 7.74, N 4.14.

Amine 23: General Procedure B was used to synthesize amine 23 from tert-butylamine and alkyne 12. After purification by flash chromatography (PE/EtOAc, 1:1), compound 23 (843 mg, 2.83 mmol, 71%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 7.0 Hz, 3 H), 0.95 (s, 9 H), 1.29-1.39 (m, 6 H), 2.60 (dd, J = 13.2, 7.7 Hz, 1 H), 2.85 (dd, J =13.2, 6.0 Hz, 1 H), 2.89-2.94 (m, 1 H), 3.78 (s, 3 H), 6.69 (dd, J =8.7, 3.1 Hz, 1 H), 6.76 (d, J = 3.0 Hz, 1 H), 7.23 (d, J = 8.8 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.1$ (CH₃), 22.9 (CH₂), 28.4 (CH₂), 29.9 (CH₃), 37.6 (CH₂), 41.6 (CH₂), 50.7 (C), 51.8 (CH), 55.4 (CH₃), 112.8 (CH), 117.5 (CH), 125.7 (C), 130.0 (CH), 139.1 (C), 157.9 (C) ppm. IR: $\tilde{v} = 2955, 2932, 2859,$ 1597, 1574, 1476, 1465, 1387, 1361, 1240, 1161, 1027, 800 cm⁻¹. MS (60 °C): m/z (%) = 297 (1) [M⁺], 282 (16), 241 (21), 184 (32), 155 (22), 142 (61), 86 (100). HRMS (ESI, CH₃CN): calcd. (C₁₇H₂₈ClNO+H) 298.1938; found 298.1936. C₁₇H₂₈ClNO (297.9): calcd. C 68.55, H 9.47, N 4.70; found C 68.58, H 9.34, N 4.50.

Amine 24: General Procedure B was used to synthesize amine 24 from 4-methylaniline and alkyne 13. After purification by flash chromatography (PE/EtOAc, 20:1), compound 24 (1.11 g, 2.92 mmol, 73%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (t, J = 7.2 Hz, 3 H), 1.25–1.58 (m, 6 H), 2.21 (s, 3 H), 2.82 (dd, J = 13.7, 6.2 Hz, 1 H), 2.92 (dd, J =13.8, 6.8 Hz, 1 H), 3.32 (br. s, 1 H), 3.64 (m, 1 H), 6.48 (d, J =8.5 Hz, 2 H), 6.94 (d, J = 8.2 Hz, 2 H), 7.06 (d, J = 8.3 Hz, 1 H), 7.26 (dd, J = 8.2, 2.0 Hz, 1 H), 7.49 (d, J = 2.0 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.0$ (CH₃), 20.3 (CH₃), 22.7 (CH₂), 28.2 (CH₂), 34.5 (CH₂), 38.4 (CH₂), 53.4 (CH), 113.2 (CH), 120.1 (C), 126.2 (C), 129.8 (CH), 131.9 (CH), 132.6 (CH), 135.2 (C), 136.2 (C), 145.2 (C) ppm. MS (60 °C): m/z (%) = 381 (24) $[M^{+}(^{81}Br)]$, 379 (19) $[M^{+}(^{79}Br)]$, 324 (10), 322 (8), 269 (29), 226 (40), 205 (13), 203 (10), 176 (100), 120 (32), 91 (28), 77 (9). HRMS: calcd. (C₁₉H₂₃BrClN) 379.0702; found 379.0703. $C_{19}H_{23}BrClN$ (380.8): calcd. C 59.94, H 6.09, N 3.68; found C 59.97, H 5.72, N 3.66.

Amine 25: General Procedure B was used to synthesize amine 25 from 4-methoxyaniline and alkyne 14. After purification by flash chromatography (PE/EtOAc, 10:1), compound 25 (1.20 g, 3.15 mmol, 79%) was isolated as a bright yellow oil. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3): \delta = 0.02 - 0.06 \text{ (m, 1 H)}, 0.20 - 0.26 \text{ (m, 1 H)},$ 0.36–0.46 (m, 2 H), 2.90 (dd, J = 13.1, 6.6 Hz, 1 H), 3.01 (dd, J = 13.7, 6.7 Hz, 1 H), 3.12 (dd, J = 13.1, 5.9 Hz, 1 H), 3.73 (s, 3 H), 6.55 (d, J = 8.9 Hz, 2 H), 6.74 (d, J = 8.9 Hz, 2 H), 7.11 (d, J =8.2 Hz, 1 H), 7.26 (dd, J = 8.2, 2.0 Hz, 1 H), 7.50 (d, J = 2.0 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 2.6$ (CH₂), 4.0 (CH₂), 16.3 (CH), 38.9 (CH₂), 55.7 (CH₃), 58.5 (CH), 114.8 (CH), 120.1 (C), 129.6 (CH), 131.8 (CH), 133.0 (CH), 135.2 (C), 136.0 (C), 141.7 (C), 152.0 (C) ppm. IR: $\tilde{v} = 3394$, 2998, 2930, 2830, 1583, 1508, 1469, 1231, 1036, 815 cm $^{-1}$. MS (100 °C): m/z $(\%) = 382 (11) [M^{+}(^{81}Br)], 379 (17) [M^{+}(^{79}Br)], 205 (10), 203 (12),$ 176 (100), 160 (23), 146 (10), 144 (10), 134 (17), 130 (10), 86 (13).

HRMS (ESI, CH₃CN): calcd. ($C_{18}H_{19}BrCINO+H$) 380.0417; found 380.0431. $C_{18}H_{19}BrCINO$ (380.7): calcd. C 56.79, H 5.03, N 3.68; found C 57.23, H 4.71, N 3.59.

Amine 26: General Procedure B was used to synthesize amine 26 from 4-methoxybenzylamine and alkyne 15. $[Cp_{2}^{*}TiMe_{2}]$ (c = 0.50mol/L in toluene, 0.4 mmol, 10.0 mol %) was used as catalyst for the hydroamination step. After purification by flash chromatography (PE/EtOAc, 1:1), compound 26 (845 mg, 1.93 mmol, 48%) and its Markovnikov regioisomer (682 mg, 1.56 mmol, 39%) were obtained as colorless oils. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.31$ (br. s, 1 H), 1.38-1.60 (m, 6 H), 2.77-2.91 (m, 3 H), 3.44 (t, J =6.4 Hz, 2 H), 3.66 (d, J = 12.9 Hz, 1 H), 3.71 (d, J = 12.9 Hz, 1 H), 3.77 (s, 3 H), 4.48 (s, 2 H), 6.79 (d, J = 8.7 Hz, 2 H), 7.11 (d, J = 8.7 Hz, 2 H), 7.13–7.20 (m, 3 H), 7.24–7.34 (m, 6 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 22.3$ (CH₂), 29.8 (CH₂), 33.9 (CH₂), 39.0 (CH₂), 50.6 (CH₂), 55.2 (CH₃), 56.6 (CH), 70.2 (CH₂), 72.8 (CH₂), 113.7 (CH), 126.5 (CH), 127.4 (CH), 127.5 (CH), 127.6 (CH), 128.3 (CH), 129.1 (CH), 129.5 (CH), 131.6 (CH), 132.9 (C), 134.3 (C), 137.6 (C), 138.6 (C), 158.5 (C) ppm. IR: $\tilde{v} = 3338, 3062, 3029, 2932, 2855, 1611, 1585, 1530, 1454, 1441,$ 1244, 1101, 1034, 802, 748, 734, 696 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₂₇H₃₂ClNO₂+H) 438.2200; found 438.2205. C₂₇H₃₂ClNO₂ (438.0): calcd. C 74.04. H 7.36. N 3.20: found C 74.12. H 7.37. N 3.59. Characterization of the Markovnikov regioisomer: ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3): \delta = 1.22 - 1.40 \text{ (m, 4 H)}, 1.53 - 1.69 \text{ (m, 4 H)},$ 3.41 (t, J = 6.6 Hz, 2 H), 3.46 (d, J = 12.8 Hz, 1 H), 3.53 (d, J =12.8 Hz, 1 H), 3.78 (s, 3 H), 4.19 (t, J = 6.7 Hz, 1 H), 4.46 (s, 2 H), 6.83 (d, J = 8.7 Hz, 2 H), 7.18 (d, J = 8.5 Hz, 2 H), 7.14–7.19 (m, 1 H), 7.24-7.35 (m, 7 H), 7.52 (dd, J = 7.7, 1.4 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 25.9$ (CH₂), 26.1 (CH₂), 29.6 (CH₂), 37.0 (CH₂), 51.0 (CH₂), 55.2 (CH₃), 58.2 (CH), 70.3 (CH₂), 72.8 (CH₂), 113.7 (CH), 127.0 (CH), 127.4 (CH), 127.5 (CH), 127.7 (CH), 128.1 (CH), 128.3 (CH), 129.3 (CH), 129.5 (CH), 132.8 (C), 133.8 (C), 138.7 (C), 141.6 (C), 158.6 (C) ppm. IR: $\tilde{\nu}=$ 3062, 3030, 2932, 2855, 1611, 1585, 1510, 1454, 1244, 1100, 1032, 821, 752, 734, 696 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₂₇H₃₂ClNO₂+H) 438.2200; found 438.2216. C₂₇H₃₂ClNO₂ (438.0): calcd. C 74.04, H 7.36, N 3.20; found C 74.06, H 7.31, N 3.64.

Indoline 27: A Schlenk tube fitted with a Teflon stopcock and containing a magnetic stirring bar was charged with amine 16 (725 mg, 2.0 mmol), [Pd(PPh₃)₄] (116 mg, 0.1 mmol, 5.0 mol%), K₂CO₃ (553 mg, 4.0 mmol), NaOtBu (384 mg, 4.0 mmol), and toluene (5.0 mL). The mixture was heated to 110 °C for 5 h (TLC monitoring). The reaction mixture was filtered through SiO₂. After the SiO₂ had been washed with CH₂Cl₂, the organic layer was concentrated under vacuum. Purification by flash chromatography on SiO₂ (PE/ EtOAc, 5:1) gave compound 27 (546 mg, 1.94 mmol, 97%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (t, J = 6.9 Hz, 3 H), 1.20-1.38 (m, 4 H), 1.47-1.55 (m, 1 H), 1.69-1.76 (m, 1 H), 2.81 (dd, J = 15.4, 9.4 Hz, 1 H), 3.22 (dd, J = 15.4, 8.8 Hz, 1 H), 3.81 (s, 3 H), 4.08 (qd, J = 9.2, 3.2 Hz, 1 H), 6.46 (d, J = 7.9 Hz, 1 H), 6.66 (td, J = 7.3, 0.8 Hz, 1 H), 6.92 (d, J = 8.9 Hz, 2 H), 6.96 (t, J = 7.7 Hz, 1 H), 7.09 (d, J = 7.2 Hz, 1 H), 7.16 (d, J =8.9 Hz, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta =$ 14.1 (CH₃), 22.8 (CH₂), 27.7 (CH₂), 34.9 (CH₂), 55.4 (CH₂), 65.7 (CH), 107.3 (CH), 114.6 (CH), 117.9 (CH), 124.5 (CH), 125.9 (CH), 127.1 (CH), 129.0 (C), 137.0 (C), 151.3 (C), 156.5 (C) ppm. IR: $\tilde{\nu} = 3098, 3046, 2929, 2857, 1602, 1507, 1480, 1458, 1439, 1241,$ 1036, 831, 742 cm⁻¹. MS (25 °C): m/z (%) = 281 (59) [M⁺], 224 (100), 131 (10), 91 (8). HRMS: calcd. (C₁₉H₂₃NO) 281.1780; found 281.1779. C₁₉H₂₃NO (281.4): calcd. C 81.10, H 8.24, N 4.98; found C 80.80, H 8.30, N 4.81.

Synthesis of Indolines. General Procedure C: A Schlenk tube fitted with a Teflon stopcock and containing a magnetic stirring bar was charged with amine (2.0 mmol), $[Pd_2(dba)_3]$ (92 mg, 0.1 mmol, 5.0 mol %), 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (68 mg, 0.2 mmol, 10.0 mol %), KOtBu (337 mg, 3.0 mmol), and 1,4-dioxane (5.0 mL). The mixture was heated to 110 °C for 12 h (TLC monitoring). The reaction mixture was filtered through SiO₂. After the SiO₂ had been washed with CH₂Cl₂, the organic layer was concentrated under vacuum. The residue was purified by flash chromatography (SiO₂).

Indoline 28: General Procedure C was used to synthesize indoline 28 from amine 17. After purification by flash chromatography (PE/ EtOAc, 20:1), compound 28 (501 mg, 1.99 mmol, 99%) was isolated as a bright vellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (t, J = 7.3 Hz, 3 H), 1.25–1.56 (m, 3 H), 1.71–1.78 (m, 1 H), 2.34 (s, 3 H), 2.81 (dd, J = 15.4, 8.5 Hz, 1 H), 3.24 (dd, J = 15.5, 9.0 Hz, 1 H), 4.19 (ddd, J = 17.8, 8.9, 3.1 Hz, 1 H), 6.63–6.69 (m, 2 H), 6.97 (m, 1 H), 7.08-7.18 (m, 5 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.2$ (CH₃), 18.7 (CH₂), 20.9 (CH₃), 34.8 (CH₂), 36.0 (CH₂), 64.6 (CH), 107.7 (CH), 118.1 (CH), 123.0 (CH), 124.6 (CH), 127.1 (CH), 129.3 (C), 129.8 (CH), 133.0 (C), 141.2 (C), 150.7 (C) ppm. IR: $\tilde{v} = 3026, 2955, 2927, 2862, 1601, 1511,$ 1479, 1459, 1291, 812, 740 cm⁻¹. MS (25 °C): m/z (%) = 251 (60) [M⁺], 208 (100), 193 (26), 116 (11), 91 (33), 77 (5). HRMS: calcd. (C18H21N) 251.1674; found 251.1673. C18H21N (251.4): calcd. C 86.01, H 8.42, N 5.57; found C 85.73, H 8.31, N 5.71.

Indoline 29: General Procedure C was used to synthesize indoline 29 from amine 18. After purification by flash chromatography (PE/ EtOAc, 20:1), compound 29 (580 mg, 1.96 mmol, 98%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.89$ (t, J =7.0 Hz, 3 H), 1.20-1.37 (m, 4 H), 1.46-1.56 (m, 1 H), 1.77-1.83 (m, 1 H), 2.70 (dd, J = 15.6, 9.9 Hz, 1 H), 3.12 (dd, J = 15.5, 9.9 Hz, 1 H), 3.57 (qd, J = 9.5, 3.1 Hz, 1 H), 3.78 (s, 3 H), 4.11 (d, J = 15.9 Hz, 1 H), 4.32 (d, J = 15.9 Hz, 1 H), 6.32 (d, J =7.8 Hz, 1 H), 6.61 (td, J = 7.3, 0.6 Hz, 1 H), 6.84 (d, J = 8.7 Hz, 2 H), 6.97 (t, J = 7.7 Hz, 1 H), 7.03 (d, J = 7.2 Hz, 1 H), 7.25 (d, J = 8.7 Hz, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.1 \text{ (CH}_3), 22.9 \text{ (CH}_2), 27.8 \text{ (CH}_2), 33.7 \text{ (CH}_2), 35.1 \text{ (CH}_2),$ 50.8 (CH₂), 55.2 (CH₃), 65.0 (CH), 106.8 (CH), 113.8 (CH), 117.2 (CH), 124.1 (CH), 127.3 (CH), 128.4 (CH), 128.8 (C), 131.2 (C), 152.9 (C), 158.5 (C) ppm. IR: $\tilde{v} = 3026$, 2953, 2927, 2856, 1606, 1510, 1483, 1461, 1241, 1171, 1035, 820, 741 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₂₀H₂₅NO+H) 296.2014; found 296.2010. C₂₀H₂₅NO (295.4): calcd. C 81.31, H 8.53, N 4.74; found C 81.39, H 8.50, N 5.31.

Indoline 30: General Procedure C was used to synthesize indoline 30 from amine 19. After purification by flash chromatography (PE/ EtOAc, 10:1), compound 30 (425 mg, 1.97 mmol, 99%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.13 - 0.19$ (m, 1 H), 0.31-0.42 (m, 2 H), 0.50-0.57 (m, 1 H), 0.91-0.99 (m, 1 H), 1.37 (s, 9 H), 2.65 (d, J = 14.6 Hz, 1 H), 3.11-3.22 (m, 2 H), 6.67 (td, J = 7.3, 0.6 Hz, 1 H), 6.82 (d, J = 7.8 Hz, 1 H), 7.00 (t, J = 7.7 Hz, 1 H), 7.07 (d, J = 7.2 Hz, 1 H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{DEPT}, \text{CDCl}_3): \delta = 2.4 (CH_2), 6.1 (CH_2), 17.3 (CH),$ 28.8 (CH₃), 36.4 (CH₂), 54.3 (C), 64.3 (CH), 113.7 (CH), 117.9 (CH), 124.3 (CH), 126.3 (CH), 132.5 (C), 149.2 (C) ppm. IR: $\tilde{v} =$ 3072, 2972, 1606, 1475, 1392, 1362, 1019, 736 cm $^{-1}$. MS (25 °C): m/z (%) = 215 (72) [M⁺], 200 (79), 174 (19), 159 (66), 118 (100), 77 (9), 91 (26). HRMS: calcd. (C₁₅H₂₁N) 215.1674; found 215.1663. C15H21N (215.3): calcd. C 83.67, H 9.83, N 6.50; found C 83.32, H 9.17, N 6.13.

Eur. J. Org. Chem. 2003, 2888-2902

Indoline 31: General Procedure C was used to synthesize indoline 31 from amine 20. After purification by flash chromatography (PE), compound 31 (471 mg, 1.94 mmol, 97%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.08 - 0.14$ (m, 1 H), 0.32-0.38 (m, 1 H), 0.45-0.52 (m, 1 H), 0.63-0.69 (m, 1 H), 0.89 (t, J = 6.7 Hz, 1 H), 0.93 - 0.98 (m, 1 H), 1.26 - 1.38 (m, 6 H), 2.79-2.88 (m, 2 H), 3.03-3.30 (m, 3 H), 6.36 (d, J = 7.8 Hz, 1 H), 6.57 (td, J = 7.3, 0.7 Hz, 1 H), 7.00 (d, J = 7.3 Hz, 1 H), 7.03 (t, J = 7.7 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 0.2$ (CH₂), 5.1 (CH₂), 14.0 (CH₃), 14.8 (CH), 22.7 (CH₂), 26.5 (CH₂), 27.1 (CH₂), 31.7 (CH₂), 35.7 (CH₂), 46.4 (CH₂), 69.7 (CH), 105.6 (CH), 116.4 (CH), 124.0 (CH), 127.3 (CH), 128.5 (C), 152.4 (C) ppm. IR: $\tilde{\nu} = 3076, 3001, 2926, 2854, 1606, 1483, 1461, 1260,$ 1020, 740, 714 cm⁻¹. MS (25 °C): m/z (%) = 243 (60) [M⁺], 202 (46), 172 (71), 130 (50), 118 (40), 91 (28). HRMS (ESI, CH₃CN): calcd. (C17H25N+H) 244.2065; found 244.2061. C17H25N (243.4): calcd. C 83.39, H 10.35, N 5.75; found C 83.42, H 10.53, N 5.50.

Indoline 32: General Procedure C was used to synthesize indoline 32 from amine 21. After purification by flash chromatography (PE), compound 32 (634 mg, 1.90 mmol, 95%) was isolated as a white solid. ¹H NMR (400 MHz, CDCl₃): $\delta = -0.12$ to -0.06 (m, 1 H), 0.07-0.13 (m, 1 H), 0.45-0.46 (m, 2 H), 0.98-1.07 (m, 1 H), 2.98 (dd, J = 15.9, 8.4 Hz, 1 H), 3.28 (dd, J = 15.9, 9.1 Hz, 1 H), 3.43 (q, J = 8.7 Hz, 1 H), 3.83 (s, 3 H), 6.32 (d, J = 8.3 Hz, 1 H), 6.93 (d, J = 8.9 Hz, 2 H), 7.20 (d, J = 8.9 Hz, 3 H), 7.28 (br. s, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 0.6$ (CH₂), 5.2 (CH₂), 15.3 (CH), 34.9 (CH₂), 55.4 (CH₃), 72.1 (CH), 106.2 (CH), 114.7 (CH), 119.2 (C, q, J = 32 Hz), 121.4 (CH, q, J = 4 Hz), 125.2 (CF₃, q, J = 270 Hz), 125.3 (CH, q, J = 4 Hz), 127.8 (CH), 129.0 (C), 136.0 (C), 154.2 (C), 157.7 (C) ppm. IR: $\tilde{v} = 3079, 3013, 2960, 2902, 1621, 1513, 1456, 1328, 1276, 1247,$ 1217, 1091, 1028, 820, 816 cm⁻¹. MS (80 °C): m/z (%) = 333 (100) [M⁺], 318 (27), 314 (28), 305 (29), 292 (81), 278 (25), 261 (25), 248 (28), 235 (20), 224 (21), 198 (28), 159 (25), 146 (18). HRMS: calcd. (C₁₉H₁₈F₃NO) 333.1340; found 333.1341. C₁₉H₁₈F₃NO (333.4): calcd. C 68.46, H 5.44, N 4.20; found C 68.66, H 5.40, N 4.06.

Indoline 33: General Procedure C was used to synthesize indoline 33 from amine 22. After purification by flash chromatography (PE), compound 33 (528 mg, 1.79 mmol, 89%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (t, J = 6.8 Hz, 3 H), 1.26-1.31 (m, 4 H), 1.49-1.57 (m, 1 H), 1.74-1.80 (m, 1 H), 2.32 (s, 3 H), 2.76 (dd, J = 15.6, 8.0 Hz, 1 H), 3.21 (dd, J =15.6, 8.7 Hz, 1 H), 3.74 (s, 3 H), 4.11 (qd, J = 8.7, 3.1 Hz, 1 H), 6.55 (dd, J = 8.5, 2.5 Hz, 1 H), 6.62 (d, J = 8.5 Hz, 1 H), 6.75 (d, J = 8.5 Hz, 1 Hz, 1 H), 6.75 (dJ = 2.5 Hz, 1 H), 7.10 (d, J = 8.5 Hz, 2 H), 7.15 (d, J = 8.4 Hz, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.1$ (CH₃), 20.8 (CH₃), 22.8 (CH₂), 27.6 (CH₂), 33.5 (CH₂), 35.1 (CH₂), 56.0 (CH₃), 65.2 (CH), 108.5 (CH), 111.5 (CH), 112.0 (CH), 121.8 (CH), 129.8 (CH), 131.0 (C), 132.1 (C), 142.2 (C), 144.0 (C), 153.1 (C) ppm. IR: $\tilde{v} = 2928, 2859, 1614, 1596, 1512, 1484, 1373, 1246, 1035,$ 797 cm⁻¹. MS (90 °C): m/z (%) = 295 (77) [M⁺], 238 (100), 207 (11). HRMS (ESI, CH₃CN): calcd. (C₂₀H₂₅NO+H) 296.2014; found 296.2003. C₂₀H₂₅NO (295.4): calcd. C 81.31, H 8.53, N 4.74; found C 81.14, H 8.17, N 4.53.

Indoline 34: General Procedure C was used to synthesize indoline **34** from amine **23**. After purification by flash chromatography (PE/ EtOAc, 20:1), compound **34** (451 mg, 1.72 mmol, 86%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.9 Hz, 3 H), 1.26 (s, 9 H), 1.27–1.45 (m, 6 H), 2.43 (d, J = 15.7 Hz, 1 H), 3.14 (dd, J = 15.7, 8.7 Hz, 1 H), 3.62–3.67 (m, 1 H), 3.73 (s, 3 H), 6.56 (dd, J = 8.6, 2.6 Hz, 1 H), 6.69 (d, J = 2.6 Hz, 1 H), 6.78 (d, J = 8.5 Hz, 1 H) ppm. ¹³C NMR

(100.6 MHz, DEPT, CDCl₃): δ = 14.1 (CH₃), 22.8 (CH₂), 28.0 (CH₃), 28.8 (CH₃), 35.5 (CH₂), 36.7 (CH₂), 55.6 (CH₃), 55.7 (C), 60.3 (CH), 111.0 (CH), 111.1 (CH), 116.8 (CH), 135.4 (C), 143.4 (C), 153.8 (C) ppm. IR: \tilde{v} = 2955, 2932, 2871, 1577, 1522, 1483, 1466, 1390, 1362, 1257, 1213, 1190, 1179, 1038, 802 cm⁻¹. MS (25 °C): *m/z* (%) = 261 (78) [M⁺], 246 (76), 206 (85), 190 (13), 174 (13), 160 (32), 148 (100), 133 (47), 117 (26). HRMS (ESI, CH₃CN): calcd. (C₁₇H₂₇NO+H) 262.2171; found 262.2182. C₁₇H₂₇NO (261.4): calcd. C 78.11, H 10.41, N 5.36; found C 77.83, H 10.14, N 4.97.

Indoline 35: General Procedure C was used to synthesize indoline 35 from amine 26. After purification by flash chromatography (PE/ EtOAc, 10:1), compound 35 (742 mg, 1.84 mmol, 92%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.31 - 1.66$ (m, 5 H), 1.76-1.85 (m, 1 H), 2.70 (dd, J = 15.6, 9.8 Hz, 1 H), 3.12(dd, J = 15.6, 8.7 Hz, 1 H), 3.44 (t, J = 6.5 Hz, 2 H), 3.57 (qd, J)J = 9.2, 3.1 Hz, 1 H), 3.77 (s, 3 H), 4.10 (d, J = 15.9 Hz, 1 H), 4.30 (d, J = 15.9 Hz, 1 H), 4.48 (s, 2 H), 6.32 (d, J = 7.8 Hz, 1 H),6.61 (td, J = 7.4, 0.5 Hz, 1 H), 6.83 (d, J = 8.7 Hz, 2 H), 6.97 (t, J = 8.7 Hz, 1 H), 7.03 (d, J = 7.2 Hz, 1 H), 7.23 (d, J = 8.7 Hz, 2 H), 7.24-7.35 (m, 5 H) ppm. ¹³C NMR (100.6 MHz, DEPT, $CDCl_3$): $\delta = 22.3 (CH_2), 29.9 (CH_2), 33.7 (CH_2), 35.0 (CH_2), 50.8$ (CH₂), 55.2 (CH₃), 64.9 (CH), 70.2 (CH₂), 72.9 (CH₂), 106.8 (CH), 113.8 (CH), 117.2 (CH), 124.1 (CH), 127.3 (CH), 127.5 (CH), 127.6 (CH), 128.3 (CH), 128.4 (CH), 128.7 (C), 131.1 (C), 138.6 (C), 152.9 (C), 158.5 (C) ppm. IR: $\tilde{v} = 3029, 3002, 2923, 2839, 1608,$ 1512, 1488, 1453, 1350, 1247, 1107, 1035, 827, 811, 747, 736, 716, 696 cm⁻¹. HRMS (ESI, CH₃CN): calcd. ($C_{27}H_{31}NO_2+H$) 402.2433; found 402.2424. C₂₇H₃₁NO₂ (401.54): calcd. C 80.76, H 7.78, N 3.49; found C 80.41, H 7.47, N 3.35.

Synthesis of Benzophenone Imine Compounds. General Procedure D: A Schlenk tube fitted with a Teflon stopcock and containing a magnetic stirring bar was charged with amine (2.5 mmol), benzophenone imine (544 mg, 3.0 mmol), $[Pd_2(dba)_3]$ (27 mg, 0.03 mmol, 1.0 mol %), 1,1'-bis(diphenylphosphanyl)ferrocene (DPPF, 44 mg, 0.08 mmol, 3.0 mol %), NaOtBu (336 mg, 3.5 mmol), and toluene (5.0 mL). The mixture was heated to 100 °C for 24 h (TLC monitoring). The reaction mixture was filtered through SiO₂. After the SiO₂ had been washed with CH₂Cl₂, the organic layer was concentrated under vacuum. The residue was purified by flash chromatography (SiO₂).

Amine 36: General Procedure D was used to synthesize amine 36 from amine 24. After purification by flash chromatography (PE/ EtOAc, 20:1), compound 36 (1.18 g, 2.45 mmol, 98%) was isolated as a bright vellow oil, contaminated with benzophenone imine impurities. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.84$ (t, J = 6.9 Hz, 3 H), 1.25-1.48 (m, 6 H), 2.21 (s, 3 H), 2.69 (dd, J = 13.7, 7.0 Hz, 1 H), 2.91 (dd, J = 13.7, 6.3 Hz, 1 H), 3.32 (br. s, 1 H), 3.56-3.59(m, 1 H), 6.47 (dd, J = 8.1, 2.1 Hz, 1 H), 6.49 (d, J = 8.4 Hz, 2 H), 6.78 (d, J = 2.1 Hz, 1 H), 6.93 (dd, J = 8.2, 3.1 Hz, 3 H), 7.07 (dd, J = 8.0, 1.4 Hz, 2 H), 7.19–7.28 (m, 3 H), 7.37–7.40 (m, 2 H), 7.44–7.49 (m, 1 H), 7.71–7.73 (m, 2 H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{ DEPT}, \text{ CDCl}_3): \delta = 14.0 \text{ (CH}_3), 20.3 \text{ (CH}_3), 22.6$ (CH₂), 28.1 (CH₂), 34.2 (CH₂), 38.2 (CH₂), 53.6 (CH), 113.1 (CH), 119.4 (CH), 122.0 (CH), 125.9 (C), 127.9 (CH), 128.2 (CH), 128.7 (CH), 129.3 (CH), 129.7 (CH), 130.9 (CH), 131.2 (CH), 131.5 (C), 134.0 (C), 135.8 (C), 139.3 (C), 145.5 (C), 150.5 (C), 169.0 (C) ppm. IR: $\tilde{v} = 3402, 3022, 2924, 2852, 1660, 1616, 1594, 1518, 1482, 1445,$ 1317, 1291, 960, 805, 693 cm⁻¹. MS (150 °C): m/z (%) = 480 (7) [M⁺], 444 (4), 305 (83), 182 (27), 176 (100), 120 (23), 105 (49), 84 (43), 77 (53). HRMS (ESI, CH₃CN): calcd. (C₃₂H₃₃ClN₂+H) 481.2411; found 481.2402.

Amine 37: General Procedure D was used to synthesize amine 37 from amine 25. After purification by flash chromatography (PE/ EtOAc, 5:1), compound 37 (1.18 g, 2.45 mmol, 98%) was isolated as a bright vellow oil, contaminated with benzophenone imine impurities. ¹H NMR (400 MHz, CDCl₃): $\delta = -0.31$ to -0.15 (m, 1) H), 0.11-0.17 (m, 1 H), 0.20-0.26 (m, 1 H), 0.32-0.40 (m, 1 H), 0.73 - 0.81 (m, 1 H), 2.74 (dd, J = 13.3, 7.8 Hz, 1 H), 2.85 - 2.91 (m, 1 H), 3.13 (dd, J = 13.3, 5.5 Hz, 1 H), 3.73 (s, 3 H), 6.49 (dd, J = 8.0, 2.1 Hz, 1 H), 6.57 (d, J = 8.9 Hz, 2 H), 6.74 (d, J =9.0 Hz, 2 H), 6.78 (d, J = 2.0 Hz, 1 H), 6.99 (d, J = 8.2 Hz, 1 H), 7.08-7.11 (m, 2 H), 7.22-7.29 (m, 3 H), 7.38-7.41 (m, 2 H), 7.45-7.49 (m, 1 H), 7.72-7.74 (m, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 2.4 (CH₂), 4.1 (CH₂), 16.3 (CH), 39.0 (CH₂), 55.8 (CH₃), 59.0 (CH), 114.8 (CH), 114.9 (CH), 119.2 (CH), 121.8 (CH), 128.0 (CH), 128.2 (CH), 128.7 (CH), 129.3 (CH), 129.3 (CH), 130.9 (CH), 131.4 (CH), 131.6 (CH), 133.9 (C), 135.8 (C), 139.2 (C), 142.0 (C), 150.6 (C), 152.0 (C), 169.1 (C) ppm. IR: $\tilde{v} = 3075, 3000, 2925, 2854, 1571, 1473, 1442, 1121, 1051, 1019,$ 823, 747, 681 cm⁻¹. MS (160 °C): m/z (%) = 480 (4) [M⁺], 307 (41), 305 (100), 176 (74), 160 (11), 134 (6), 105 (7). HRMS (ESI, CH₃CN): calcd. (C₃₁H₂₉ClN₂O+H) 481.2047; found 481.2037.

Indoline 38: General Procedure C was used to synthesize indoline 38 from amine 36. The mixture was heated to 100 °C for 16 h. After purification by flash chromatography (PE/EtOAc, 50:1), compound 38 (782 mg, 1.76 mmol, 88%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (t, J = 6.7 Hz, 3 H), 1.24-1.26 (m, 4 H), 1.42-1.51 (m, 1 H), 1.68-1.72 (m, 1 H), 2.29 (s, 3 H), 2.68 (dd, J = 15.4, 7.6 Hz, 1 H), 3.13 (dd, J =15.4, 8.9 Hz, 1 H), 4.08 (qd, J = 8.9, 3.0 Hz, 1 H), 6.04 (d, J =1.6 Hz, 1 H), 6.18 (dd, J = 7.7, 1.8 Hz, 1 H), 6.78 (d, J = 8.3 Hz, 2 H), 6.89 (d, J = 7.7 Hz, 1 H), 7.03 (d, J = 8.2 Hz, 2 H), 7.13-7.15 (m, 2 H), 7.27-7.48 (m, 6 H), 7.79 (dd, J = 7.0, 1.4 Hz, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.1$ (CH₃), 20.8 (CH₃), 22.7 (CH₂), 27.4 (CH₂), 33.4 (CH₂), 34.3 (CH₂), 65.0 (CH), 101.9 (CH), 111.7 (CH), 122.1 (CH), 124.2 (CH), 124.6 (C), 127.8 (CH), 128.0 (CH), 128.3 (CH), 129.2 (CH), 129.5 (CH), 129.6 (CH), 130.3 (CH), 132.2 (C), 136.7 (C), 140.1 (C), 141.0 (C), 149.7 (C), 150.4 (C), 167.4 (C) ppm. IR: $\tilde{v} = 3058, 3025, 2954, 2928,$ 2858, 1661, 1597, 1511, 1480, 1276, 809, 695 cm⁻¹. MS (80 °C): m/z (%) = 445 (2) [M⁺ + H], 388 (2), 280 (6), 182 (100), 131 (24), 105 (97), 77 (77). HRMS (ESI, CH₃CN): calcd. (C₃₂H₃₂N₂+H) 445.2644; found 445.2652.

Indoline 39: General Procedure C was used to synthesize indoline 39 from amine 37. The mixture was heated to 100 °C for 16 h. After purification by flash chromatography (PE/EtOAc, 20:1), compound 39 (819 mg, 1.84 mmol, 92%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = -0.17$ to -0.11 (m, 1 H), 0.02-0.08 (m, 1 H), 0.30-0.41 (m, 2 H), 0.94-1.03 (m, 1 H), 2.83 (dd, J = 15.3, 8.2 Hz, 1 H), 3.12 (dd, J = 15.4, 8.8 Hz, 1 H), 3.23 (q, J = 8.5 Hz, 1 H), 3.79 (s, 3 H), 5.78 (d, J = 1.8 Hz, 1 H), 6.17 (dd, J = 7.7, 1.8 Hz, 1 H), 6.78 (d, J = 9.0 Hz, 2 H), 6.90 (d, J = 8.9 Hz, 1 H), 6.88-6.92 (m, 1 H), 7.10-7.13 (m, 2 H),7.27-7.42 (m, 6 H), 7.64-7.66 (m, 2 H) ppm. ¹³C NMR $(100.6 \text{ MHz}, \text{DEPT}, \text{CDCl}_3): \delta = 0.7 (\text{CH}_2), 5.1 (\text{CH}_2), 15.2 (\text{CH}),$ 35.1 (CH₂), 55.4 (CH₃), 72.4 (CH), 102.0 (CH), 111.3 (CH), 114.2 (CH), 124.1 (CH), 124.1 (C), 126.6 (CH), 127.8 (CH), 128.0 (CH), 128.2 (CH), 129.2 (CH), 129.5 (CH), 130.3 (CH), 136.7 (C), 137.8 (C), 140.1 (C), 150.6 (C), 151.4 (C), 156.6 (C), 167.4 (C) ppm. IR: $\tilde{v} = 2999, 2931, 2834, 1595, 1506, 1484, 1441, 1287, 1240, 1031,$ 832, 693 cm⁻¹. MS (150 °C): m/z (%) = 444 (100) [M⁺], 403 (28), 222 (6). HRMS (ESI, CH₃CN): calcd. (C₃₁H₂₈N₂O+H) 445.2280; found 445.2302.

Cleavage of the Benzophenone Imine. General Procedure E: A round-bottomed flask containing a magnetic stirring bar was charged with indoline (1.5 mmol), THF (5.0 mL), and HCl (2 N, 0.5 mL). After this had been stirred at 25 °C for 30 min (TLC monitoring), KOH (2 N) and *tert*-butyl methyl ether were added. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 ×). The combined organic layers were dried with Na_2SO_4 and concentrated under vacuum. The residue was purified by flash chromatography (SiO₂).

Indoline 40: General Procedure E was used to synthesize indoline 40 from indoline 38. After purification by flash chromatography (PE/EtOAc, 10:1), compound 40 (388 mg, 1.38 mmol, 92%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.85$ (t, J = 6.8 Hz, 3 H), 1.25 - 1.33 (m, 4 H), 1.45 - 1.51 (m, 1 H),1.70 - 1.76 (m, 1 H), 2.33 (s, 3 H), 2.70 (dd, J = 14.9, 8.5 Hz, 1 H), 3.12 (dd, J = 15.0, 8.6 Hz, 1 H), 3.26 (br. s, 2 H), 4.15 (qd, J =8.9, 3.1 Hz, 1 H), 6.00-6.02 (m, 2 H), 6.86 (d, J = 8.0 Hz, 1 H), 7.11 (d, J = 8.5 Hz, 2 H), 7.16 (d, J = 8.3 Hz, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 14.0$ (CH₃), 20.8 (CH₃), 22.7 (CH₂), 27.6 (CH₂), 33.4 (CH₂), 34.1 (CH₂), 65.2 (CH), 95.8 (CH), 104.8 (CH), 119.5 (C), 123.4 (CH), 124.9 (CH), 129.8 (CH), 133.0 (C), 141.1 (C), 146.0 (C), 151.2 (C) ppm. IR: $\tilde{v} = 3444, 3361,$ 3024, 2926, 2857, 1607, 1510, 1496, 1378, 1304, 1200, 813 cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₉H₂₄N₂+H) 281.2018; found 281.2020. C₁₉H₂₄N₂ (280.4): calcd. C 81.33, H 8.63, N 9.99; found C 80.87, H 8.26, N 9.54.

Indoline 41: General Procedure E was used to synthesize indoline **41** from indoline **39.** After purification by flash chromatography (PE/EtOAc, 10:1), compound **41** (381 mg, 1.36 mmol, 91%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = -0.14$ to -0.09 (m, 1 H), 0.05-0.11 (m, 1 H), 0.31-0.42 (m, 2 H), 0.97-1.06 (m, 1 H), 2.84 (dd, J = 14.7, 8.4 Hz, 1 H), 3.13 (dd, J = 15.1, 8.8 Hz, 1 H), 3.32 (q, J = 8.7 Hz, 1 H), 3.82 (s, 3 H), 5.76 (d, J = 2.0 Hz, 1 H), 6.01 (dd, J = 7.7, 2.1 Hz, 1 H), 6.85 (d, J = 7.7 Hz, 1 H), 6.90 (d, J = 8.9 Hz, 2 H), 7.22 (d, J = 8.9 Hz, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 0.6$ (CH₂), 5.0 (CH₂), 15.2 (CH), 34.7 (CH₂), 55.4 (CH₃), 72.4 (CH), 95.9 (CH), 104.5 (CH), 114.4 (CH), 119.1 (C), 124.7 (CH), 127.7 (CH), 137.7 (C), 146.1 (C), 152.8 (C), 157.0 (C) ppm. IR: $\tilde{v} = 3444, 3361, 3000, 2933, 2835, 1615, 1497, 1456, 1286, 1239, 1031, 826$ cm⁻¹. HRMS (ESI, CH₃CN): calcd. (C₁₈H₂₀N₂O+H) 281.1654; found 281.1660.

Amine 48: General Procedure B was used to synthesize amine 48 from aminoalkyne 42. The reaction time for the hydroamination step was 4 h. After purification by flash chromatography (MeOH/ EtOAc, 1:1), compound 48 (845 mg, 3.52 mmol, 88%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.65 - 1.74$ (m, 1 H), 1.84-1.95 (m, 3 H), 2.86 (dd, J = 13.3, 10.0 Hz, 1 H), 2.92-3.03 (m, 1 H), 3.30-3.45 (m, 1 H), 3.45-3.60 (m, 2 H), 5.15 (br. s, 1 H), 7.09-7.15 (m, 1 H), 7.24-7.28 (m, 2 H), 7.56 (d, J =7.6 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): δ = 22.9 (CH₂), 30.2 (CH₂), 38.2 (CH₂), 53.7 (CH₂), 65.4 (CH), 124.6 (C), 127.8 (CH), 128.8 (CH), 131.3 (CH), 133.2 (CH), 136.6 (C) ppm. IR: $\tilde{v} = 3102, 2982, 2961, 2858, 2422, 2405, 2200, 1657, 1470,$ 1435, 1375, 1360, 1275, 1220, 1166, 1133, 1118, 1077, 1045, 1023, 969, 943, 907, 864, 745, 697, 659, 598 cm⁻¹. MS (25 °C): m/z (%) = 241 (1) [M⁺(⁸¹Br)], 239 (1) [M⁺(⁷⁹Br)], 238 (4), 199 (39), 197 (31), 172 (52), 170 (38), 157 (27), 155 (26), 145 (12), 143 (13), 130 (18), 128 (23), 121 (32), 116 (27), 115 (32), 114 (43), 107 (27), 103 (13), 95 (25), 91 (53), 82 (100), 77 (21), 70 (52), 65 (25). HRMS: calcd. (C₁₁H₁₄BrN) 239.0309; found 239.0192.

Amine 49: General Procedure B was used to synthesize amine 49 from aminoalkyne 43. The reaction time for the hydroamination

step was 4 h. After purification by flash chromatography (PE/ EtOAc, 1:1), compound **49** (523 mg, 2.49 mmol, 62%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.20-0.80$ (br. s, 1 H), 1.47 (d, J = 6.5 Hz, 2 H), 1.57 (d, J = 6.5 Hz, 2 H), 1.85–2.05 (m, 2 H), 2.43 (s, 3 H), 3.27–3.45 (m, 2 H), 3.75–3.95 (m, 1 H), 7.10–7.14 (m, 2 H), 7.20–7.24 (m, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 15.9$ (CH₂), 18.9 (CH₂), 21.1 (CH₃), 29.2 (CH₂), 31.2 (CH₂), 54.8 (CH), 127.7 (CH), 128.5 (CH), 129.8 (CH), 132.0 (C), 134.4 (C), 139.4 (C) ppm. IR: $\tilde{\nu} = 3513$, 3455, 3079, 2983, 1612, 1567, 1454, 1400, 1287, 1117, 1015, 959, 863, 784, 723 cm⁻¹. MS (180 °C): *m/z* (%) = 209 (3) [M⁺], 174 (5), 139 (17), 126 (29), 115 (5), 113 (13), 105 (6), 91 (10), 70 (34), 65 (3). HRMS: calcd. (C₁₂H₁₆CIN) 209.0971; found 209.0928.

Amine 50: General Procedure B was used to synthesize amine 50 from aminoalkyne 44. The reaction time for the hydroamination step was 4 h. After purification by flash chromatography (EtOAc), compound 50 (878 mg, 3.89 mmol, 97%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.65 - 1.81$ (m, 1 H), 1.82-1.96 (m, 1 H), 1.97-2.12 (m, 2 H), 3.04-3.15 (m, 3 H), 3.25-3.40 (m, 1 H), 3.60-3.70 (m, 1 H), 3.79 (s, 3 H), 6.10 (br. s, 1 H), 6.75 (dd, J = 8.8, 2.9 Hz, 1 H), 6.91 (d, J = 3.0 Hz, 1 H), 7.24 (d, J = 8.8 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, $CDCl_3$): $\delta = 23.6 (CH_2), 30.2 (CH_2), 36.6 (CH_2), 45.4 (CH_2), 55.7$ (CH₃), 60.1 (CH), 114.6 (CH), 116.4 (CH), 125.1 (C), 130.5 (CH), 135.5 (C), 158.6 (C) ppm. IR: $\tilde{v} = 2962, 2836, 1596, 1575, 1477,$ 1417, 1382, 1293, 1241, 1211, 1191, 1163, 1123, 1062, 1024, 929, 872, 809 cm⁻¹. MS (80 °C): m/z (%) = 226 (3) [M⁺], 190 (3), 174 (3), 155 (11), 125 (6), 112 (100), 91 (4), 84 (7), 70 (92). HRMS: calcd. (C12H16CINO) 225.0920; found 225.0880.

Amine 51: General Procedure B was used to synthesize amine 51 from aminoalkyne 45. The reaction time for the hydroamination step was 6 h. After purification by flash chromatography (MeOH/ EtOAc, 1:1), compound 51 (682 mg, 2.68 mmol, 67%) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.17 - 1.38$ (m, 2 H), 1.34–1.58 (m, 1 H), 1.58 (d, J = 13.2 Hz, 1 H), 1.68 (d, J = 11.2 Hz, 1 H), 1.78 (d, J = 12.2 Hz, 1 H), 2.55 (dt, J = 11.7, 2.8 Hz, 1 H), 2.70 (dd, J = 12.4, 7.3 Hz, 1 H), 2.76–2.90 (m, 2 H), 3.02 (d, J = 12.3 Hz, 1 H), 7.02 - 7.11 (m, 1 H), 7.15 - 7.25 (m, 2 H),7.54 (d, J = 7.8 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, $CDCl_3$): $\delta = 24.8 (CH_2), 26.2 (CH_2), 32.7 (CH_2), 43.9 (CH_2), 47.2$ (CH₂), 56.3 (CH), 124.9 (C), 127.2 (CH), 127.9 (CH), 131.5 (CH), 132.9 (CH), 138.6 (C) ppm. IR: v = 3055, 2927, 2852, 2798, 2736, 1566, 1470, 1439, 1379, 1331, 1320, 1267, 1150, 1118, 1077, 1051, 1022, 981, 944, 930, 887, 808, 747, 718, 701, 659 cm⁻¹. MS (25 °C): m/z (%) = 254 (14) [M⁺(⁸¹Br)], 252 (15) [M⁺(⁷⁹Br)], 224 (3), 198 (3), 196 (2), 171 (28), 169 (28), 144 (10), 130 (21), 128 (11), 118 (27), 115 (27), 103 (13), 98 (8), 91 (32), 90 (28), 84 (100), 82 (27), 77 (16), 70 (7), 68 (12), 65 (17). HRMS: calcd. (C₁₂H₁₆BrN) 253.0466; found 253.0305.

Amine 52: General Procedure B was used to synthesize amine 52 from aminoalkyne 46. The reaction time for the hydroamination step was 6 h. After purification by flash chromatography (MeOH/ EtOAc, 1:8), compound 52 (1.04 g, 3.74 mmol, 94%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.31-1.42$ (m, 1 H), 1.66 (d, J = 13.7 Hz, 1 H), 1.76–1.96 (m, 3 H), 1.96–2.12 (m, 1 H), 2.95 (t, J = 12.8 Hz, 1 H), 3.28–3.38 (m, 2 H), 3.58 (d, J = 12.9 Hz, 1 H), 3.70 (d, J = 9.2 Hz, 1 H), 7.42–7.52 (m, 2 H), 7.60 (s, 1 H), 8.90–10.20 (br. s, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 21.9$ (CH₂), 22.2 (CH₂), 27.3 (CH₂), 36.9 (CH₂), 44.8 (CH₂), 56.3 (CH), 123.4 (CF₃, q, J =272 Hz), 125.6 (CH, q, J = 4 Hz), 128.7 (CH, q, J = 4 Hz), 129.5 (C, q, J = 33 Hz), 130.3 (CH), 134.8 (C), 138.2 (C) ppm. IR: $\tilde{v} =$ 3117, 3044, 2955, 2929, 2817, 2791, 2762, 2714, 2678, 2559, 2500, 2449, 2360, 2323, 2051, 1983, 1712, 1613, 1587, 1468, 1443, 1415, 1385, 1332, 1275, 1200, 1176, 1122, 1078, 1030, 990, 959, 933, 895, 828, 752, 729, 656, 600, 566, 533, 517 cm⁻¹. MS (60 °C): m/z (%) = 277 (1) [M⁺], 240 (3), 222 (12), 193 (11), 159 (6), 158 (4), 145 (2), 98 (2), 85 (17), 84 (100), 70 (2), 67 (3). HRMS: calcd. (C₁₃H₁₅ClF₃N) 277.0845; found 277.0794.

Amine 53: General Procedure B was used to synthesize amine 53 from aminoalkyne 47. The reaction time for the hydroamination step was 6 h. After purification by flash chromatography (MeOH/ EtOAc, 1:8), compound 53 (929 mg, 3.88 mmol, 97%) was isolated as a bright vellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.32 - 1.42$ (m, 1 H), 1.70-1.88 (m, 4 H), 1.90-2.05 (m, 1 H), 3.03 (t, J =10.2 Hz, 1 H), 3.18-3.25 (m, 1 H), 3.44 (d, J = 9.6 Hz, 2 H), 3.76(s, 3 H), 3.74-3.78 (m, 1 H), 6.71 (dd, J = 8.8, 3.0 Hz, 1 H), 7.00(d, J = 2.9 Hz, 1 H), 7.18 (d, J = 8.8 Hz, 1 H), 8.00-8.70 (br. s,1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 22.1$ (CH₂), 22.2 (CH₂), 27.5 (CH₂), 37.3 (CH₂), 45.8 (CH₂), 55.8 (CH₃), 57.7 (CH), 115.0 (CH), 117.0 (CH), 125.4 (C), 130.2 (CH), 134.3 (C), 158.5 (C) ppm. IR: $\tilde{v} = 2944, 2837, 1596, 1480, 1283, 1242, 1211,$ 1191, 1165, 1123, 1063, 1022, 981, 924, 873, 810, 734, 700 cm⁻¹. MS (100 °C): m/z (%) = 239 (1) [M⁺], 202 (2), 155 (10), 148 (7), 128 (9), 115 (8), 105 (4), 98 (6), 92 (32), 91 (50), 85 (28), 84 (100), 77 (4), 65 (3). HRMS: calcd. (C13H18CINO) 239.1076; found 239.1078.

Synthesis of Pyrrolizidines and Indolizidines from Chloro Derivatives. General Procedure F: A Schlenk tube fitted with a Teflon stopcock and containing a magnetic stirring bar was charged with amine (1.0 mmol), $[Pd_2(dba)_3]$ (46 mg, 0.05 mmol, 5.0 mol %), 1,3bis(2,4,6-trimethylphenyl)imidazolium chloride (34 mg, 0.1 mmol, 10.0 mol %), KOtBu (168 mg, 1.5 mmol), and 1,4-dioxane (2.0 mL). After this had been stirred at 110 °C for 3–12 h (TLC monitoring), water and *tert*-butyl methyl ether were added. The organic layer was separated and the aqueous layer was extracted with *tert*-butyl methyl ether (3 ×). The combined organic layers were dried with Na₂SO₄ and concentrated under vacuum. The residue was purified by flash chromatography (SiO₂).

Synthesis of Pyrrolizidines and Indolizidines from Bromo Derivatives. General Procedure G: A Schlenk tube fitted with a Teflon stopcock and containing a magnetic stirring bar was charged with amine (1.0 mmol), [Pd(PPh_3)_4] (58 mg, 0.05 mmol, 5.0 mol%), K_2CO_3 (276 mg, 2.0 mmol), NaOtBu (192 mg, 2.0 mmol), and toluene (2.0 mL). After this had been stirred at 110 °C for 6 h (TLC monitoring), water and *tert*-butyl methyl ether were added. The organic layer was separated and the aqueous layer was extracted with *tert*-butyl methyl ether (3 ×). The combined organic layers were dried with Na₂SO₄ and concentrated under vacuum. The residue was purified by flash chromatography (SiO₂).

Pyrrolizidine 54: General Procedure G was used to synthesize pyrrolizidine **54** from amine **48**. After purification by flash chromatography (PE/EtOAc, 5:1), compound **54** (113 mg, 0.71 mmol, 71%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.31-1.42$ (m, 1 H), 1.82-1.90 (m, 3 H), 2.95 (dd, J = 16.1, 2.6 Hz, 1 H), 3.12-3.26 (m, 2 H), 3.45-3.55 (m, 1 H), 3.97-4.04 (m, 1 H), 6.67 (d, J = 7.8 Hz, 1 H), 6.81 (t, J = 7.2 Hz, 1 H), 7.07-7.15 (m, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 25.7$ (CH₂), 31.4 (CH₂), 34.0 (CH₂), 52.8 (CH₂), 65.4 (CH), 111.8 (CH), 120.3 (CH), 124.9 (CH), 127.7 (CH), 132.3 (C), 153.2 (C) ppm. IR: $\tilde{v} = 3069$, 3046, 3022, 2957, 2926, 2872, 1603, 1475, 1456, 1434, 1358, 1313, 1263, 1224, 1180, 1152, 1114, 1089, 1070, 1021, 985, 957, 913, 867, 845, 744, 714, 695 cm⁻¹. MS (25 °C):

m/z (%) = 159 (100) [M⁺], 144 (9), 131 (97), 117 (30), 103 (21), 91 (22), 89 (24), 77 (30), 65 (18).

Pyrrolizidine 55: General Procedure F was used to synthesize pyrrolizidine 55 from amine 49. The reaction time was 12 h. After purification by flash chromatography (PE/EtOAc, 8:1), compound 55 (171 mg, 0.99 mmol, 99%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.31$ (quin, J = 9.9 Hz, 1 H), 1.78 - 1.94 (m, 3 H), 2.18 (s, 3 H), 2.87 (dd, J = 16.0, 3.2 Hz, 1 H), 3.02-3.19 (m, 2 H), 3.35-3.45 (m, 1 H), 3.85-3.95 (m, 1 H), 6.40 (d, J = 7.8 Hz, 1 H), 6.60 (d, J = 7.6 Hz, 1 H), 7.00 (t, J = 7.7 Hz)1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 18.7$ (CH₃), 25.8 (CH₂), 31.7 (CH₂), 32.9 (CH₂), 52.3 (CH₂), 65.0 (CH), 108.4 (CH), 120.4 (CH), 127.6 (CH), 128.6 (C), 134.2 (C), 154.4 (C) ppm. IR: $\tilde{v} = 3027, 2917, 1774, 1704, 1595, 1453, 1436, 1397, 1371, 1336,$ 1262, 1233, 1175, 1146, 1115, 1074, 1025, 959, 910, 882, 860, 767, 715 cm⁻¹. MS (25 °C): m/z (%) = 173 (100) [M⁺], 158 (27), 144 (84), 130 (60), 115 (29), 103 (23), 91 (20), 87 (21), 77 (30), 65 (13). HRMS: calcd. (C₁₂H₁₅N) 173.1205; found 173.1204.

Indolizidine 57: General Procedure G was used to synthesize indolizidine 57 from amine 51. After purification by flash chromatography (EtOAc), compound 57 (111 mg, 0.64 mmol, 64%) was isolated as a bright vellow oil. ¹H NMR (400 MHz, CDCl₂): $\delta = 1.33 - 1.72$ (m, 4 H), 1.76-1.92 (m, 2 H), 2.52-2.68 (m, 2 H), 2.94 (dd, J =14.8, 7.5 Hz, 1 H), 3.15-3.26 (m, 1 H), 3.63 (dd, J = 12.0, 1.9 Hz, 1 H), 6.44 (d, J = 7.6 Hz, 1 H), 6.63 (t, J = 7.3 Hz, 1 H), 7.01-7.14 (m, 2 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 24.3$ (CH₂), 24.6 (CH₂), 30.6 (CH₂), 35.5 (CH₂), 45.2 (CH₂), 65.2 (CH), 106.0 (CH), 119.5 (CH), 124.5 (CH), 127.2 (CH), 129.4 (C), 151.5 (C) ppm. IR: $\tilde{v} = 3048, 3025, 2930, 2850, 2789, 1608, 1480, 1456,$ 1441, 1384, 1360, 1337, 1316, 1299, 1283, 1250, 1210, 1178, 1151, 1134, 1117, 1089, 1056, 1020, 981, 972, 943, 915, 892, 860, 835, 821, 744, 729, 714 cm⁻¹. MS (25 °C): m/z (%) = 173 (100) [M⁺], 158 (11), 144 (53), 132 (33), 130 (74), 117 (75), 103 (9), 91 (17), 89 (16), 77 (11), 65 (8).

Indolizidine 58: General Procedure F was used to synthesize indolizidine 58 from amine 52. The reaction time was 3 h. After purification by flash chromatography (PE/EtOAc, 10:1), compound 58 (234 mg, 0.97 mmol, 97%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.37 - 1.63$ (m, 3 H), 1.70 (d, J =12.8 Hz, 1 H), 1.86 (td, J = 13.4, 2.6 Hz, 2 H), 2.57 (dd, J = 15.2, 9.6 Hz, 1 H), 2.72 (td, J = 12.2, 3.0 Hz, 1 H), 3.01 (dd, J = 15.2, 7.8 Hz, 1 H), 3.37 (qd, J = 9.8, 2.8 Hz, 1 H), 3.63 (dd, J = 14.6, 4.4 Hz, 1 H), 6.35 (d, J = 8.2 Hz, 1 H), 7.23 (s, 1 H), 7.29 (d, J =8.2 Hz, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta =$ 24.1 (CH₂), 24.5 (CH₂), 30.9 (CH₂), 35.0 (CH₂), 44.5 (CH₂), 64.4 (CH), 104.2 (CH), 118.5 (CH, q, J = 33 Hz), 121.3 (CH, q, J = 4 Hz), 125.2 (CF₃, q, J = 269 Hz), 125.3 (CH, q, J = 4 Hz), 129.3 (C), 154.0 (C) ppm. IR: $\tilde{v} = 2941$, 2919, 2853, 2820, 1708, 1618, 1593, 1497, 1447, 1399, 1322, 1295, 1251, 1209, 1168, 1151, 1135, 1095, 1056, 1026, 975, 927, 890, 872, 853, 812, 758, 737, 699, 643, 626, 609, 580, 562, 530 cm⁻¹. MS (25 °C): m/z (%) = 241 (100) [M⁺], 240 (100), 222 (13), 212 (19), 200 (12), 185 (22), 166 (5), 135 (3), 97 (4), 91 (3), 81 (4), 67 (3). HRMS: calcd. (C₁₃H₁₄F₃N) 241.1078; found 241.1078.

Indolizidine 59: General Procedure F was used to synthesize indolizidine **59** from amine **53**. The reaction time was 12 h. After purification by flash chromatography (PE/EtOAc, 20:1), compound **59** (130 mg, 0.79 mmol, 79%) was isolated as a bright yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.37$ (tq, J = 12.8, 3.4 Hz, 1 H), 1.73–1.45 (m, 3 H), 1.88–1.80 (m, 2 H), 2.54 (td, J = 12.0, 3.4 Hz, 2 H), 2.88 (dd, J = 14.8, 7.2 Hz, 1 H), 3.15–3.05 (m, 1 H), 3.57

(br. d, J = 12.7 Hz, 1 H), 3.73 (s, 3 H), 6.35 (d, J = 8.4 Hz, 1 H), 6.61 (dd, J = 8.4, 2.5 Hz, 1 H), 6.75 (br. s, 1 H) ppm. ¹³C NMR (100.6 MHz, DEPT, CDCl₃): $\delta = 24.4$ (CH₂), 24.6 (CH₂), 30.4 (CH₂), 35.8 (CH₂), 46.0 (CH₂), 56.0 (CH₃), 66.2 (CH), 106.0 (CH), 111.4 (CH), 112.4 (CH), 131.1 (C), 146.3 (C), 152.8 (C) ppm. IR: $\tilde{v} = 2932$, 2853, 1666, 1595, 1485, 1452, 1382, 1283, 1245, 1206, 1155, 1134, 1061, 1033, 887, 855, 799, 761, 700 cm⁻¹. MS (25 °C): m/z (%) = 203 (97) [M⁺], 202 (17), 189 (27), 188 (100), 185 (34), 174 (15), 160 (18), 157 (16), 147 (19), 142 (13), 133 (13), 117 (13), 104 (11), 91 (10), 77 (8), 65 (9). HRMS: calcd. (C₁₃H₁₇NO) 203.1310; found 203.1311.

Acknowledgments

Generous support by Professor E. Winterfeldt is most gratefully acknowledged. We further thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Dr. Otto Röhm Gedächtnisstiftung, Darmstadt for financial support of our research.

- [1] For general reviews on hydroamination, see: ^[1a] I. A. Chekulaeva, L. V. Kondratjeva, *Russ. Chem. Rev.* 1965, *34*, 669–680.
 [^{1b]} D. Steinborn, R. Taube, *Z. Chem.* 1986, *26*, 349–359. ^[1e] R. Taube, in *Applied Homogeneous Catalysis with Organometallic Compounds*, (Eds.: B. Cornils, W. A. Herrmann), Wiley-VCH, Weinheim, 1996, p. 507–520. ^[1d] T. E. Müller, M. Beller, *Chem. Rev.* 1988, *98*, 675–703. ^[1e] T. E. Müller, M. Beller, C. Bolm), Wiley-VCH, Weinheim, 1996, p. 507–520. ^[1d] T. E. Müller, M. Beller, C. Bolm), Wiley-VCH, Weinheim, 1998, vol. 2, p. 316–330. ^[1f] E. Haak, S. Doye, *Chem. Unserer Zeit* 1999, *33*, 296–303. ^[1g] M. Nobis, B. Drießen-Hölscher, *Angew. Chem.* 2001, *113*, 4105–4108; *Angew. Chem. Int. Ed.* 2001, *40*, 3983–3985. ^[1h] J. J. Brunet, D. Neibecker, in *Catalytic Heterofunctionalization*, (Eds.: A. Togni, H. Grützmacher), Wiley-VCH, Weinheim, 2001, p. 91–141.
- [2] For a review on hydroamination of alkynes, see: F. Pohlki, S. Doye, *Chem. Soc. Rev.* 2003, 32, 104–114.
- ^[3] For a review on group-IV metal complexes as hydroamination catalysts, see: ^[3a] I. Bytschkov, S. Doye, *Eur. J. Org. Chem.* **2003**, 935–946. For early studies on group-IV metal complexes as hydroamination catalysts, see: ^[3b] P. J. Walsh, A. M. Baranger, R. G. Bergman, *J. Am. Chem. Soc.* **1992**, *114*, 1708–1719. ^[3c] A. M. Baranger, P. J. Walsh, R. G. Bergman, *J. Am. Chem. Soc.* **1993**, *115*, 2753–2763. ^[3d] P. L. McGrane, M. Jensen, T. Livinghouse, *J. Am. Chem. Soc.* **1992**, *114*, 5459–5460. ^[3e] P. L. McGrane, T. Livinghouse, *J. Org. Chem.* **1992**, *57*, 1323–1324. ^[3f] P. L. McGrane, T. Livinghouse, *J. Am. Chem. Soc.* **1993**, *115*, 11485–11489.
- ^[4] ^[4a] N. A. Petasis, in *Encyclopedia of Reagents for Organic Synthesis*, (Ed.: L. A. Paquette), John Wiley & Sons, New York, **1995**, vol. 1, p. 470–473. ^[4b] H. Siebeneicher, S. Doye, *J. Prakt. Chem.* **2000**, *342*, 102–106.
- ^[5] [^{5a]} E. Haak, S. Doye, DE 199,13,522. [^{5b]} E. Haak, I. Bytschkov, S. Doye, *Angew. Chem.* 1999, *111*, 3584–3586; *Angew. Chem. Int. Ed.* 1999, *38*, 3389–3391. [^{5c]} E. Haak, H. Siebeneicher, S. Doye, *Org. Lett.* 2000, *2*, 1935–1937. [^{5d]} I. Bytschkov, S. Doye, *Eur. J. Org. Chem.* 2001, 4411–4418. [^{5e]} F. Pohlki, S. Doye, *Angew. Chem.* 2001, *113*, 2361–2364; *Angew. Chem. Int. Ed.* 2001, *40*, 2305–2308. [^{5f]} E. Haak, I. Bytschkov, S. Doye, *Eur. J. Org. Chem.* 2002, 457–463.
- ^[6] ^[6a] K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* **1975**, *16*, 4467–4470. ^[6b] K. Sonogashira, in *Comprehensive Organic Synthesis*, (Eds.: B. M. Trost, I. A. Fleming), Pergamon Press, **1991**, vol. 3, p. 521–549.
- ^[7] H. Siebeneicher, S. Doye, Eur. J. Org. Chem. 2002, 1213-1220.
- [8] [8a] P. L. McGrane, M. Jensen, T. Livinghouse, J. Am. Chem.

Soc. **1992**, *114*, 5459–5460. ^[8b] P. L. McGrane, T. Livinghouse, *J. Am. Chem. Soc.* **1993**, *115*, 11485–11489. ^[8c] P. L. McGrane, T. Livinghouse, *J. Org. Chem.* **1992**, *57*, 1323–1324. ^[8d] I. Bytschkov, S. Doye, *Tetrahedron Lett.* **2002**, *43*, 3715–3718. ^[8e] L. Ackermann, R. G. Bergman, *Org. Lett.* **2002**, *4*, 1475–1478.

- ^[9] M. Hesse, *Alkaloide*, Verlag Helvetica Chimica Acta Zürich, Wiley-VCH, Weinheim, 2000.
- ^[10] For general reviews on Pd-catalyzed amination reactions of aryl halides, see: ^[10a] J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, *Acc. Chem. Res.* **1998**, *31*, 805–818. ^[10b] B. H. Yang, S. L. Buchwald, *J. Organomet. Chem.* **1999**, *576*, 125–146. ^[10c] A. R. Muci, S. L. Buchwald, *Top. Curr. Chem.* **2002**, *219*, 131–209. ^[10d] J. F. Hartwig, *Synlett* **1997**, 329–340. ^[10e] J. F. Hartwig, *Angew. Chem.* **1998**, *110*, 2154–2177; *Angew. Chem. Int. Ed.* **1998**, *37*, 2046–2067.
- ^[11] A. Heutling, S. Doye, J. Org. Chem. 2002, 67, 1961–1964.
- [12] The use of benzophenone imine as ammonia equivalent in Pdcatalyzed amination reactions was first reported by: J. P. Wolfe, J. Åhman, J. P. Sadighi, R. A. Singer, S. L. Buchwald, *Tetrahedron Lett.* **1997**, *38*, 6367–6370.
- ^[13] ^[13a] M. R. Gagné, C. L. Stern, T. J. Marks, *J. Am. Chem. Soc.* **1992**, *114*, 275–294. ^[13b] I. Bytschkov, Ph.D. Dissertation, University of Hannover, **2002**.
- ^[14] A. J. Arduengo, III, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, *Tetrahedron* 1999, 55, 14523–14534.
- ^[15] N. Satyamurthy, J. R. Barrio, J. Org. Chem. 1983, 48, 4394–4396.

Received March 3, 2003