Cobalt-Mediated Cyclooligomerization Reactions of Borylacetylenes

Avijit Goswami,^[a] Claus-Jürgen Maier,^[a] Hans Pritzkow,^[a] and Walter Siebert*^[a]

Dedicated to Professor Helmut Werner on the occasion of his 70th birthday

Keywords: Boranes / Catalysts / (Cyclobutadiene)cobalt complexes / Mono(boryl)acetylenes / Triborylbenzenes

Reaction of bis(diethylamino)acetylene (1) with lithium and chlorobis(dimethylamino)borane yields 1-[bis(dimethylamino)boryl]-2-(diethylamino)acetylene (2). Treatment of 1-aryl-2-(trimethylstannyl)acetylenes 3 with chlorobis(diisopropylamino)borane results in the quantitative formation of 1-aryl-2-[bis(diisopropylamino)boryl]acetylene compounds 4. The 1-aryl-2-borylacetylene derivatives 5, 6, and 7 are obtained by the reaction of 3 with the appropriate haloborane, or by reacting 4 with two equivalents of HCl and one equivalent of catechol, dithiocatechol and 2-hydroxythiophenol. The catalytic cyclotrimerizations of 5a-d with $[CpCo(CO)_2]$ or $[Co_2(CO)_8]$ lead to isomeric mixtures of the triborylbenzene derivatives 8a-d and 8a'-d', whereas 6a-d and 7a-b undergo cyclotrimerization only with catalytic amount of $[Co_2(CO)_8]$, to give isomeric mixtures of the triborylbenzene derivatives 12a-d/12a'-d' and 13a-b/13a'-b', respectively. The reaction of **2** with a stoichiometric amount of $(\eta^5$ -cyclo-

Introduction

Over the past decades, the cyclooligomerization reactions of alkynes with transition metal complexes have received considerable attention.^[1] $[CpCo(CO)_2]^{[2]}$ is a convenient and efficient reagent for the syntheses of CpCo-cyclobutadiene complexes,^[3] cyclopentadienones,^[4] and benzene derivatives,^[5] whereas $[Co_2(CO)_8]$ is used in Pauson-Khand^[6] and [2+2+2] cyclotrimerization reactions.

Recently, we reported the Co-catalyzed [2+2+2] cyclotrimerization of mono-^[7] and bis(catecholboryl)acetylenes.^[8] With both types of acetylenes, only benzene derivatives were obtained — no CpCo-cyclobutadiene complexes were observed — even when using stoichiometric amounts of [CpCo(CO)₂] and the corresponding acetylene.

To study the influence of the substituents with respect to the formation of CpCo-cyclobutadiene and/or benzene pentadienyl)bis(ethene)cobalt leads to $(\eta^5$ -cyclopentadienyl) $(\eta^4$ -cyclobutadiene)cobalt complexes 9. The analogous complexes 10 and 11 are obtained by the reactions of 6 and 7 with a stoichiometric amount of $(\eta^5$ -cyclopentadienyl)dicarbonylcobalt. Treatment of $Co_2(CO)_8$ with 5a, 6a, and 7a yields the dicobaltatetrahedranes 14a, 15a and 16a. Compound 15a reacts with two equivalents of diphenylacetylene and 1-(1,3,2-benzodioxaborolyl)-2-phenylacetylene (5a), to furnish (1,3,2-benzodioxaborolyl)pentaphenylbenzene (17) and bis(1,3,2-benzodioxaborolyl)(1,3,2-benzodithiaborolyl)triphenylbenzene (18), respectively. The new compounds have been characterized by NMR spectroscopy and mass spectrometry, as well as by X-ray structural analyses for 4a, 5a, 6a, and 10a.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

derivatives, we have synthesized new mono(boryl)acetylene derivatives with terminal boryl and amino or aryl substituents. Compound **2**, which has both amino and boryl substituents (Scheme 1), can react similarly to the push-pull acetylene Me₂N-C=C-COOMe,^[9] and undergoes dimerization.

$$Et_2N \longrightarrow NEt_2 \xrightarrow{i) 2 Li} Et_2N \longrightarrow B(NMe_2)_2 + Et_2N \longrightarrow B(NMe_2)_2$$

$$1 \xrightarrow{-2 LiCl} 2$$

Scheme 1

The influence of the substituents at the boryl group is of particular interest, as amino groups at the boron center may reduce its Lewis acidity. A large part of this work concentrates on the reactivity of arylalkynyl boranes 5, 6, and 7, in which two oxygen atoms (in 5), two sulfur atoms (in 6) and one oxygen and one sulfur atom (in 7) are bound to the boron atom. It is expected that the heteroatoms have different electronic and steric effects on the reactivity of the acetylenes 5-7. In this paper, we report the syntheses, structures and reactivities of the monoborylacetylene derivatives 2 and 4-7.

 [[]a] Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany Fax: (internat.) +49-(0)6221-54-5609 E-mail: walter.siebert@urz.uni-heidelberg.de

Results and Discussion

Synthesis and Properties of Mono(boryl)acetylene Derivatives 2, 4, 5, 6 and 7

Bis(diethylamino)acetylene (1) is obtained by treating 2fluoro-1,1-dichloroethene or trichloroethene with *N*,*N*-disubstituted lithium amides and secondary amines.^[10] In 1, the N-C=C bond is cleaved by lithium in THF to give two lithium compounds (Et₂NLi and Et₂N-C=CLi), which react with various electrophiles. The mixture was treated with chlorobis(dimethylamino)borane to give Et₂N-B(NMe₂)₂ (70%) and 1-amino-2-borylacetylene (2) (43%), which were separated by fractional distillation (Scheme 1). Their compositions were determined by mass spectrometric and NMR spectroscopic data.

The reactions of chlorobis(diisopropylamino)borane with 1-trimethylstannyl-2-arylacetylenes **3** led to light-yellow compounds **4** in quantitative yields (Scheme 2). Compounds $4^{[11]}$ were characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy, as well as by mass spectrometry.

Scheme 2

In the ¹¹B NMR spectrum, the signal at $\delta = 26$ ppm of **4a** indicates a trigonal-planar boryl group, which we confirmed by X-ray structural analysis. In the linear B-C=C-C moiety (Figure 1) the C=C bond is slightly widened relative to other R-C=C-R compounds (1.18 Å).^[12]

Figure 1. Molecular structure of 4a in the solid state; hydrogen atoms are omitted for clarity; selected bond lengths [Å] and bond angles [°]: C1-C2 1.210(14), C2-C3 1.434(14), N1-B1 1.434(8), B1-C1 1.559(15), C1-C2-C3 180.0, C2-C1-B1 180.0

The syntheses of compounds **5**, **6**, and **7** were achieved by two reaction procedures. A solution of 1-aryl-2-(trimethylstannyl)acetylene (**3**) in toluene was reacted with the corresponding haloborane to give 5-7. When compound **4** was treated with two equivalents of HCl and one equivalent of catechol or dithiocatechol or 2-hydroxythiophenol in THF, the corresponding alkynes **5**, **6**, and **7** were obtained as crystalline solids (Scheme 3). These compounds are soluble in benzene and toluene, but are less soluble in hexane and pentane. The ¹H NMR spectra of **5**–**7** show the expected multiplicities of the aromatic protons in the region $\delta = 6.9-7.9$ ppm. In the ¹³C NMR spectra, the signals for the boron-bound carbon atoms were not observed; the signals for the β carbon atoms ($\delta = 84-109$ ppm) are shifted to lower fields relative to the alkylacetylenes ($\delta =$ 70–80 ppm),^[13] which may indicate an interaction of the empty orbital at the boron atom with the π system of the triple bond.

Scheme 3

The structures of **5a** and **6a** were determined by performing single-crystal X-ray analyses (Figures 2 and 3). Each compound has a linear $B-C\equiv C-C$ moiety (**5a**: exactly; **6a**: approximately) and the $C\equiv C$ bond lengths are slightly longer than those of normal alkyne compounds. The B-C bonds are rather short. This finding is in agreement with structural data for oxygen-substituted bis(catecholboryl)acetylenes.^[14]

Figure 2. Molecular structure of **5a** in the solid state; hydrogen atoms are omitted for clarity; selected bond lengths [Å] and bond angles [°]: C1-C2 1.196(5), C1-C6 1.447(5), B1-C2 1.513(5), B1-O1 1.383(15), C1-C2-C6 180.0, C1-C2-B1 180.0

Figure 3. Molecular structure of **6a** in the solid state; hydrogen atoms are omitted for clarity; selected bond lengths [Å] and bond angles [°]: C1-C2 1.207 (8), C2-C3 1.423(7), B1-C1 1.521(8), B1-S1 1.796(6), C1-C2-C3 178.5(5), C2-C1-B1 177.6(5)

Trimerization of 5 to Triboryl-triarylbenzene Derivatives 8

Only a few triborylbenzene derivatives are known,^[15] of which some have been prepared in low yields by Grignard reactions. Recently, we obtained triborylbenzene derivatives^[7] by cyclotrimerization of monoborylacetylenes in the presence of catalytic amount of dicarbonyl(η^5 -cyclopentadienyl)cobalt. Analogously, in refluxing toluene, the monoborylalkyne derivatives **5a**-**d** formed isomeric mixtures of the 1,3,5- and 1,2,4-triborylbenzene derivatives **8a**-**d** and **8a**'-**d**' in the presence of a catalytic amount of [CpCo(CO)₂] or [Co₂(CO)₈] (Scheme 4). The isomers could not be separated.

The air-stable solids 8a-d and 8a'-8d' are light-yellow in color and are not soluble in most organic solvents; 8a/ 8a' dissolve partially in chloroform, whereas 8b-d and 8b'-d' are slightly soluble in dichloromethane and toluene. Compounds 8a-d and 8a'-d' were characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy, elemental analysis, and mass spectrometry. The ¹¹B NMR spectra exhibit broad signals at $\delta = 24$ ppm for **8a/8a'**, $\delta = 22$ ppm for **8b/8b'** and **8d/8d'**, and $\delta = 23$ ppm for **8c/8c'**. In the ¹H NMR spectrum of 8a/8a', several peaks appear in the region $\delta =$ 7.2-7.6 ppm that are due to aromatic protons of the catechol and phenyl substituents. In the ¹³C NMR spectrum, three signals at $\delta = 112.7$, 123.2, and 147.8 ppm are observed for the carbon atoms of the catechol groups. The signal at $\delta = 139.9$ ppm is assigned to the *ipso*-carbon atoms of the central ring of the isomer 8a and three signals at $\delta = 134.6$, 137.3, and 142.5 ppm to the *ipso*-carbon atoms of the central ring of the isomer 8a'. The ¹³C NMR spectroscopic signals of the carbon atoms of the phenyl substituents appear at $\delta = 121.2, 128.5, 130.0, and$ 132.8 ppm. Similarly, the ¹H NMR spectra of 8b-d and $\mathbf{8b'} - \mathbf{d'}$ show the expected multiplets (in the region $\delta =$ 6.9-7.6 ppm for the aromatic protons) and singlets near $\delta = 2.3 - 2.4$ ppm (methyl groups). The ¹³C NMR spectra reveal chemical shifts of the ipso-carbon atoms of the central ring of the isomers **8b**-**d** near $\delta = 140-141$ ppm and the *ipso* carbon atoms of the isomers 8b'-d' in the region $\delta = 136 - 148$ ppm.

Thermal reactions of 5a-d with a stoichiometric amount of $[CpCo(CO)_2]$ did not provide any (cyclobutadiene)cobalt complex: only the cyclotrimerization products were found. Likewise, photochemical activation of $[CpCo(CO)_2]$ and 5a-d did not yield (cyclobutadiene)cobalt complexes: only the starting materials were recovered.

Catalytic Cycles with [CpCo(CO)₂] and [Co₂(CO)₈]

The postulated mechanism of [CpCo(CO)₂]-catalyzed cyclotrimerization^[5a,16] of acetylene is suggested for **5a**. Under thermal conditions, two alkyne ligands displace the CO groups to form a bis(alkyne)cobalt complex, followed by reductive coupling of the alkyne units to give a coordinatively unsaturated cobaltacyclopentadiene complex. Coordination of a third molecule of 5a could then lead to an 18-VE complex, which undergoes alkyne insertion to form the corresponding cobaltacycloheptatriene compound. Subsequent reductive elimination of the CpCo complex fragment leads to the formation of the triborylbenzene derivatives 8a/8a'. Recently, Vollhardt et al.^[17] reported the synthesis of a $(\eta^2$ -alkyne)cobaltacyclopentadiene complex, which indirectly proves the proposed catalytic cycle, although no direct evidence for the intermediacy of the postulated cobaltacycloheptatriene was obtained. According to ab initio and density functional theory (DFT) investigations of the mechanism,^[16] a cobaltacycloheptatriene is in fact very unlikely to form.

Analogously, the catalytic oligomerization of **5a** with octacarbonyldicobalt led to the triborylbenzene derivatives **8a/8a'** in 71% yield. One of our aims is to isolate intermediates to shed more light on the catalytic cycle proposed in Scheme 5, which is a short version of the Knox-Pauson-Spicer mechanism.^[18] In the first step, elimination of two CO ligands leads to the unsaturated species $[Co_2(CO)_6]$, which reacts with **5a** to give the borylsubstituted dicobaltatetrahedrane complex **14a** (**A**). Subsequent elimination of CO and insertion of one molecule of **5a** should yield the intermediate **B**, of which many examples are known.^[19] However, under our conditions, **B** was not detected. A Diels-Alder-type reaction of **B** with **5a** may

Scheme 5

lead to **C**, which eliminate **8a/8a'** and the pentacarbonyldicobalt fragment reacts with CO and **5a** to give **14a**. We did not observe the postulated intermediates **C** and the "flyover" dicobaltacyclooctadiene complex **D**; several examples have been reported of the latter species.^[18,20] It has been demonstrated that drastic conditions^[21] or chemical promoters^[18] transform **D** into arenes and, therefore, **D** is not on the main path of the catalytic reaction to arenes.^[18]

Synthesis of CpCo-Diborylcyclobutadiene Complexes 9, 10 and 11

In 1965, Pettit et al.^[22] reported the first generation of the tricarbonyl(η^4 -cyclobutadiene)iron complex. Among the various synthetic methods, the reactions of alkynes with transition metal carbonyl complexes in particular have been studied extensively during the last three decades.^[23] In an analogous manner, compound 2 was treated with (n⁵-cyclopentadienyl)bis(ethene)cobalt in hexane and compounds 6 and 7 with dicarbonyl(η^5 -cyclopentadienyl)cobalt in refluxing toluene to give the corresponding (η^4 -cyclobutadiene)(η^5 -cyclopentadienyl)cobalt complexes 9, 10, and 11 in good yields (Scheme 6). Purification of compounds 9a/ 9a' by column chromatography on aluminum oxide led to decomposition. Because of a paramagnetic impurity in the crude product, compounds 9a/9a' could not be characterized by NMR spectroscopy. EI-MS data confirm the identity of 9a/9a' through the appearance of the molecular ion peaks with the expected isotopic patterns. Compounds 10 and 11 are partially soluble in toluene and chloroform; in methanol, a fast reaction, leading to the formation of B(OMe)₃, takes place.

Scheme 6

Purification of **10** and **11** can be accomplished by washing repeatedly with hexane. Complexes **10** and **11** were characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy, elemental analysis, and mass spectrometry. The ¹¹B NMR spectra show broad signals at $\delta = 58$ ppm for **10a/10d**, and

 $\delta = 57$ ppm for **10b/10c**. The ¹H NMR spectra of **10** exhibit multiplets in the region $\delta = 7.0-7.9$ ppm that are due to the aromatic protons, in addition to the Cp resonances ($\delta =$ 4.6–4.9 ppm). Four quaternary carbon atoms of diborylsubstituted (η^4 -cyclobutadiene)cobalt complexes 10 were detected in the ¹³C NMR spectrum in the region δ = 79-89 ppm. From the NMR spectra, it is not possible to make a distinction between the trans (10a-d) and cis isomers (10a'-d') of the cyclobutadiene complexes. For steric reason, the *trans* isomers 10a-d seem to be more favored, which is confirmed by the solid state structure of 10a. However, several complexes are known that have cis-bis(trimethylsilyl)cyclobutadiene ligands.^[1c,24] The problem was resolved unequivocally by analyzing the major peaks in terms of the degradation of the cyclobutadiene ring in the mass spectra. In general, three different acetylenes are released from the molecular ion of the *cis* isomer, but only a single acetylene is released from the *trans* isomer.^[25] Here, in all cases, three kinds of acetylenes were released from the molecular ion. Therefore, mass spectra gave evidence for both the cis isomer and the trans isomers, but the cis isomer could not be identified by NMR spectroscopic measurements.

The structure of **10a** was characterized by performing a single-crystal X-ray diffraction analysis. Two independent molecules were found; the structure of one is shown in Figure 4. The solid state structure of **10a** reveals that both phenyl groups, as well as one of dithiacatecholboryl groups, do not lie in the plane of the cyclobutadiene ring. From the internal bond angles of the cyclobutadiene ring of **10a**, it is found that there is a little deviation from the exact square-planar shape because the internal bond angles for both the carbon atoms attached to the boron atom are smaller than those attached to the phenyl groups.

Figure 4. Molecular structure of **10a** in the solid state; hydrogen atoms are omitted for clarity; selected bond lengths [A] and bond angles [°]: C1-C2 1.460 (5), C2-C3 1.465(5), C3-C4 1.476(5), C4-C1 1.462(5), C1-B1 1.528(6), C3-B2 1.527(6), C2-C1-C4 89.2(3), C1-C2-C3 91.4(3), C2-C3-C4 88.5(3), C1-C4-C3 90.9(3)

Similarly, ¹¹B NMR spectra show broad signals at δ = 45 ppm for **11a/11a**' and δ = 46 ppm for **11b/11b**'. The ¹H NMR spectra exhibit multiplets in the region δ =

7.1–7.9 ppm that are due to aromatic protons. In the ¹³C NMR spectra of **11a/11a'** and **11b/11b'**, the signals in the region $\delta = 84-86$ ppm are assigned to the *ipso*-carbon atoms of the central C₄ ring and to the signals of the Cp carbon atoms ($\delta = 83-87$ ppm). The EI mass spectra of **11a-b** and **11a'-b'** show ion fragmentations similar to those mentioned above, with the expected isotopic patterns. It is important to mention that no benzene derivatives were observed in the reactions of [CpCo(CO)₂] with the alkynes **6** and **7** (Scheme 6).

[Co₂(CO)₈]-Catalyzed Cyclotrimerization of 6 and 7 to Triborylbenzenes 12 and 13

Arnett et al.^[26] prepared the sterically encumbered hexaisopropylbenzene by $[Co_2(CO)_8]$ -catalyzed trimerization of bis(isopropyl)acetylene. Analogously, in refluxing toluene, the mono(boryl)acetylene derivatives **6** and **7** formed the triborylbenzene derivatives **12** and **13** in the presence of a catalytic amount of $[Co_2(CO)_8]$ (Scheme 7). The isomeric mixture (1,3,5- and 1,2,4-substituted) could not be separated. Purifications of **12** and **13** were achieved by washing repeatedly with hexane, toluene and CH₂Cl₂.

The compounds 12 and 13 are air-stable solids and are not soluble in most common organic solvents; slight solubility in chloroform enables NMR spectra to be measured. All compounds were characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy, elemental analysis, and mass spectrometry. The ¹¹B NMR spectra show broad signals at $\delta =$ 62 ppm for 12a/12a' and $\delta = 60$ ppm for 12b/12b', 12c/12c', and 12d/12d'. In the ¹H NMR spectra, multiplets ($\delta =$ 6.9–7.9 ppm) are observed for the aromatic protons of 12a–d and 12a'–d'. In the ¹³C NMR spectra, the signals in the region $\delta = 126-128$ ppm are assigned to the *ipso*carbon atoms of the central ring of the isomers 12a–c and those in the region $\delta = 128-141$ ppm to the *ipso* carbon atoms of the isomers 12a'–c'. The quaternary carbon atoms of 12d/12d' were not observed.

The ¹¹B NMR spectra of **13a/13a'** exhibit broad signals at $\delta = 53$ ppm and of **13b/13b'** at $\delta = 52$ ppm. The ¹H NMR spectra show multiplets in the aromatic region for the aryl protons of **13a/b** and **13a'/b'**. The ¹³C NMR spec-

tra reveal the signals of the *ipso*-carbon atoms of the central ring of **13a** at $\delta = 132.8$ ppm and at $\delta = 132.7$ ppm for **13b**.

Synthesis and Properties of Dicobaltatetrahedranes 14a, 15a, and 16a

(Alkyne)hexacarbonyldicobalt complexes are obtained by treating alkynes with $Co_2(CO)_8$.^[27] Analogously, the mono-(boryl)acetylene derivatives **5a**, **6a**, and **7a** reacted with $Co_2(CO)_8$ in CH₂Cl₂; elimination of two CO units resulted in the corresponding complexes **14a**, **15a** and **16a** (Scheme 8). These compounds were isolated by column chromatography as brown-red oils,^[28] which we characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy, IR spectroscopy, and mass spectrometry.

The ¹¹B NMR spectrum of **14a** shows a broad signal at $\delta = 33$ ppm. The ¹H NMR spectrum exhibits the signals of the aromatic protons in the region $\delta = 7.2-7.7$ ppm. In the ¹³C NMR spectrum, the arene carbon atoms give rise to signals at $\delta = 112.6$, 123.2, and 147.8 ppm for the catechol unit and at $\delta = 121.2$, 128.5, 130.0, and 130.2 ppm for the phenyl group. The signal of the carbon atom bound to the boron atom are not observed, while the carbon atom attached directly to the phenyl group appears at $\delta = 104.3$ ppm. The carbonyl ligands exhibit a signal in the ¹³C NMR spectrum at $\delta = 200.2$ ppm.

Similarly, in their ¹¹B NMR spectra, the signals of the complexes **15a** and **16a** appear at $\delta = 59$ and 47 ppm, respectively. The ¹H NMR spectra show multiplets in the regions $\delta = 7.1-7.8$ ppm for **15a** and $\delta = 7.1-7.5$ ppm for **16a**. The characteristic carbonyl ligands in the ¹³C NMR spectra appear at $\delta = 199.5$ ppm for **15a** and $\delta = 200.6$ ppm for **16a**.

Complex 14a can also act as a catalyst for the cyclotrimerization of 5a. When a catalytic amount of 14a and 1-(catecholboryl)-2-phenylacetylene (5a) were heated in toluene, the triborylbenzene derivatives 8a/8a' were obtained in good yield (Scheme 9).

Scheme 9

(1,3,2-Benzodithiaborolyl)pentaphenylbenzene and Bis(1,3,2benzodioxaborolyl)(1,3,2-benzodithiaborolyl)triphenylbenzene (17 and 18)

Recently, we have shown the use of C_2Co_2 clusters for the preparation of different substituted arenes.^[8] Analogously, we have heated diphenylacetylene and a stoichiometric amount of **15a** in toluene, which resulted in the formation of (1,3,2-benzodithiaborolyl)pentaphenylbenzene (**17**) in good yield (Scheme 10). Compound **17** is not soluble in common organic solvents and, therefore, NMR spectroscopic measurements were not possible. Compound **17** was characterized by mass spectrometry, which confirms the identity of **17** through the appearance of the molecular ion peak at m/z = 608.

Similarly, compound **15a** was treated with two equivalents of 1-(catecholboryl)-2-phenylacetylene (**5a**) in toluene under reflux, which led to the formation of an isomeric mixture **18** in moderate yield. Because of the complete insolubility of compound **18**, NMR spectroscopic measurements were not possible. Compound **18** was characterized by EI mass spectrometry, which indicated the molecular ion peak of **18** at m/z = 692.

Conclusions

We have studied the reactions of boryl-substituted acetylenes with catalytic and stoichiometric amounts of $[CpCo(C_2H_4)_2], [CpCo(CO)_2], and [Co_2(CO)_8], [2+2+2]$ Cyclotrimerization products 8 are obtained from the reactions of (catecholboryl)acetylenes 5 with a catalytic amount of $[CpCo(CO)_2]$ or $[Co_2(CO)_8]$. (η^4 -Cyclobutadiene)cobalt complexes are not formed from (thermal and photochemical) reactions of 5 with stoichiometric amount of [CpCo(CO)₂]. Treatment of nitrogen- and sulfur-bound borylacetylenes 2, 6, and 7 with a stoichiometric amount of $[CpCo(C_2H_4)_2]$ or $[CpCo(CO)_2]$ opened a long-sought route to the new class of boryl-substituted (η^4 -cyclobutadiene)cobalt complexes. Possibly because of steric reasons, the nitrogen-substituted borylacetylene 2 does not undergo catalytic cyclotrimerization with $[CpCo(C_2H_4)_2]$ or $[CpCo(CO)_2]$. On the other hand, triborylbenzene derivatives 12 and 13 are obtained from the reactions of 6 and 7, respectively, with a catalytic amount of [Co₂(CO)₈]. Surprisingly, we found that changing the heteroatom(s) bound to the boron atom causes a remarkable difference in the reactivities of 6 and 7 when compared to that of 5. Most likely, this behavior of 6 and 7 arises from interactions of the sulfur

atom(s) with the cobalt center, which might prevent the formation of coordinatively unsaturated cobaltacyclopentadiene complexes (the postulated precursor en route to cyclotrimerization products). Instead of cyclotrimerization products, (η^4 -cyclobutadiene)cobalt complexes **10** and **11** are obtained. Reactions of **5a**, **6a**, and **7a** with a stoichiometric amount of [Co₂(CO)₈] lead to the Co₂C₂ clusters **14a**, **15a**, and **16a**, respectively.

Experimental Section

General: All reactions were performed under nitrogen using standard Schlenk techniques. Solvents were dried with the appropriate drying agents and distilled under nitrogen. Glassware was dried with a heat gun under high vacuum. ¹H, ¹³C, and ¹¹B NMR spectroscopy: Bruker AC 200 spectrometer; ¹H and ¹³C spectra were referenced to (CH₃)₄Si and ¹¹B spectra to F₃B·OEt₂. IR spectra were recorded on a Bruker IFS 28 FT spectrometer. Mass spectra were obtained on Finnigan MAT 8230 plus spectrometers using the EI technique. Elemental analyses were carried out at the Microanalytical Laboratory, University of Heidelberg. Melting points (uncorrected) were obtained on a Büchi apparatus, using capillaries that were filled under nitrogen and sealed. Bis(diethylamino)acetylene^[10] (1), (*i*Pr₂N)₂BCl,^[29] 1-aryl-2-(trimethylstannyl)acetylenes^[30] 3, and chlorocatecholborane^[31] were prepared according to literature procedures. Bromo(dithiocatechol)borane and bromo-(1,3,2-benzothiaoxaborol), which have not been reported previously in the literature, were prepared by the reactions of dithiocatechol and 2-hydroxythiophenol with excess BBr₃. Catechol, 4-methylcatechol, dithiocatechol, 4-methyldithiocatechol, and 2-hydroxymercaptanol were purchased from Aldrich.

1-[Bis(dimethylamino)boryl]-2-(diethylamino)acetylene (2): Bis(diethylamino)acetylene (1, 1.18 g, 7.0 mmol) was added slowly at room temperature to a stirred suspension of lithium powder (0.34 g, 49.7 mmol) in diethyl ether (20 mL). The reaction mixture was heated under reflux for 3 h. After cooling, the mixture was stirred at ambient temperature for 40 h. The ether was evaporated by vacuum, THF (20 mL) was added, and the THF solution was heated for 1 h. The solid that formed was separated by filtration and washed with a small amount of THF. After drying under high vacuum, a green solid (a mixture of Et₂NC₂Li and LiNEt₂) was obtained. Chlorobis(dimethylamino)borane (1.26 g, 9.4 mmol) was added within 10 min at -60 °C to a solution of lithium compounds (0.85 g, 4.7 mmol) in THF (10 mL). The reaction mixture was stirred for 16 h. After filtration, the solvent was evaporated under high vacuum. Compound 2 and Et₂B(NMe)₂ were obtained by fractional distillation. Yield 0.39 g (43%), colorless liquid, b.p. 50 °C/0.2 Torr. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 1.18$ (t, ³J_{H,H} = 7.2 Hz, 6 H, CH₂CH₃), 2.68 (s, 12H, NCH₃), 2.90 (q, ${}^{3}J_{H,H}$ = 7.2 Hz, 4 H, CH_2CH_3) ppm. ¹³C NMR (50.3 MHz, $CDCl_3$): $\delta =$ 12.90 (CH₂CH₃), 40.60 (NCH₃), 48.20 (CH₂CH₃) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 26$ ppm. MS (70 eV, EI): m/z (%) = 195 (100) [M⁺], 180 (31) [M⁺ - CH₃], 123 (93) [M⁺ - NEt₂].

1-[Bis(diisopropylamino)boryl]-2-phenylacetylene (4a) and 1-[Bis(diisopropylamino)boryl]-2-tolylacetylene (4b): Chlorobis(diisopropylamino)borane (2.59 g, 10.5 mmol) in toluene (10 mL) was added slowly at -78 °C to a stirred solution of 1-trimethylstannyl-2-arylacetylene (3a: 2.80 g; 3b: 2.94 g; 10.5 mmol) in toluene (40 mL). The reaction mixture was stirred overnight to reach room temperature, the solvent was evaporated under high vacuum, and the residue was distilled.

4a: Yield 3.1 g (94%), pale-yellow liquid, b.p. 102 °C/0.01 Torr. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 1.38$ [d, ³ $J_{H,H} = 6.9$ Hz, 24 H, CH(CH_{3})₂], 3.55 [sept., ³ $J_{H,H} = 6.9$ Hz, 4 H, CH(CH₃)₂], 7.4–7.5 (m, C₆H₅, 5H) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 24.23$ [CH(CH_{3})₂], 46.71 [CH(CH₃)₂], 104.6 (C_{sp}-C_i), 125.1, 127.8, 128.3, 130.9 (C₆H₅) ppm; C_{sp}-B not found. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 26$ ppm. MS (70 eV, EI): m/z (%) = 312 (13) [M⁺], 297 (100) [M⁺ - CH₃], 269 (87) [M⁺ - *i*Pr], 212 (31) [M⁺ - N(*i*Pr)₂]. MS (70 eV, HR-EI): m/z (%) = 312.2759 (8) [M⁺; ¹²C₂₀¹H₃₃¹¹B¹⁴N₂: 312.2736]; Δ mmu = 2.3.

4b: Yield: 3.0 g (87%), yellow liquid, b.p. 112 °C/0.02 Torr. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 1.35$ [d, ${}^{3}J_{\text{H,H}} = 7.0$ Hz, 24H, CH(CH₃)₂], 2.32 (s, CH₃, 3 H), 3.53 [sept., ${}^{3}J_{\text{H,H}} = 6.9$ Hz, 4H, CH(CH₃)₂], 7.3–7.6 (m, 4H, C₆H₅) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.32$ (CH₃), 24.25 [CH(CH₃)₂], 46.81 [CH(CH₃)₂], 104.5 (C_{sp}-C_i), 125.3, 127.5, 128.7, 131.2 (C₆H₄) ppm; C_{sp}-B not found. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 26$ ppm. MS (70 eV, EI): m/z (%) = 326 (100) [M⁺]. MS (70 eV, HR-EI): m/z (%) = 326.2899 (100) [M⁺; ¹²C₂₁¹H₃₅¹¹B¹⁴N₂: 326.2893]; Δ mmu = 0.6.

Two General Procedures for 1-Aryl-2-borylacetylenes 5, 6, and 7. Procedure A: The appropriate 1-aryl-2-(trimethylstannyl)acetylene 3 was dissolved in toluene (50 mL) and then the corresponding haloborane in toluene (10 mL) was added slowly at -20 °C. The reaction mixture was stirred overnight at ambient temperature. After evaporation of the solvent under high vacuum, a crystalline solid was obtained.

Procedure B: The appropriate 1-aryl-2-[bis(diisopropylamino)boryl]acetylene **4** was dissolved in THF (50 mL) and then 2 equiv. of HCl·Et₂O (2 M) was added slowly at -78 °C. Stirring was continued for 45 min and NH₂*i*Pr₂Cl formed as a white solid. The corresponding aromatic diol in THF (15 mL) was then added dropwise and the reaction mixture was stirred overnight at room temperature. After filtration of the solid, the solution was reduced to near dryness, and a crystalline product was obtained.

1-(Catecholboryl)-2-phenylacetylene (5a): Starting materials: **3a** (4.8 g, 18 mmol), H₄C₆O₂BCl (2.78 g, 18 mmol). Yield 2.8 g (71%), orange-red solid, m.p. 76 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 7.2–7.7 (m, 9 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 105.1 (C_{sp}-C_i), 112.7, 123.3, 147.9 (catechol), 121.2, 128.6, 130.1, 132.8 (C₆H₅) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 25 ppm. MS (70 eV, EI): *m/z* (%) = 220 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 220.0715 (100) [M⁺; ¹²C₁₄¹H₉¹¹B¹⁶O₂: 220.0695]; Δmmu = 2.0.

1-(Catecholboryl)-2-tolylacetylene (5b): Starting materials: **3b** (2.4 g, 8.6 mmol), H₄C₆O₂BCl (1.32 g, 8.6 mmol). Yield 1.4 g (69%), yellow solid, m.p. 72 °C (dec.). ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.35$ (s, 3 H, CH₃), 7.0–7.5 (m, 8 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.67$ (CH₃), 103.4 (C_{sp}-C_i), 112.6, 123.1, and 147.8 (catechol), 115.5, 121.3, 129.2, 132.7 (tolyl) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 25$ ppm. MS (70 eV, EI): *m*/*z* (%) = 234 (100) [M⁺]. MS (70 eV, HR-EI): *m*/*z* (%) = 234.0833 (100) [M⁺; ¹²C₁₅¹H₁₁¹¹B¹⁶O₂: 234.0852]; Δmmu = 1.9.

1-(4-Methylcatecholboryl)-2-phenylacetylene (5c): Starting materials: **3a** (4.1 g, 15.4 mmol), CH₃C₆H₃O₂BCl (2.59 g, 15.4 mmol). Yield 2.4 g (66%), yellow solid, m.p. 75 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.39$ (s, CH₃, 3 H), 6.9–7.6 (m, 8 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.38$ (CH₃), 93.37 (C_{sp}-C_i), 111.9, 113.2, 123.6, 130.0, 145.7, 147.8 (catechol), 121.2, 128.8, 132.7, 133.2 (C₆H₅) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz,

CDCl₃): $\delta = 24$ ppm. MS (70 eV, EI): m/z (%) = 234 (100) [M⁺]. MS (70 eV, HR-EI): m/z (%) = 234.0834 (100) [M⁺; ${}^{12}C_{15}{}^{1}H_{11}{}^{11}B^{16}O_{2}$: 234.0852]; $\Delta mmu = 1.8$.

1-(4-Methylcatecholboryl)-2-tolylacetylene (5d): Starting materials: **4b** (4.44 g, 13.6 mmol), HCl·OEt₂ (13.6 mL, 27.2 mmol), 4-methylcatechol (1.68 g, 13.6 mmol). Yield 2.1 g (62%), brown solid, m.p. 73 °C (dec.). ¹H NMR (200.1 MHz, CDCl₃): δ = 2.35 (s, 3 H, CH₃), 2.37 (s, 3 H, CH₃), 6.9–7.5 (m, 7 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 21.40 and 21.65 (CH₃), 83.81 (C_{sp}-C_i), 111.9, 113.1, 123.1, 138.9, 145.4, 147.5 (catechol), 119.0, 129.2, 132.0, 132.8 (tolyl) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 23 ppm. MS (70 eV, EI): *m/z* (%) = 248 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 248.1008 (100) [M⁺; ¹²C₁₆¹H₁₃¹¹B¹⁶O₂: 248.1015]; Δmmu = 0.7.

1-(Dithiocatecholboryl)-2-phenylacetylene (6a): Starting materials: **3a** (4.1 g, 15.4 mmol), H₄C₆S₂BBr (3.55 g, 15.4 mmol). Yield 2.8 g (72%), brown-red solid, m.p. 82 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 7.4–7.8 (m, 9 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 84.01 (C_{sp}-C_i), 125.7, 126.5, 140.9 (dithiocatechol), 128.4, 129.7, 131.1, 132.2 (C₆H₅) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 47 ppm. CI-MS: *m/z* (%) = 252.1 [M⁺] (70)

1-(Dithiocatecholboryl)-2-tolylacetylene (6b): Starting materials: **3b** (1.7 g, 6.09 mmol), H₄C₆S₂BBr (1.4 g, 6.09 mmol). Yield 1.2 g (74%), light-yellow solid, m.p. 86 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 2.38 (s, 3 H, CH₃), 7.15–7.50 (m, 8 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 21.07 (CH₃), 92.43 (C_{sp}-C_i), 122.2, 126.0, 140.9 (dithiocatechol), 126.8, 127.1, 128.4, 132.2 (tolyl) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 48 ppm. MS (70 eV, EI): *m/z* (%) = 266.0401 (100) [M⁺; ¹²C₁₅¹H₁₁¹¹B³²S₂: 266.0395]; Δmmu = 0.6.

1-(4-Methyldithiocatecholboryl)-2-phenylacetylene (6c): Starting materials: **4a** (3.5 g, 11.2 mmol), HCl·OEt₂ (11.2 mL, 22.4 mmol), 4-methyldithiocatechol (1.75 g, 11.2 mmol). Yield 2.3 g (77%), yellow solid, m.p. 88 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.42$ (s, 3 H, CH₃), 7.13, 7.41, 7.64 (m, 8 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.07$ (CH₃), 93.37 (C_{sp}-C_i), 126.1, 126.8, 127.1, 135.9, 137.6, 140.9 (dithiocatechol), 122.2, 128.4, 129.7, 132.2 (C₆H₅) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 47$ ppm. MS (70 eV, EI): *m/z* (%) = 266 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 266.0399 (100) [M⁺; ¹²C₁₅¹H₁₁¹¹B³²S₂: 266.0395]; Δmmu = 0.4.

1-(4-Methyldithiocatecholboryl)-2-tolylacetylene (6d): Starting materials: **3b** (3.05 g, 10.9 mmol), CH₃C₆H₃S₂BBr (2.66 g, 10.9 mmol). Yield 2.2 g (72%), brown solid, m.p. 93 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.28$ (s, 3 H, CH₃), 2.38 (s, 3 H, CH₃), 7.1–7.6 (m, 7 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.07$, 21.67 (CH₃), 83.81 (C_{sp}-C_i), 126.0, 126.8, 127.0, 135.8, 137.6, 140.9 (thiocatechol), 119.1, 129.2, 132.1, 140.2 (tolyl) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 48$ ppm. MS (70 eV, EI): *m/z* (%) = 280 (100) [M⁺; ¹²C₁₆¹H₁₃¹¹B¹⁶S₂: 280.0551]; Ammu = 1.1.

1-(1,3,2-Benzothiaoxaborolyl)-2-phenylacetylene (7a): Starting materials: **4a** (3.1 g, 9.93 mmol), HCl·OEt₂ (9.93 mL, 19.86 mmol), 2-hydroxyphenol (1.25 g, 9.93 mmol). Yield 1.8 g (76%), brown-red solid, m.p. 66 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 7.2-7.6$ (m, 9 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 108.9$ (C_{sp}-C_i), 114.2, 123.5, 125.4, 126.3, 126.9, 156.7 (2-hydroxythio-

phenol), 119.7, 128.5, 129.9, 132.6 (C_6H_5) ppm; C_{sp} -B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 38 ppm. MS (70 eV, EI): *m/z* (%) = 236 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 236.0462 (100) [M⁺; ¹²C₁₄¹H₉¹¹B¹⁶O₁³²S₁: 236.0467]; Δ mmu = 0.5.

1-(1,3,2-Benzothiaoxaborolyl)-2-tolylacetylene (7b): Starting materials: **3b** (2.75 g, 9.85 mmol), H₄C₆OSBr (2.0 g, 9.85 mmol). Yield: 2.1 g (86%), yellow solid, m.p. 71 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 2.39 (s, 3 H, CH₃), 7.2–7.6 (m, 8 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 21.66 (CH₃), 109.3 (C_{sp}-C_i), 114.8, 123.8, 125.4, 126.2, 126.9, 156.6 (2-hydroxythiophenol), 118.4, 129.3, 132.5, 140.4 (tolyl) ppm; C_{sp}-B not observed. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 38 ppm. MS (70 eV, EI): *m/z* (%) = 250 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 250.0622 (100) [M⁺; ¹²C₁₅¹H₁₁¹¹B¹⁶O₁³²S₁: 250.0627]; Δmmu = 0.5.

Isomers of Tris(catecholboryl)triphenylbenzene (8a/8a'), Tris(catecholboryl)tritolylbenzene (8b/8b'), Tris(4-methylcatecholboryl)triphenylbenzene (8c/8c'), and Tris(4-methylcatecholboryl)tritolylbenzene (8d/8d'). Catalyst = [CpCo(CO)₂]: Borylacetylene (5a: 1.32 g; 5b: 1.42 g; 5c: 1.42 g; 5d: 1.50 g; 6 mmol) and dicarbonylcobalt(η^{5} -cyclopentadienyl) (0.055 g, 0.3 mmol, 5 mol%) were heated at 90 °C in toluene (20 mL) for 3 days. The solid that formed was separated and washed several times with small amount of solvents (8a/8a': toluene and CH₂Cl₂; 8b/8b': hexane and toluene; 8c/8c' and 8d/8d': hexane) and dried in vacuo.

8a/8a': Yield 1.02 g (77%), yellow solid, m.p. 230 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 7.2-7.6$ (m, 27 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 112.7$, 123.2, 147.8 (catechol), 121.2, 128.5, 130.0, 132.8 (C₆H₅), 139.9 (central benzene, symm.), 134.6, 137.3, 142.5 (central benzene, unsymm.) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 24$ (br.) ppm. MS (70 eV, EI): m/z (%) = 660 (100) [M⁺], 542 (42) [M⁺ - catB + 1], 424 (15) [M⁺ - 2catB + 1]. MS (70 eV, HR-EI): m/z (%) = 660.2087 (100) [M⁺; ¹²C₄₂¹H₂₇¹¹B₃¹⁶O₆: 660.2086]; Δmmu = 0.1. C₄₂H₂₇B₃O₆ (660.1): calcd. C 76.42, H 4.12; found C 76.15, H 4.75.

8b/8b': Yield 1.10 g (78%), yellow solid, m.p. 241 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.35$ (s, 9 H, CH₃), 7.0–7.4 (m, 24 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.67$ (CH₃), 112.6, 123.1, 147.8 (catechol), 118.1, 129.2, 132.0, 132.7 (tolyl), 140.6 (central benzene, symm.), 135.9, 139.2, 147.5 (central benzene, unsymm.) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 22$ (br.) ppm. MS (70 eV, EI): *m/z* (%) = 702 (8) [M⁺], 584 (65) [M⁺ – catB + 1], 466 (100) [M⁺ – 2catB + 1]. MS (70 eV, HR-EI): *m/z* (%) = 702.2551 (5) [M⁺; ¹²C₄₅¹H₃₃¹¹B₃¹⁶O₆: 702.2556]; Ammu = 0.5. C₄₅H₃₃B₃O₆ (702.2): calcd. C 76.97, H 4.74; found C 77.95, H 4.98.

8c/8c': Yield 0.95 g (67%), yellow solid, m.p. 245 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 2.42 (s, 9 H, CH₃), 7.1–7.6 (m, 24 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 21.60 (CH₃), 112.0, 113.3, 123.3, 129.4, 145.6, 147.7 (catechol), 123.7, 129.2, 132.2, 132.9 (C₆H₅), 140.7 (central benzene, symm.), 139.1, 146.0, 148.0 (central benzene, unsymm.) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 23 (br.) ppm. MS (70 eV, EI): *m/z* (%) = 702 (100) [M⁺], 570 (95) [M⁺ - H₃CC₆H₃O₂B + 1]. MS (70 eV, HR-EI): *m/z* (%) = 702.2596 (100) [M⁺; ¹²C₄₅¹H₃₃¹¹B₃¹⁶O₆: 702.2556]; Δmmu = 4.0. C₄₅H₃₃B₃O₆ (702.2): calcd. C 76.97, H 4.74; found C 76.45, H 5.08.

8d/8d': Yield 1.12 g (75%), pale yellow solid, m.p. 261 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 2.35 (s, 9 H, CH₃), 2.39 (s, 9 H, CH₃), 6.9–7.5 (m, 21 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 21.37 and 21.48 (CH₃), 111.9, 113.2, 123.1, 133.1, 145.7, 147.8 (catechol), 118.1, 129.0, 132.0, 132.7 (tolyl), 140.5 (central benzene, symm.), 138.9, 145.3, 147.5 (central benzene, unsymm.) ppm. ¹¹B

NMR (64.2 MHz, CDCl₃): $\delta = 22$ (br.) ppm. MS (70 eV, EI): m/z (%) = 744 (100) [M⁺], 612 (49) [M⁺ - H₃CC₆H₃O₂B + 1]. MS (70 eV, HR-EI): m/z (%) = 744.3028 (100) [M⁺; ¹²C₄₈¹H₃₉¹¹B₃¹⁶O₆: 744.3025]; $\Delta mmu = 0.3$. C₄₈H₃₉B₃O₆ (744.2): calcd. C 77.46, H 5.28; found C 77.05, H 5.59.

Catalyst = $[Co_2(CO)_8]$: Mono(boryl)acetylene (5a: 1.76 g; 5b: 1.87 g; 5c: 1.87 g; 5d: 1.98 g; 8 mmol) and octacarbonyldicobalt (0.136 g, 0.4 mmol, 5 mol%) were heated at 90 °C in toluene (20 mL) for 2 days. Workup was carried out as above.

Yields: 1.25 g (71%) of **8a/8a**'; 1.45 g (77%) of **8b/8b**'; 1.32 g (70%) of **8c/8c**'; 1.49 g (75%) of **8d/8d**'.

[η⁴-Bis(diethylamino)bis(dimethylaminoboryl)cyclobutadiene](η⁵cyclopentadienyl)cobalt(1) (9): A solution of **2** (0.39 g, 2 mmol) in hexane (5 mL) was added within 15 min at room temparature to a solution of CpCo(C₂H₄)₂ (0.36 g, 2 mmol) in hexane (20 mL). The reaction mixture was stirred for 3 h. After filtration, the solvent was evaporated under high vacuum and a brown-green cobalt complex **9** was obtained. MS (70 eV, EI): m/z (%) = 515 (5) [M⁺ + 1], 341 (4) [C₁₅H₂₄B₂CoN₄⁺], 205 (7) [C₉H₁₉B₂N₄⁺], 58 (37) [C₃H₈N⁺], 28 (100) [C₂H₄⁺].

[η⁴-Bis(dithiocatecholboryl)diphenyl(cyclobutadiene](η⁵-cyclopentadienyl)cobalt(1) (10a/10a'), [η⁴-Bis(dithiocatecholboryl)ditolylcyclobutadiene](η⁵-cyclopentadienyl)cobalt(1) (10b/10b'), [η⁴-Bis(4methyldithiocatecholboryl)diphenylcyclobutadiene](η⁵-cyclopentadienyl)cobalt(1) (10c/10c'), [η⁴-Bis(4-methyldithiocatecholboryl)ditolylcyclobutadiene](η⁵-cyclopentadienyl)cobalt(1) (10d/10d'), [η⁴bis(1,3,2-benzo-thiaoxaborolyl)diphenylcyclobutadiene](η⁵-cyclopentadienyl)cobalt(1) (11a/11a'), and [η⁴-Bis(1,3,2-benzothiaoxaborolyl)ditolylcyclobutadiene](η⁵-cyclopentadienyl)cobalt(1) (11b/ 11b'): Borylalkyne (6a: 2.01 g; 6b: 2.12 g; 6c: 2.12 g; 6d: 2.24 g; 7a: 1.88 g; 7b: 2.00 g; 8 mmol) was added at room temperature to a solution of dicarbonylcobalt(η⁵-cyclopentadienyl) (0.72 g, 4 mmol) in toluene (30 mL). The reaction mixture was heated under reflux for 3 d. After cooling, the precipitate was collected by filtration, washed several times with hexane, and dried in vacuo.

10a/10a': Yield 1.42 g (56%), orange solid, m.p. 241 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 4.72$ (s, 5 H, Cp–H), 7.4–7.9 (m, 18 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 81.05$, 82.10 (C_{4ring}), 86.25 (Cp–C), 125.7, 126.5, 140.9 (dithiocatechol), 128.4, 129.7, 131.1, 132.2 (C₆H₅) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 58$ (br.) ppm. MS (70 eV, EI): m/z (%) = 628 (100) [M⁺], 478 (50) [M⁺ – BS₂C₆H₄ + 1], 450 (2) [M⁺ – PhC=CPh], 376 (70) [M⁺ – C₆H₄S₂BC=CPh], 302 (4) [M⁺ – C₆H₄S₂BC=CBS₂C₆H₄]. MS (70 eV, HR-EI): m/z (%) = 628.0222 (100) [M⁺; ¹²C₃₃¹H₂₃¹¹B₂⁵⁹Co³²S₄: 628.0200]; Δ mmu = 2.2. C₃₃H₂₃B₂CoS₄ (628.0): calcd. C 63.06, H 3.39; found C 62.21, H 3.58.

10b/10b': Yield 1.53 g (58%), orange-red solid, m.p. 245 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.35$ (s, 6 H, CH₃), 4.82 (s, 5 H, Cp–H), 6.9–7.3 (m, 16 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.69$ (CH₃), 84.86 (Cp–C), 82.84, 83.41 (CBD), 124.8, 125.6, 139.9 (dithiocatechol), 127.5, 128.8, 130.2, 131.2 (to-lyl) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 57$ (br.) ppm. MS (70 eV, EI): m/z (%) = 656 (100) [M⁺], 506 (30) [M⁺ – BS₂C₆H₄ + 1], 450 (3) [M⁺ – H₃CC₆H₄C≡CC₆H₄CH₃], 390 (70) [M⁺ – C₆H₄S₂BC≡CC₆H₄CH₃], 330 (5) [M⁺ – C₆H₄S₂BC≡CBS₂C₆H₄]. MS (70 eV, HR-EI): m/z (%) = 656.0519 (100) [M⁺; ¹²C₃₅¹H₂₇¹¹B₂⁵⁹Co³²S₄: 656.0513]; Δ mmu = 0.6. C₃₅H₂₇B₂CoS₄ (656.0): calcd. C 64.02, H 4.15; found C 64.34, H 4.59.

10c/10c': Yield 1.45 g (55%), yellow solid, m.p. 247 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.36$ (s, 6 H, CH₃), 4.86 (s, 5 H, Cp–H),

7.1–7.9 (m, 16 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 20.96 (CH₃), 79.72 (Cp–C), 82.45, 83.23 (C_{4ring}), 124.5, 126.8, 127.0, 135.9, 137.7 (dithiocatechol), 122.2, 128.8, 129.3, 132.8 (C₆H₅) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 57 (br.) ppm. MS (70 eV, EI): *m/z* (%) = 656 (100) [M⁺], 492 (50) [M⁺ – BS₂C₆H₃CH₃ + 1], 478 (5) [M⁺ – PhC=CPh], 390 (70) [M⁺ – H₃CC₆H₃S₂BC=CPh], 302 (10) [M⁺ – H₃CC₆H₃S₂BC=CB-S₂C₆H₃CH₃]. MS (70 eV, HR-EI): *m/z* (%) = 656.0533 (100) [M⁺; ¹²C₃₅¹H₂₇¹¹B₂⁵⁹Co³²S₄: 656.0513]; Δmmu = 2.0. C₃₅H₂₇B₂CoS₄ (656.0): calcd. C 64.02, H 4.15; found C 64.49, H 4.77.

10d/10d': Yield 1.56 g (57%), orange solid, m.p. > 300 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.38$ (s, 6 H, CH₃), 2.42 (s, 6 H, CH₃), 4.68 (s, 5 H, Cp–H), 7.0–7.8 (m, 14 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.07$ and 21.56 (CH₃), 83.90 (Cp–C), 79.72, 89.76 (C_{4ring}), 125.7, 126.4, 126.5, 135.2, 137.2, 140.8 (dithiocatechol), 128.2, 129.0, 130.0, 132.7 (tolyl) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 58$ (br.) ppm. MS (70 eV, EI): *m/z* (%) = 684 (15) [M⁺], 520 (18) [M⁺ – BS₂C₆H₃CH₃ + 1], 478 (10) [M⁺ – H₃CC₆H₄C=CC₆H₄CH₃], 404 (100) [M⁺ – H₃CC₆H₃S₂-BC=CC₆H₄CH₃], 330 (22) [M⁺ – H₃CC₆H₃S₂BC=CBS₂C₆H₃CH₃]. MS (70 eV, HR-EI): *m/z* (%) = 684.0851 (100) [M⁺; ¹²C₃₇¹H₃₁¹¹B₂⁵⁹Co¹⁶S₄: 684.0826]; Δmmu = 2.5. C₃₇H₃₁B₂CoS₄ (684.4): calcd. C 64.90, H 4.57; found C 64.38, H 5.07.

11a/11a': 1.64 g (68%), red-brown solid, m.p. 210 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 5.35 (s, 5 H, Cp–H), 7.4–7.9 (m, 18 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 83.98, 85.26 (C_{4ring}), 87.26 (Cp–C), 113.8, 122.8, 125.3, 125.9, 127.4, 155.6 (2-hydroxythiophenol), 120.5, 124.4, 128.9, 131.5 (C₆H₅) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 45 (br.) ppm. MS (70 eV, EI): *m/z* (%) = 596 (50) [M⁺], 462 (50) [M⁺ – BSOC₆H₄ + 1], 418 (3) [M⁺ – PhC=CPh], 360 (65) [M⁺ – C₆H₄SOBC=CPh], 302 (4) [M⁺ – C₆H₄SOBC=CBOSC₆H₄]. MS (70 eV, HR-EI): *m/z* (%) = 596.0665 (82) [M⁺; ¹²C₃₃¹H₂₃¹¹B₂⁵⁹Co¹⁶O₂³²S₂: 596.0657]; Δ mmu = 0.8. C₃₃H₂₃B₂CoO₂S₂ (596.2): calcd. C 66.44, H 3.89; found C 65.89, H 4.56.

11b/11b': 1.56 g (62%), red solid, m.p. 221 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.32$ (s, 6 H, CH₃), 5.37 (s, 5 H, Cp–H), 7.1–7.5 (m, 16 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.39$ (CH₃), 83.86 (Cp–C), 84.49, 86.23 (C_{4ring}), 114.5, 123.5, 125.1, 125.9, 126.7, 156.3 (2-hydroxythiophenol), 118.1, 128.9, 132.2, 140.1 (tolyl) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 46$ (br.) ppm. MS (70 eV, EI): m/z (%) = 624 (80) [M⁺], 490 (50) [M⁺ – BSOC₆H₄ + 1], 418 (2) [M⁺ – H₃CC₆H₄C=CC₆H₄CH₃], 374 (45) [M⁺ – C₆H₄SOBC=CC₆H₄CH₃], 330 (9) [M⁺ – C₆H₄SOBC=CBOSC₆H₄]. MS (70 eV, HR-EI): m/z (%) = 624.0985 (100) [M⁺; ¹²C₃₅⁻¹H₂₇⁻³²S₂⁻¹⁶O₂⁻¹¹B₂⁻⁵⁹Co: 624.0970]; Δ mmu = 1.5. C₃₅H₂₇B₂CoO₂S₂ (624.2): calcd. C 67.30, H 4.36; found C 66.95, H 4.72.

Isomers of Tris(dithiocatecholboryl)triphenylbenzene (12a/12a'), Tris(dithiocatecholboryl)tritolylbenzene (12b/12b'), Tris(4-methyldithiocatecholboryl)triphenylbenzene (12c/12c'), Tris(4-methyldithiocatecholboryl)tritolylbenzene (12d,12d'), Tris(1,3,2-benzothiaoxaborolyl)tritolylbenzene (13a/13a'), and Tris(1,3,2-benzothiaoxaborolyl)tritolylbenzene (13b/13b'). Catalyst = $[Co_2(CO)_8]$: Borylalkyne (6a: 2.26 g; 6b: 2.39 g; 6c: 2.39 g; 6d: 2.52 g; 7a: 2.12 g; 7b: 2.25 g; 9 mmol) and octacarbonyldicobalt (0.155 g, 0.45 mmol, 5 mole-%) were heated under reflux in toluene (20 mL) for 48 h. The solid was separated and washed several times with small amounts of solvents (12a/12a': toluene and CH₂Cl₂; 12b/12b': hexane and toluene; 12c/12c' and 12d/12d': hexane; 13a/13a': toluene and CH₂Cl₂; 13b/13b': hexane and toluene) and dried in vacuo. **12a/12a':** 1.74 g (77%), black solid, m.p. > 300 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 7.4–7.9 (m, 36 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 125.8, 126.6, 141.0 (dithiocatechol), 126.9 (central benzene, symm.), 128.4, 128.9, 138.0 (central benzene, unsymm.), 128.6, 129.9, 131.2, 132.3 (C₆H₅) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 62 (v. br.) ppm. MS (70 eV, EI): *m/z* (%) = 756 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 756.0742 (100) [M⁺; ¹²C₄₂¹H₂₇¹¹B₃³²S₆: 756.0716]; Δ mmu = 2.6. C₄₂H₂₇B₃S₆ (756.4): calcd. C 66.66, H 3.60; found C 65.21, H 3.84.

12b/12b': 1.83 g (76%), black solid, m.p. 295 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 2.39 (s, 9 H, CH₃), 7.2–7.5 (m, 24 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 21.27 (CH₃), 122.4, 127.3, 141.2 (dithiocatechol), 126.3 (central benzene, symm.), 136.0, 137.8, 140.6 (central benzene, unsymm.), 127.0, 128.6, 129.9, 132.4 (tolyl) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 60 (v. br.) ppm. MS (70 eV, EI): *m/z* (%) = 798 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 798.1197 (100) [M⁺; ¹²C₄₅¹H₃₃¹¹B₃³²S₆: 798.1185]; Δmmu = 1.2. C₄₅H₃₃B₃S₆ (798.5): calcd. C 67.66, H 4.17; found C 67.74, H 4.59.

12c/12c': 1.90 g (79%), black solid, m.p. 297 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.33$ (s, 9 H, CH₃), 6.9–7.6 (m, 24 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.77$ (CH₃), 122.9, 126.8, 127.8, 136.6, 138.3, 141.7 (dithiocatechol), 128.5 (central benzene, symm.), 136.2, 138.0, 141.1 (central benzene, unsymm.), 127.5, 129.1, 130.4, 132.9 (C₆H₅) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 60$ (v. br.) ppm. MS (70 eV, EI): m/z (%) = 798 (100) [M⁺]. MS (70 eV, HR-EI): m/z (%) = 798.1185 (100) [M⁺; ¹²C₄₅¹H₃₃¹¹B₃³²S₆: 798.1185]; Δmmu = 0.0. C₄₅H₃₃B₃S₆ (798.5): calcd. C 67.66, H 4.17; found C 67.89, H 4.75.

12d/12d': 2.05 g (81%), black solid, m.p. > 310 °C. ¹H NMR (200.1 MHz, CDCl₃): δ = 2.38 (s, 9 H, CH₃), 2.41 (s, 9 H, CH₃), 7.2–7.7 (m, 21 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): δ = 21.17 and 21.78 (CH₃), 126.2, 126.9, 127.1, 135.9, 137.7, 141.0 (dithiocatechol), 119.2, 129.3, 132.2, 140.3 (tolyl) ppm; because of the low solubility, the *ipso*-carbon atoms were not observed. ¹¹B NMR (64.2 MHz, CDCl₃): δ = 60 (v. br.) ppm. MS (70 eV, EI): *m/z* (%) = 840 (100) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 840.1680 (100) [M⁺; ¹²C₄₈¹H₃₉¹¹B₃¹⁶S₆: 840.1655]; Δ mmu = 2.5. C₄₈H₃₉B₃S₆ (840.6): calcd. C 68.56, H 4.68; found C 67.38, H 5.15.

13a/13a': 1.50 g (70%), red solid, m.p. 282 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 7.2-7.6$ (m, 27 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 113.8$, 122.8, 124.4, 125.3, 125.9, 155.6 (2-hydroxythiophenol), 132.8 (central benzene, symm.), 135.2, 138.4, 141.2 (central benzene, unsymm.), 120.5, 128.0, 128.9, 131.5 (C₆H₅) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 53$ (br.) ppm. MS (70 eV, EI): m/z (%) = 708 (100) [M⁺], 574 (10) [M⁺ - OSBC₆H₄ + 1]. MS (70 eV, HR-EI): m/z (%) = 708.1415 (100) [M⁺; ¹²C₄₂¹H₂₇¹¹B₃¹⁶O₃³²S₃: 708.1401]; Δ mmu = 1.4. C₄₂H₂₇B₃O₃S₃ (708.2): calcd. C 71.17, H 3.84; found C 71.07, H 4.26.

13b/13b': Yield: 1.85 g (82%), red solid, m.p. 293 °C. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 2.38$ (s, 9 H, CH₃), 7.2–7.6 (m, 24 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 21.39$ (CH₃), 114.5, 123.5, 125.1, 125.9, 131.7, 156.3 (2-hydroxythiophenol), 132.7 (central benzene, symm.), 118.1, 126.7, 128.9, 132.2 (tolyl) ppm; *ipso* carbon atoms of unsymm. ring were not observed. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 52$ (br.) ppm. MS (70 eV, EI): *m/z* (%) = 750 (70) [M⁺]. MS (70 eV, HR-EI): *m/z* (%) = 750.1872 (100) [M⁺; ¹²C₄₅¹H₃₃¹¹B₃¹⁶O₃³²S₃: 750.1871]; Δ mmu = 0.1. C₄₅H₃₃B₃O₃S₃ (750.3): calcd. C 71.98, H 4.43; found C 71.09, H 4.93.

3-(1,3,2-Benzodioxaborolyl)-4-phenyl-1,2-bis(tricarbonylcobalta)tetrahedrane (14a), 3-(1,3,2-Benzodithiaborolyl)-4-phenyl-1,2-bis(tricarbonylcobalta)tetrahedrane (15a), and 3-(1,3,2-Benzothiaoxaborolyl)-4-phenyl-1,2-bis(tricarbonylcobalta)tetrahedrane (16a): A solution of an alkyne (5a: 1.29 g; 6a: 1.48 g; 7a: 1.39 g; 5.9 mmol) in CH₂Cl₂ (10 mL) was added at -20 °C to a solution of Co₂(CO)₈ (2.03 g, 5.9 mmol) in CH₂Cl₂ (20 mL). The mixture was stirred for 48 h at room temperature and the solvent was evaporated to near dryness. The residue was separated by column chromatography (Florisil[®]; hexane) to give two fractions. Using hexane as the eluent, [Co₂(CO)₈] was obtained first. The second fraction (hexane/ toluene, 1:4) contained the corresponding dicobalt complex.

14a: Yield 1.51 g (50%), red oil. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 7.2 - 7.7$ (m, 9 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 104.3$ (C_{*ipso*}), 112.7, 123.2, 147.8 (catechol), 121.2, 128.5, 130.0, 132.8 (C₆H₅), 200.1 (CO) ppm; CB was not observed. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 33$ ppm. IR (hexane): $\tilde{v} = 2021$ (vs), 2039 (s), 2057 (vs), 2081 (w), 2098 (s) cm⁻¹. MS (70 eV, EI): *m/z* (%) = 506 (2) [M⁺], 478 (16) [M⁺ - CO], 450 (6.5) [M⁺ - 2 CO], 422 (13) [M⁺ - 3 CO], 394 (30) [M⁺ - 4 CO], 366 (53) [M⁺ - 5 CO], 338 (27) [M⁺ - 6 CO], 279 (30) [M⁺ - 6 CO - Co], 220 (100) [M⁺ - 6 CO - 2 Co]. MS (70 eV, HR-EI): *m/z* (%) = 505.9105 (2) [M⁺; ¹²C₂₀⁻¹H₉⁻¹¹B⁵⁹Co₂⁻¹⁶O₈: 505.9054]; Δ mmu = 5.1.

15a: Yield 1.52 g (48%), brown-red oil. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 7.1-7.8$ (m, 9 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 72.56$ (br., CB), 122.5 (C_{ipso}), 125.5, 126.9, 137.4 (di-thiocatechol), 128.1, 128.3, 130.2, 131.2 (C₆H₅), 199.5 (CO) ppm. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta = 59$ ppm. IR (hexane): $\tilde{v} = 2007$ (s), 2025 (s), 2044 (vs), 2060 (vs), 2088 (w) cm⁻¹. MS (70 eV, EI): m/z (%) = 538 (2) [M⁺], 510 (3) [M⁺ - CO], 482 (5) [M⁺ - 2 CO], 454 (2) [M⁺ - 3 CO], 426 (7) [M⁺ - 4 CO], 398 (12) [M⁺ - 5 CO], 370 (15) [M⁺ - 6 CO], 311 (4) [M⁺ - 6 CO - Co], 252 (100) [M⁺ - 6 CO - 2 Co]. MS (70 eV, HR-EI): m/z (%) = 537.8536 (2) [M⁺; ¹²C₂₀⁻¹H₉⁻¹¹B⁵⁹Co₂⁻¹⁶O₆⁻³²S₂: 537.8597]; Δmmu = 6.1.

16a: 1.40 g (45%), brown-red oil. ¹H NMR (200.1 MHz, CDCl₃): $\delta = 7.1-7.5$ (m, 9 H, H_{aryl}) ppm. ¹³C NMR (50.3 MHz, CDCl₃): $\delta = 108.7$ (C_{*ipso*}), 114.8, 123.8, 125.4, 126.2, 126.9, 156.6 (2hydroxythiophenol), 121.5, 128.4, 129.9, 132.5 (C₆H₅), 200.6 (CO) ppm; CB was not observed. ¹¹B NMR (64.2 MHz, CDCl₃): $\delta =$ 47 ppm. IR (hexane): $\tilde{v} = 2007$ (s), 2022 (vs), 2044 (vs), 2060 (vs), 2076 (s) cm⁻¹. MS (70 eV, EI): *m*/*z* (%) = 522 (3) [M⁺], 494 (7) [M⁺ - CO], 466 (10) [M⁺ - 2 CO], 438 (12) [M⁺ - 3 CO], 410 (31) [M⁺ - 4 CO], 382 (15) [M⁺ - 5 CO], 354 (13), [M⁺ - 6 CO], 295 (6) [M⁺ - 6 CO - Co], 236 (100) [M⁺ - 6 CO - 2 Co]. MS (70 eV, HR-EI): *m*/*z* (%) = 521.8856 (3) [M⁺; ¹²C₂₀¹H₉¹¹B⁵⁹Co₂¹⁶O₇³²S₁: 521.8826]; Δ mmu = 3.0.

(1,3,2-Benzodithiaborolyl)pentaphenylbenzene and Bis(1,3,2-benzodioxaborolyl)(1,3,2-benzodithiaborolyl)triphenylbenzene (17 and 18): Diphenylacetylene (0.75 g, 4.2 mmol) or 1-(catacholboryl)-2-phenylacetylene (5a; 0.92 g, 4.2 mmol) was added at room temperature to a solution of 15a (1.12 g, 2.1 mmol) in toluene (30 mL). The resulting mixture was stirred for 48 h under reflux. After cooling, the dark-black precipitate was collected by filtration and washed several times with hexane and toluene, and then dried in vacuo.

17: 0.90 g (70%), dark solid, m.p. > 300 °C. MS (70 eV, EI): m/z (%) = 608 (100) [M⁺]. MS (70 eV, HR-EI): m/z (%) = 608.1818 (100) [M⁺; ${}^{12}C_{42}{}^{11}H_{29}{}^{11}B^{32}S_2$: 608.1803]; Δ mmu = 1.5.

18: 1.10 g (75%), black solid, m.p. > 300 °C. MS (70 eV, EI): m/z (%) = 692 (100) [M⁺]. MS (70 eV, HR-EI): m/z (%) = 692.1633 (100) [M⁺; ${}^{12}C_{42}{}^{11}H_{27}{}^{11}B_{3}{}^{16}O_{4}{}^{32}S_{2}$: 692.1629]; $\Delta mmu = 0.4$.

Crystal Structure Determinations of 4a, 5a, 6a, and 10a: Crystal data and details of the structure determinations are listed in Table 1. Unique sets of intensity data were collected using a Bruker–AXS SMART 1000 diffractometer (Mo- K_{α} radiation, $\lambda = 0.71073$ Å, graphite monochromator, ω -scan). Empirical absorp-

Table 1. Crystal data and structural refinement for 4a, 5a, 6a, and 10a

	4a	5a	6a	10a
Empirical formula	$C_{20}H_{33}N_2B$	$C_{14}H_9O_2B$	$C_{14}H_9S_2B$	$C_{33}H_{23}B_2CoS_4$
Molecular mass	312.29	220.02	252.14	628.30
Crystal system	monoclinic	orthorhombic	monoclinic	triclinic
Space group	C2/c	Fdd2	$P2_1$	$P\overline{1}$
Unit cell				
a [Å]	13.9717(7)	19.626(5)	14.419(2)	12.7008(7)
b [Å]	14.9033(8)	7.1519(18)	5.4955(8)	15.9541(9)
<i>c</i> [Å]	11.0036(6)	15.422(4)	15.466(2)	17.364(1)
α [°]	90	90	90	87.270(1)
β [°]	118.881(1)	90	102.885(3)	69.319(1)
γ [°]	90	90	90	88.105(1)
Volume [Å ³]	2006.25(18)	2164.8(9)	1194.6(3)	3287.5(3)
Ζ	4	8	4	4
Calcd. density $[g \text{ cm}^{-3}]$	1.034	1.350	1.402	1.269
$\mu [mm^{-1}]$	0.059	0.088	0.414	0.796
F(000)	688	912	520	1288
Crystal size [mm]	0.50 imes 0.34 imes 0.26	0.35 imes 0.23 imes 0.07	$0.17 \times 0.10 \times 0.01$	0.18 imes 0.07 imes 0.05
$\theta_{\text{max.}}$ [°]	32.01	32.10	27.11	25.03
Index ranges	-20/18, 0/22, 0/16	0/29, 0/10, -21/22	-18/17, -7/6, 0/19	-14/15, -18/18, 0/20
Reflections collected	9223	5076	7208	35994
independent	3421(0.0216)	1717(0.0673)	4370(0.0625)	11615(0.0763)
Parameters	173	98	308	725
Goodness-of-fit on F^2	1.045	1.072	0.993	0.870
$R_1 [I > 2\sigma_I]$	0.0438	0.0713	0.0532	0.0503
wR_2 (all reflections)	0.1230	0.1678	0.1195	0.1162
T [K]	103(2)	103(2)	103(2)	298(2)
Residual electron density [e/A ³]	0.532/-0.125	0.926/-0.367	0.462/-0.581	0.281/-0.542

tion corrections were applied. The structures were solved by direct methods (SHELXS-86)^[32] and refined by least-squares methods based on F^2 with all measured reflections (SHELXL-97).^[33] All non-hydrogen atoms were refined anisotropically.

CCDC-227235 (for 4a), -227236 (for 5a), -227237 (for 6a), and -227238 (for 10a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

This work was supported by the SFB 623 and the Fonds der Chemischen Industrie. We thank Prof. R. Gleiter for fruitful discussions.

- ^[1] [^{1a]} S. Saito, Y. Yamamoto, *Chem. Rev.* 2000, 100, 2901-2915.
 ^[1b] Y. Yamamoto, A. Nagata, H. Nagata, Y. Ando, Y. Avikawa, K. Tatsumi, K. Itoh, *Chem. Eur. J.* 2003, 9, 2469-2483.
 ^[1c] E. R. F. Gesing, K. P. C. Vollhardt, *J. Organomet. Chem.* 1981, 217, 105-118.
 ^[1d] L. P. M. Bushnell, E. R. Evirt, R. G. Bergman, *J. Organomet. Chem.* 1978, 157, 445-456.
- [2] [2a] T. S. Piper, F. A. Cotton, G. Wilkinson, J. Inorg. Nucl. Chem. 1955, 1, 165–174. ^[2b] E. O. Fischer, R. Jira, Z. Naturforsch., Teil B 1955, 10, 355.
- ^[3] ^[3a] A. Efraty, Chem. Rev. 1977, 77, 691-744. ^[3b] R. Gleiter, Angew. Chem. 1992, 104, 29-46; Angew. Chem. Int. Ed. Engl. 1992, 31, 27-44. ^[3c] A. Nakamura, N. Hagihara, Bull. Chem. Soc., Jpn. 1961, 34, 452-453. ^[3d] M. D. Rausch, R. A. Genetti, J. Am. Chem. Soc. 1967, 89, 5502-5503. ^[3e] J. L. Boston, D. W. A. Sharp, G. Wilkinson, J. Chem. Soc. 1962, 3488-3494.
- ^[4] N. Schore, *Chem. Rev.* **1988**, 88, 1081–1119.
- ^[5] [^{5a]} K. P. C. Vollhardt, Angew. Chem. **1984**, 96, 525-542; Angew. Chem. Int. Ed. Engl. **1984**, 23, 539-644.
 ^[5b] H. Bönnemann, W. Brijoux, R. Brinkmann, W. Meurers, R. Mynott, W. Von Phillipsbon, T. Egolf, J. Organomet. Chem. **1984**, 272, 231-249.
- ^[6] ^[6a] I. U. Khand, G. R. Knox, P. L. Pauson, W. E. Watts, J. Chem. Soc., Chem. Commun. 1971, 36.
 ^[6b] I. U. Khand, G. R. Knox, P. L. Pauson, W. E. Watts, J. Chem. Soc., Perkin Trans. 1 1973, 975–977.
 ^[6c] P. L. Pauson, Tetrahedron 1985, 41, 5855–5860.
- [7] Y. Gu, H. Pritzkow, W. Siebert, Eur. J. Inorg. Chem. 2001, 373-379.
- [8] C. Ester, A. Maderna, H. Pritzkow, W. Siebert, *Eur. J. Inorg. Chem.* 2000, 1177–1184.
- ^[9] [^{9a]} M. Neuenschwander, P. Bigler, *Helv. Chim. Acta* 1973, 56, 959–965.
 ^[9b] A. Niederhauser, M. Neuenschwander, *Helv. Chim. Acta* 1973, 56, 1331–1343.
- ^[10] S. Y. Delavarenne, H. G. Viehe, *Chem. Ber.* **1970**, *103*, 1209–1215.
- ^[11] C. Blanchard, E. Framery, M. Vaultier, Synthesis 1996, 45-47.
- ^[12] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G.

Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2 1987, S1–S19. ^[13] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, 4th ed., Thieme Verlag, Stuttgart, 1991.

- [14] [14a] H. Schulz, G. Gabbert, H. Pritzkow, W. Siebert, *Chem. Ber.* 1993, 126, 1593–1595. ^[14b] M. Bluhm, A. Maderna, H. Pritzkow, S. Bethke, R. Gleiter, W. Siebert, *Eur. J. Inorg. Chem.* 1999, 1693.
- ^[15] K. Okada, T. Sugawa, M. Oda, J. Chem. Soc., Chem. Commun. 1992, 74.
- ^[16] J. H. Hardesty, J. B. Koerner, T. A. Albright, G. Y. Lee, J. Am. Chem. Soc. **1999**, 121, 6055-6067.
- ^[17] R. Diercks, B. E. Eaton, S. Gürtzgen, S. Jalisatgi, A. J. Matzger, R. H. Radde, K. P. C. Vollhardt, *J. Am. Chem. Soc.* **1998**, *120*, 8247–8248.
- ^[18] R. J. Baxter, G. R. Knox, J. H. Mori, P. L. Pauson, M. D. Spicer, *Organometallics* **1999**, *18*, 206–214.
- [¹⁹] [¹⁹a] R. J. Baxter, G. R. Knox, P. L. Pauson, M. D. Spicer, *Organometallics* **1999**, *18*, 197–205. [^{19b}] M. A. Bennett, P. B. Donaldson, *Inorg. Chem.* **1978**, *17*, 1995–2000. [^{19c}] R. J. Kaufman, R. S. Sidhu, J. Org. Chem. **1982**, *47*, 4941–4947.
- ^[20] ^[20a] O. S. Mills, G. Robinson, *Proc. Chem. Soc.* **1964**, 187. ^[20b]
 G. Gervasio, E. Sappa, L. Marko, *J. Organomet. Chem.* **1993**, 444, 203–209. ^[20c] R. S. Dickson, P. J. Fraser, *Aust. J. Chem.* **1972**, 25, 1179.
- ^[21] ^[21a] W. Hübel, C. Hoogzand, *Chem. Ber.* **1960**, *93*, 103. ^[21b] U. Krüerke, W. Hübel, *Chem. Ber.* **1961**, *94*, 2829. ^[21c] U. Krüerke, W. Hübel, *Chem. Ber.* **1961**, *94*, 2917.
- [22] G. F. Emerson, L. Watts, R. Pettit, J. Am. Chem. Soc. 1965, 87, 131.
- [23] F. L. Bowden, A. B. P. Lever, Organomet. Chem. Rev. 1968, 3, 227.
- ^[24] J. R. Fritch, K. P. C. Vollhardt, J. Am. Chem. Soc. 1978, 100, 3643.
- ^[25] H. Sakurai, J. Hayashi, J. Organomet. Chem. 1972, 39, 365–370.
- ^[26] M. E. Arnett, J. M. Bollinger, J. Am. Chem. Soc. 1964, 86, 4729-4731.
- [27] [27a] P. Galow, A. Sebald, B. Wrackmeyer, J. Organomet. Chem.
 1983, 259, 253. [27b] H. Greenfield, H. W. Sternberg, R. A. Friedel, J. H. Wotiz, R. Markby, I. Wender, J. Am. Chem. Soc.
 1956, 78, 120.
- ^[28] ^[28a] J. Perez, L. Riera, V. Riera, S. G. Granda, E. G. Rodriguez, D. G. Churchill, M. R. Churchill, T. S. Janik, *Inorg. Chim. Acta* **2003**, *347*, 189–193. ^[28b] M. Akita, M. Terada, M. Tanaka, Y. Moro-Oka, *Organometallics* **1992**, *11*, 3468.
- ^[29] P. Y. Chavant, M. Vaultier, J. Organomet. Chem. **1993**, 455, 37-46.
- ^[30] M. Younus, N. J. Long, P. R. Raithby, J. Lewis, N. A. Page, A. J. P. White, D. J. Williams, M. C. B. Colbert, A. J. Hodge, M. S. Khan, D. G. Parker, J. Organomet. Chem. **1999**, 578, 198–209.
- ^[31] W. Gerrard, M. F. Lappert, B. A. Mountfield, J. Chem. Soc., II 1959, 1529-1535.
- ^[32] G. M. Sheldrick, SHELXS-86, University of Göttingen, 1986.
- ^[33] G. M. Sheldrick, SHELXL-97, University of Göttingen, 1997.

Received January 23, 2004

Early View Article

Published Online May 25, 2004