Preliminary communication

The structure of 5-membered acetal groups of pyruvic acid in the D-galactan of the snail *Pomacea lineata**

PHILIP A.J. GORIN, MYTOSK MAZUREK,

Prairie Regional Laboratory, National Research Council, Saskatoon, Saskatchewan, S7N OW9 (Canada) HELENA S. DUARTE,

Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife (Brasil)

and JOSÉ H. DUARTE

Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba (Brasil)

(Received November 18th, 1980; accepted for publication, February 19th, 1981)

A β -D-galactopyranan, isolated from the albumen gland of the snail *Pomacea* lineata (formerly Ampullarius lineata SP1X, 1827), contains 3,4-O-(1-carboxyethylidene) groups, as shown by the liberation of pyruvic acid on acid hydrolysis and by methylation data¹. The ¹³C-n.m.r. spectrum of the D-galactan (salt form) contains minor signals (for solutions in D₂O at 70°) at δ_c 109.0 (non-protonated ketal carbon), 81.9 (C-3 of β -D-galactopyranosyl unit substituted by acetal group), and 25.3 (CH₃ of acetal group). The size of the signals, relative to that of the signal at δ_c 85.3 (O-glycosylated C-3), increased in spectra of products of successive Smith degradations (mild hydrolytic conditions). However, the carbonyl signal was not observed, and the signal for the non-protonated acetal carbon remained very small, owing to long, spin-lattice relaxation times, T_l . The position of substitution of the acetal groups, and in particular their configuration, were determined by use of the ¹³C- and ¹H-n.m.r. spectra of model diastereomers of methyl 3,4-O-(1-carboxyethylidene)- β -D-galactopyranoside.

The model compounds were prepared as follows: Methyl 3,4-O-isopropylidene- β -D-galactopyranoside (1) was mono-O-benzylated with benzyl bromide and silver oxide in N,N'-dimethylformamide to give the 6-O-benzyl derivative, which was partially hydrolyzed with 80% aqueous acetic acid at 100° into methyl 6-O-benzyl- β -D-galactopyranoside (2) in 32% yield, m.p. 104° (from ethyl acetate-hexane), $[\alpha]_D^{25}$ -15° (c 1.2, ethanol). Treatment of 2 with acetoxyacetone containing sulphuric acid gave a mixture of 3,4-O-acetoxyisopropylidene derivatives, which were O-deacetylated into methyl 6-O-benzyl-3,4-O-hydroxyisopropylidene- β -D-galactopyranosides (3 and 6; ratio ~3:3:1). These show CH₃ signals at δ_c 21.94 and 23.50, respectively. According to a study by Garegg *et al.*² of methyl 3,4-O-hydroxyisopropylidene- β -D-galactopyranosides, where the configurations were determined by crystallography, the major signal at higher field, δ_c 21.94, should

0008-6215/81/0000-0000/\$ 02.50, © 1981 - Elsevier Scientific Publishing Company

^{*}NRCC No. 19098.

have an endo hydroxymethyl group, as in 3. Compound 3, obtained in 24% yield, had m.p. 116° (ether) and $[\alpha]_{D}^{25} - 13^{\circ}$ (c 0.6, ethanol); ¹³C-n.m.r. (D₂O): δ 111.88 (non-protonated acetal carbon), 103.86 (C-1), 80.07 (C-3), and 21.94 (CH₃). Compound 3 was oxidized with platinum in the presence of oxygen in aqueous sodium hydrogencarbonate solution at 90° to give the sodium salt of the 3,4-O-(1-carboxyethylidene) derivative, and this was converted to the acid form, and thence to the methyl ester with diazomethane. This was purified by silicic acid colum chromatography (eluent: chloroform) and hydrogenolyzed in acetic acid solution with 5% palladium-on-charcoal, to provide methyl $3,4-O-(1-methoxycarbonylethylidene)-\beta-D-galactopyranoside (4) (yield: 35% based on 3;$ 8% based on 2), m.p. 152–153° (ethyl acetate-diethyl ether), $[\alpha]_D^{25}-8^\circ$ (c 1.0, methanol); ¹³C-n.m.r. (CDCl₃): δ 169.96 (carbonyl), 106.47 (non-protonated acetal carbon), 103.31 (C-1), 80.56 (C-3), and 23.60 (CH₃). Compound 4 was converted into the barium salt of methyl 3,4-O-(1-carboxyethylidene)-B-D-galactopyranoside (7) with cold, aqueous barium hydroxide; ¹³C-n.m.r. (D₂O, 70°): δ 178.49 (carbonyl), 109.60 (non-protonated acetal carbon), 104.31 (C-1), 81.12 (C-3), and 24.98 (CH₃); ¹H-n.m.r. (D₂O, 70°): δ 1.97 (CH₃).

The minor methyl 3,4-O-(1-methoxycarbonylethylidene)- β -D-galactopyranoside (5) was prepared by use of a similar series of reactions, starting from the mother liquor

obtained by crystallization of 3. Compound 5 was freed from impurities by silicic acid column chromatography (eluent: 50:1, v/v, chloroform—methanol) (yield, 1% based on 2), m.p. 147–149°, $[\alpha]_D^{25}$ –13°(c 0.5, methanol);¹³C-n.m.r. (CDCl₃): δ 170.05 (carbonyl), 106.06 (non-protonated acetal carbon), 103.23 (C-1), 79.26 (C-3), and 23.49 (CH₃). The derived barium salt of methyl 3,4-O-(1-carboxyethylidene)- β -D-galactopyranoside (8) was prepared with aqueous barium hydroxide; ¹³C-n.m.r. (D₂O, 70°): δ 109.45 (non-protonated acetal carbon), 104.47 (C-1), 80.44 (C-3), and 25.05 (CH₃); ¹H-n.m.r. (D₂O, 70°): δ 2.07 (CH₃).

The ¹³C- and ¹H-n.m.r. spectra of the snail D-galactan were interpreted as follows: The 5-membered acetal ring is indicated by the signal of the non-protonated ketal carbon at δ_c 109.0, close to the values of 109.60 and 109.45 for 7 and 8, and different from δ_c 102.39 for the barium salt of 4,6-O-(1-carboxyethylidene)- β -D-galactose. Non-protonated acetal carbon atoms of 5-membered rings give ¹³C signals at fields lower than those of 6-membered rings and are readily distinguishable³⁻⁵. The D-galactan gives a CH₃ acetal signal at δ_c 24.6, close to the values of 24.98 and 25.05 for the 3,4-O-(1-carboxyethylidene) derivatives 4 and 7. It differs from the values reported for isomers^{2,6} of 4,6-O-(1carboxyethylidene)- β -D-galactopyranoside at δ_c 17.2 and 26.1, and at δ_c 27.1 for a polysaccharide containing units with a related structure⁷. Similar values were observed for the barium salts of 4,6-O-(1-carboxyethylidene)- α , β -D-galactose (δ_c 26.44) and 3,6-anhydro-4-O-[4,6-O-(1-carboxyethylidene)- α , β -D-galactopyranosyl]-L-galactose dimethyl acetal (δ_c 26.26).

The snail D-galactan contains $(1\rightarrow3)$ - and $(1\rightarrow6)$ -linked β -D-galactopyranosyl residues according to methylation data⁸, and the former linkage is evidenced by an O-glycosylated, C-3 signal at δ_c 85.3, close to that of C-3' of β -D-Galp- $(1\rightarrow3)$ - β -D-Galp- $(1\rightarrow4)$ - β -D-Glc, which is observed⁹ at δ_c 83.6. The minor signal of the D-galactan at δ_c 81.9 arises from C-3 of units containing 3,4-O-(1-carboxyethylidene) substituents, since it corresponds to C-3 signals of 7 and 8 at δ_c 81.12 and 80.44, respectively.

TABLE I

Compound	Chemical shift (p.p.	n_j^a	
	C-3 of unit sub- stituted by acetal group	Proton of CH ₃	
Methyl 3,4-0-(1-carboxyethyl-			
idene)-β-D-galactopyranoside (7)	81.12	1.97	
Diastereomer of 7 (8)	80.44	2.07	
Pyruvylated unit in D-galactan (9)	81.9	1.99	

SHIFTS OF N.M.R. SIGNALS, DEPENDENT ON ACETAL CONFIGURATION, IN COMPOUNDS CONTAINING O-1-(-CARBOXYETHYLIDENE) SUBSTITUENTS IN β -d-Galactopyranosyl units

^aTetramethylsilane as the external standard.

No conclusions could be reached on the configuration of the acetal group of the snail D-galactan by consideration of the ¹³C chemical shift of CH₃ resonances of diastereomers of the barium salt of methyl 3,4-O-(1-carboxyethylidene)- β -D-galactopyranoside (7 and 8), which are only 0.07 p.p.m. apart. However, the C-3 signal is configurationally dependent (Table I), and the minor C-3 resonance of the D-galactan at δ_c 81.9 is close to 81.12 of the C-3 signal of 7. The suggested structure 9 having an *endo* carboxyl group was confirmed by ¹H-n.m.r. data, since the barium salt of 7 (D₂O, 70°) gave a CH₃ signal at δ 1.97, close to the value of 1.99 obtained for the D-galactan. In contrast, the corresponding signal of 8 was observed at δ 2.07 (Table I). For routine determination of (1-carboxyethylidene) structures in polysaccharides, ¹H- is superior to ¹³C-n.m.r. spectroscopy, because of its sensitivity and because the CH₃ proton resonances of the latter compounds are observed at δ 1.4–1.5 with the carboxyl group in the axial position, as for 4,6-O-substituents on β -D-galactopyranosyl units ^{7,10}. For equatorial carboxyl substituents, it would appear that the CH₃ resonances would be at a field lower by ~0.2 p.p.m.

The results herein are of interest as Garegg et al.⁶ found that $3,4-O-(1-carboxy-ethylidene)-\beta-D-galactopyranosyl units in bacterial polysaccharides have an acetal configuration corresponding to that of 8 ($ *i.e.*, S). The various shifts of <math>3,4-O-hydroxyisopropylidene derivatives of the polysaccharides, obtained by reduction, were compared with those of model methyl 3,4-O-hydroxyisopropylidene-D-galactopyranosides. It would be of interest to compare the chemical shifts of the proton CH₃ signals of the salt forms of these polysaccharides with those of the snail polysaccharide, under the same spectral conditions.

REFERENCES

- H. S. Duarte, G. R. Duarte, M. E. Duarte, M. Iacomini, and J. H. Duarte, Arq. Biol. Tecnol., 23 (1980) 153; Annu. Symp. Biol. Membranes. 9th, Braz. Biochem. Soc., Caxambú, 1980.
- 2 P. J. Garegg, B. Lindberg, and I. Kvarnström, Acta Chem. Scand., 77 (1979) 71-78.
- 3 J. P. Clayton, R. S. Oliver, N. H. Rogers, and T. J. King, J. Chem. Soc., Perkin Trans. 1, (1979) 838-849.
- 4 G. Aslani-Shotorbani, J. G. Buchanan, A. R. Edgar, D. Henderson, and P. Shahidi, *Tetrahedron Lett.*, 21 (1980) 1791-1792.
- 5 J. G. Buchanan, M. E. Chacón-Fuertes, A. R. Edgar, S. J. Moorhouse, D. I. Rawson, and R. H. Wightman, *Tetrahedron Lett.*, (1980) 1793-1796.
- 6 P. J. Garegg, P.-E. Jansson, B. Lindberg, F. Lindh, J. Lönngren, I. Kvarnström, and W. Nimmich, *Carbohydr. Res.*, 78 (1980) 127-132.
- 7 P. A. J. Gorin, J. F. T. Spencer, B. Lindberg, and F. Lindh, Carbohydr. Res., 79 (1980) 313-315.
- 8 H. S. Duarte, M. Sc. Thesis. Federal University of Paraná, Curitiba, Brazil, 1976.
- 9 P. A. J. Gorin, J. O. Previato, L. Mendonça-Previato, and L. R. Tavassos, J. Protozool., 26 (1979) 473-478.
- 10 T. Harada, A. Anemura, P.-E. Jansson, and B. Lindberg, Carbohydr. Res., 77 (1979) 285-288.