Conjugate addition of nitroalkanes to N-substituted maleimides. Synthesis of 3-alkylsuccinimides and pyrrolidines

Roberto Ballini,* Giovanna Bosica, Gianluca Cioci, Dennis Fiorini and Marino Petrini*
Dipartimento di Scienze Chimiche, Università di Camerino, via S. Agostino 1, I-62032 Camerino, Italy

Received 8 January 2003; revised 3 March 2003; accepted 27 March 2003

Abstract

Alkylidenesuccinimides obtained by conjugate addition of nitroalkanes to N-substituted maleimides can be reduced to the corresponding 3 -alkyl derivatives by catalytic hydrogenation. 3-Alkylsuccinimides can be further reduced using $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ complex to afford 3-alkylpyrrolidines in good yield. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Substituted pyrrolidines are frequently included in many substances endowed of biological and industrial interest. ${ }^{1} \mathrm{~A}$ large body of synthetic approaches leading to these fivemembered heterocycles involves a ring closure process that can be carried out both intra- and intermolecularly. ${ }^{2}$ An alternative procedure concerns functionalization of commercially available pyrrolidines and similar derivatives. ${ }^{3}$ Partial reduction of N -acylpyrrolidin-2-ones and functionalized succinimides usually provides a rapid entry to 2-hydroxy or 2-alkoxypyrrolidines that can be used as precursors of N -acyliminium ions. These reactive intermediates can be suitably employed for the synthesis of 2 -substituted pyrrolidines. ${ }^{4}$ Reaction of enolates obtained from pyrrolidin-2-ones with various electrophilic reagents represents a viable route to 3 -alkylpyrrolidines. ${ }^{5}$ A complementary strategy involves conjugate addition to N -substituted maleimides 1 followed by a reduction of the obtained succinimides 2 to give the pyrrolidine ring system 3 (Scheme 1). Common organometallic reagents give exclusively (alkynyllithium) or consistent amounts (Grignard reagents) of 1,2-addition products with

Scheme 1.

Keywords: addition reactions; imides; nitro compounds; pyrrolidines; reduction.

* Corresponding authors. Tel.: +39-737402270/402253; fax: +39 737402297; e-mail: roberto.ballini@unicam.it, marino.petrini@unicam.it.
maleimides $\mathbf{1 .}{ }^{6}$ Better results in terms of regioselectivity can be obtained adding carbon centered radicals ${ }^{7}$ or exploiting 'ene' reactions to compounds $1 .{ }^{8}$ In this context, among various sources of stabilized carbanions, nitroalkanes occupy a prominent position since it is known that their reaction with α, β-unsaturated derivatives affords only 1,4 -adducts. ${ }^{9}$ Furthermore, the relatively high acidity of the hydrogens in adjacent position to the nitro group $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}\right.$: $\mathrm{p} K_{\mathrm{a}}=10$) makes the generation of the corresponding nitronate anion fully compatible with a large array of other functionalities such as hydroxy and carbonyl groups.

2. Results and discussion

Several years ago, we observed that nitroalkanes 4 react with N-substituted maleimides $\mathbf{1}$ in the presence of DBU to afford the corresponding adducts $\mathbf{5}$ that suffer elimination of nitrous acid by the excess of the base employed giving the unsaturated derivative 6 in good yield (Scheme 2). ${ }^{10}$

Scheme 2.

Scheme 3.

This reactivity is peculiar to enone systems and has been recently used for the synthesis of pyrroles, ${ }^{11}$ furans, ${ }^{12}$ cyclopentenones, ${ }^{13}$ as well as 3 -alkylidene pyrrolidines. ${ }^{14}$

Reduction of the alkylidene moiety in compounds 6 allows the synthesis of 3 -alkylsuccinimides 7. These compounds are precursors of a wide range of functionalized open chain derivatives that can be obtained by nucleophilic ring opening reactions (Scheme 3). ${ }^{15}$ Reduction of unsaturated succinimides 6 can be readily accomplished by catalytic hydrogenation in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ in very high yields (Table 1). Rather surprisingly, compound $\mathbf{6 g}$ has been revealed practically inert towards these reductive conditions. Therefore, the double bond in compound $\mathbf{6 g}$ has been reduced using the $\mathrm{NaBH} 4 / \mathrm{NiCl}_{2}$ couple in 80% yield (Scheme 4). ${ }^{16}$

A large number of reducing agents are available in literature to carry out the conversion of cyclic imides into saturated nitrogen heterocycles. ${ }^{17} \mathrm{LiAlH}_{4}$ is one of the most operationally simple reagents for this purpose. However, a preliminary test using succinimide $\mathbf{7 d}$ revealed that LiAlH_{4}

Table 1. Synthesis of 3-alkylsuccinimides 7

Entry	Alkenylimide 6		R	Alkylimide 7, yield (\%) ${ }^{\text {a }}$
	R_{1}	R_{2}		
a	CH_{3}	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	95
b	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	98
c	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	96
d	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	99
e	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	97
f	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	96
g	Ph	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$80^{\text {b }}$
h	$\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	98
,	CH_{3}	CH_{3}	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	99
j	$-\left(\mathrm{CH}_{2}\right)_{5}-$		$\mathrm{CH}_{3} \mathrm{CH}_{2}$	95
k	CH_{3}	H	Ph	94
,	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$	H	Ph	98
m	CH_{3}	CH_{3}	Ph	99

[^0]

Scheme 4.

Scheme 5.
in THF at reflux affords pyrrolidine 8d and 3-pentyl- N ethylpyrrole 9 in a $2: 1$ ratio (Scheme 5).

A similar behavior has been previously reported by Abramovitch and Chapman in the reaction of N-methyl-anilinomethylene- N^{\prime}-phenylsuccinimide with the same reducing agent. ${ }^{18}$ Formation of pyrrole 9 may be ascribed to the basicity of LiAlH_{4} that favors an elimination leading to a thermodynamically stable aromatic ring. Lowering the temperature to $0^{\circ} \mathrm{C}$ did not suppress the formation of pyrrole 9 and therefore, we decided to exploit a complementary approach for the reduction of substrates 7. Borane is able to reduce substituted succinimides to the corresponding pyrrolidines. ${ }^{17}$ It is commercially available as a complex with various Lewis bases, or can be generated in situ from $\mathrm{NaBH}_{4} / \mathrm{I}_{2}$ couple. For our purposes, we have observed that $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ complex in THF is the reagent of choice to carry out efficient reduction of succinimides 7 to 3-alkypyrrolidines 8 (Scheme 6, Table 2).

It is worth noting that the amount of pyrrole formed using borane reagents with compounds 7 is negligible even at reflux conditions. However, owing to the formation of an acid-base complex between boron and pyrrolidine nitrogen, strong hydrolytic conditions must be applied to the reaction mixture after reduction.

Scheme 6.

Table 2. Synthesis of 3-alkylpyrrolidines 8

Entry	Alkylimide $\mathbf{7}$	Alkylpyrrolidine $\mathbf{8}$	Yield (\%)
1	$\mathbf{7 a}$	$\mathbf{8 a}$	
2	$\mathbf{7 b}$	$\mathbf{8 b}$	63
3	$\mathbf{7 c}$	$\mathbf{8 c}$	67
4	$\mathbf{7 d}$	$\mathbf{8 d}$	72
5	$\mathbf{7 e}$	$\mathbf{8 e}$	78
6	$\mathbf{7 f}$	$\mathbf{8 f}$	83
7	$\mathbf{7} \mathbf{g}$	$\mathbf{8} \mathbf{g}$	76
8	$\mathbf{7} \mathbf{~}$	$\mathbf{8}$	81
9	$\mathbf{7 i}$	$\mathbf{8}$	73
10	$\mathbf{7 j}$	$\mathbf{8 j}$	70
11	$\mathbf{7 k}$	$\mathbf{8 k}$	80
12	$\mathbf{7 l}$	$\mathbf{8 1}$	85
13	$\mathbf{7 m}$		79

${ }^{\text {a }}$ Yields of pure, isolated products.

3. Conclusions

Reaction of nitroalkanes to N-substituted maleimides affords 3-alkylidenesuccinimides 6 by a tandem conjugate addition-elimination process. Compounds $\mathbf{6}$ can be partially reduced to 3 -alkyl derivatives 7 by catalytic hydrogenation. Further reduction of succinimides 7 with $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ complex gives 3-alkylpyrrolidines $\mathbf{8}$ in good yield. This overall procedure provides a rapid entry to an important class of synthetic intermediates.

4. Experimental

4.1. General

${ }^{1} \mathrm{H}$ NMR were recorded at 300 MHz on a Varian VXR300 in CDCl_{3} as solvent. ${ }^{13} \mathrm{C}$ NMR were recorded at 75 MHz in CDCl_{3} as solvent. Microanalyses were performed with a CHNS-O analyzer Model EA 1108 from Fisons Instruments. IR spectra were recorded with a Perkin-Elmer Paragon 500 FT-IR. GLC analyses were performed on a Hewlett-Packard 5890 equipped with a capillary column of fused silica $(0.32 \mathrm{~mm} \times 25 \mathrm{~m})$, stationary phase SE54. Mass spectra were performed on a Hewlett-Packard GC/MS 5970 by means of the EI technique (70 eV). THF was dried by refluxing it over sodium wire then distilled. All chemicals used are available commercially. 3-Alkylidenesuccinimides 6 were prepared using a previously reported method. ${ }^{10}$

4.2. General procedure for the preparation of 3 -alkylsuccinimides 7

3-Alkenylsuccinimide $\mathbf{6}(10 \mathrm{mmol})$ was dissolved in EtOAc $(100 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.2 \mathrm{~g})$ was added. The suspension was hydrogenated at 2 atm at room temperature for 5 h and then filtered on a celite pad. The clear solution was evaporated at reduced pressure and the resulting alkylsuccinimides showed a purity $>98 \%$ by glc analysis.
4.2.1. 1,3-Diethylpyrrolidin-2,5-dione, 7a. Yield 95\%; oil; IR (cm^{-1}, neat) $1774,1701,1443,1376 ;{ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm})$ $1.08(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.16(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.60-1.85$ $(\mathrm{m}, 1 \mathrm{H}), 1.95-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.89-3.11$ (m, 2H), $3.55\left(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}\right.$). Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$ (155.19) C, 61.91; H, 8.44; N, 9.03. Found C, 61.97; H, 8.48; N, 8.98.
4.2.2. 1-Ethyl-3-propylpyrrolidin-2,5-dione, 7b. Yield 98\%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, 1376; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.16(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 1.30-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.26-$ $2.46(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}(169.22) \mathrm{C}, 63.88 ; \mathrm{H}, 8.93$; N, 8.28. Found C, 63.82; H, 8.96; N, 8.24.
4.2.3. 3-Butyl-1-ethylpyrrolidin-2,5-dione, 7c. Yield 96\%; oil; IR (cm^{-1}, neat) $1774,1701,1443,1376 ;{ }^{1} \mathrm{H}$ NMR δ (ppm) $0.92(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.15(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.30-$ $1.60(\mathrm{~m}, 4 \mathrm{H}), 1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.69-$ $2.90(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$. Anal. calcd for
$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$ (183.25) C, 65.54; H, 9.35; N, 7.64. Found C, 65.51; H, 9.38; N, 7.62.
4.2.4. 1-Ethyl-3-pentylpyrrolidin-2,5-dione, 7d. Yield 99%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, 1376; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.08(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 1.18-1.48(\mathrm{~m}, 7 \mathrm{H}), 1.76-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.22-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2}(197.87) \mathrm{C}, 66.97 ; \mathrm{H}, 9.71 ; \mathrm{N}$, 7.10. Found C, 66.93; H, 9.73; N, 7.12.
4.2.5. 1-Ethyl-3-hexylpyrrolidin-2,5-dione, 7e. Yield 97%; oil; IR (cm^{-1}, neat) 1774, 1700, 1443, 1376; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.85(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.12(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 1.20-1.36(\mathrm{~m}, 7 \mathrm{H}), 1.38-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.83(\mathrm{~m}, 2 \mathrm{H}), 3.51$ (q, 2H, $J=7.3 \mathrm{~Hz}$). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{2}(211.30) \mathrm{C}$, $68.21 ;$ H, 10.02; N, 6.63. Found C, $68.25 ;$ H, $10.04 ;$ N, 6.60.
4.2.6. 1-Ethyl-3-(2-methylpropyl)pyrrolidin-2,5-dione, 7f. Yield 96%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, $1376 ;{ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}$, $J=6.2 \mathrm{~Hz}) 1.17(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.25-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.65-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.92(\mathrm{~m}, 2 \mathrm{H})$, $3.55(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$ (183.25) C, 65.54; H, 9.35; N, 7.64. Found C, 65.58; H, 9.36; N, 7.63.
4.2.7. 1-Ethyl-3-(5-hydroxyhexyl)pyrroldin-2,5-dione, 7h. Yield 98%; oil; IR (cm^{-1}, neat) $1774,1701,1443$, 1376; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.12(\mathrm{t}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.28-1.41$ $(\mathrm{m}, 5 \mathrm{H}), 1.42-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.68-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.61(\mathrm{t}$, $2 \mathrm{H}, J=6.6 \mathrm{~Hz}$). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}(287.30) \mathrm{C}$, 63.41; H, 9.31; N, 6.16. Found C, 63.38; H, 9.34; N, 6.13.
4.2.8. 1-Ethyl-3-(1-methylethyl)pyrrolidin-2,5-dione, 7i. ${ }^{10 \mathrm{~b}}$ Yield 99%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, $1376 ;{ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.01(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.09(\mathrm{~d}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 1.12(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.36-2.54(\mathrm{~m}, 1 \mathrm{H})$, 2.58-2.71 (m, 1H), 2.81-2.88 (m, 1H), 2.95-3.04 (m, 1H), $3.55(\mathrm{q}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}(169.22)$ C, 63.88; H, 8.93; N, 8.28. Found C, 63.93; H, 8.95; N, 8.25.
4.2.9. 3-Cyclohexyl-1-ethylpyrrolidin-2,5-dione, 7j. Yield 95\%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, 1376; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.00-1.50(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.60-$ $1.85(\mathrm{~m}, 4 \mathrm{H}), 1.85-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.80(\mathrm{~m}, 3 \mathrm{H}), 3.55$ (q, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}$). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2}(209.28) \mathrm{C}$, 68.87; H, 9.15; N, 6.69. Found C, 68.83; H, 9.18; N, 6.71.
4.2.10. 3-Ethyl-1-phenylpyrrolidin-2,5-dione, 7k. Yield 95%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, 1376; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.08(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.60-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.89-3.11(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.60(\mathrm{~m}, 5 \mathrm{H})$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ (203.24) C, 70.92; H, 6.45; N, 6.89. Found C, 70.88; H, 6.47; N, 6.91.
4.2.11. 3-Butyl-1-phenylpyrrolidin-2,5-dione, 71. Yield 98%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, 1376; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.97(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.34-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.56-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.90-$ $3.12(\mathrm{~m}, ~ 2 \mathrm{H}), 7.28-7.55(\mathrm{~m}, 5 \mathrm{H})$. Anal. calcd for
$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ (231.29) C, 72.70; H, 7.41; N, 6.06. Found C, 72.75; H, 7.40; N, 6.09.
4.2.12. 3-(1-Methylethyl)-1-phenylpyrrolidin-2,5-dione, 7m. Yield 99%; oil; IR (cm^{-1}, neat) 1774, 1701, 1443, 1376 ; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.01(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.09(\mathrm{~d}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 2.36-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.81-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.04(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.55(\mathrm{~m}, 5 \mathrm{H})$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ (217.26) C, 71.87 ; $\mathrm{H}, 6.96$; $\mathrm{N}, 6.45$. Found C, 71.91; H, 6.99; N, 6.43.
4.2.13. 1-Ethyl-3-phenylmethylpyrrolidin-2,5-dione, 7g. Alkenylimide $6 \mathbf{g}(2 \mathrm{mmol})$ was added to a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(3.32 \mathrm{~g})$ in $\mathrm{MeOH}-\mathrm{THF}(3: 1,65 \mathrm{~mL})$. The mixture was cooled at $0^{\circ} \mathrm{C}$ by ice bath and then NaBH_{4} ($40 \mathrm{mmol}, 1.52 \mathrm{~g}$) was added portionwise over 30 min . The black slurry was stirred at room temperature for 4 h and then filtered over a short pad of Florisil ${ }^{\circledR}$. The Florisil ${ }^{\circledR}$ pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and then the collected solutions were evaporated at reduced pressure. The crude alkylimide $7 \mathbf{g}$ was purified by column chromatography ($8: 2$ hexanes-ethyl acetate) giving $0.35 \mathrm{~g}(80 \%)$ of pure product as an oil. IR (cm^{-1}, neat) $1774,1701,1443,1376 ;{ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.12(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.37-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.62-$ $2.72(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.57$ (q, $2 \mathrm{H}, J=7.3 \mathrm{~Hz}$), 7.15-7.40 (m, 5H). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}(217.26) \mathrm{C}, 71.87$; H, 6.96; N, 6.45. Found C, 71.90; H, 6.99; N, 6.47.

4.3. General procedure for the preparation of 3alkylpyrrolidines 8

Succinimide $7(5 \mathrm{mmol})$ was dissolved in dry THF (70 mL), and the solution was cooled at $0^{\circ} \mathrm{C}$ by ice bath. $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ ($25 \mathrm{mmol}, 2.5 \mathrm{~mL}, 10 \mathrm{M}$ in THF) was then added dropwise over 30 min and after removal of the cooling bath the mixture was refluxed for 3 h . The reaction mixture was then cooled at room temperature and the excess of BH_{3} was eliminated by dropwise addition of $\mathrm{MeOH}(10 \mathrm{~mL})$. After removal of the solvent at reduced pressure the residue was dissolved in $\mathrm{MeOH}(25 \mathrm{~mL})$ and then $37 \% \mathrm{HCl}(5 \mathrm{~mL})$ was added. The mixture was refluxed for 3 h and the solvent was then evaporated at reduced pressure. The crude pyrrolidine hydrochloride was dissolved in $4 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{~mL})$ and the resulting solution was saturated with NaCl . The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent at reduced pressure the crude pyrrolidine was purified by column chromatography (8:4:1:0.1 hexane-ethyl acetate-ethanol$\left.38 \% \mathrm{NH}_{4} \mathrm{OH}\right)$.
4.3.1. 1,3-Diethylpyrrolidine, 8a. Yield 63%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.00(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.11(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $1.20-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.90(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.57(\mathrm{~m}, 4 \mathrm{H})$, 2.64-2.91 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) ~ 11.5, ~ 12.2, ~ 25.5$, 32.1, 44.8, 47.7, 52.5, 61.5. MS m/z (\%): 127 ($\mathrm{M}^{+}, 22$), 126 (23), 112 (100), 82 (8), 71 (19), 55 (10), 42 (18), 29 (4). Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}$ (127.23) C, 75.52; H, 13.47; N, 11.01. Found C, 75.47 ; H, 13.50; N, 11.04.
4.3.2. 1-Ethyl-3-propylpyrrolidine, 8b. Yield 67%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) \quad 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.11(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 1.24-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.64-2.00(\mathrm{~m}, 3 \mathrm{H}), 2.30-$
$2.58(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 12.2$, 13.8, 20.7, 33.5, 34.5, 43.1, 48.2, 52.9, 62.9. MS m/z (\%): $141\left(\mathrm{M}^{+}, 15\right), 140(18), 126$ (100), 71 (25), 55 (16), 42 (16), 29 (5). Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}$ (141.25) C, 76.53; H, 13.56; N, 9.92. Found C, 76.48; H, 13.53; N, 9.95.
4.3.3. 3-Butyl-1-ethylpyrrolidine, 8c. Yield 72%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.11(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 1.20-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.90-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.26-$ $2.56(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 12.2$, 14.0, 22.5, 29.6, 30.1, 33.3, 43.1, 47.9, 52.8, 62.6. MS m/z (\%): $155\left(\mathrm{M}^{+}, 14\right), 154$ (15), 140 (100), 126 (8), 98 (8), 82 (15), 71 (24), 55 (18), 42 (21), 29 (11). Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}$ (155.28) C, 77.35; H, 13.63; N, 9.03. Found C, 77.40; H, 13.59; N, 9.00.
4.3.4. 1-Ethyl-3-pentylpyrrolidine, 8d. Yield 78\%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) \quad 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.11(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}$), 1.20-1.46 (m, 9H), 1.70-2.24 (m, 2H), 2.28$2.58(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 12.2,14.1,22.7,28.5,29.4,31.0,33.2,41.7$, 47.9, 52.3, 62.5. MS m/z (\%): 169 ($\mathrm{M}^{+}, 14$), 168 (15), 154 (100), 140 (12), 98 (6), 82 (13), 71 (20), 58 (14), 42 (14), 29 (8). Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}(169.31) \mathrm{C}, 78.03 ; \mathrm{H}, 13.69$; N , 8.27. Found C, 77.99 ; H, 13.72; N, 8.24.
4.3.5. 1-Ethyl-3-hexylpyrrolidine, 8e. Yield 83%; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.11(\mathrm{t}, 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 1.22-1.45(\mathrm{~m}, ~ 11 \mathrm{H}), 1.80-2.20(\mathrm{~m}, ~ 2 \mathrm{H})$, 2.28-2.56 (m, 4H), 2.64-2.89 (m, 2H). ${ }^{13} \mathrm{C}$ NMR δ (ppm) 12.2, 14.1, 22.7, 26.9, 29.1, 30.3, 31.9, 32.9, 43.1, 47.9, 52.3, 62.3. MS m/z (\%): 183 ($\mathrm{M}^{+}, 13$), 184 (14), 168 (100), 154 (9), 126 (4), 98 (6), 82 (10), 71 (17), 58 (14), 29 (5). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}$ (183.33) C, 78.62; H, 13.74; N, 7.64. Found C, 78.57; H, 13.71; N, 7.66.
4.3.6. 1-Ethyl-3-(2-methylpropyl)pyrrolidine, 8f. Yield 76%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.89$ (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.11(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.65-1.80(\mathrm{~m}, 4 \mathrm{H})$, $1.85-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.68-2.79(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 12.2,22.3,22.5,27.9,33.7,40.3,41.2$, 47.9, 52.7, 63.0. MS m/z (\%): 155 ($\mathrm{M}^{+}, 20$), 154 (17), 140 (100), 112 (5), 96 (7), 71 (22), 58 (25), 42 (14), 29 (5). Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}$ (155.28) C, 77.35; H, 13.63; N, 9.03. Found C, 77.31 ; H, 13.60; N, 9.05.
4.3.7. 1-Ethyl-3-phenylmethylpyrrolidine, 8g. Yield 81%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.07(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.42-1.54$ (m, $1 \mathrm{H}), 1.88-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.54$ (m, 4H), 2.59-2.73 (m, 4H), 7.12-7.28 (m, 5H). ${ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 14.1,30.7,39.0,41.8,50.6,53.9,60.0,126.0$, 128.4, 128.9, 141.2. MS m/z (\%): 189 ($\mathrm{M}^{+}, 33$), 188 (28), 174 (100), 131 (24), 111 (14), 97 (47), 91 (42), 82 (25), 71 (20), 65 (16), 42 (19). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}$ (189.30) C, 82.48; H, 10.12; N, 7.40. Found C, 82.43; H, 10.15; N, 7.38 .
4.3.8. 1-Ethyl-3-(5-hydroxyhexyl)pyrrolidine, 8h. Yield 73%; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.06(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.20-1.40$ $(\mathrm{m}, 10 \mathrm{H}), 1.46-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{bs}, 1 \mathrm{H}), 2.27-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.71$ $(\mathrm{m}, 1 \mathrm{H}), 2.76-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 13.5,25.5,28.1,29.2,30.5,32.5,35.3,37.1$,
50.2, 53.4, 60.0, 62.5. MS m/z (\%): 199 ($\left.\mathrm{M}^{+}, 9\right), 198$ (15), 184 (100), 140 (12), 100 (39), 71 (34), 58 (31), 43 (37), 44 (37), 32 (44). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}$ (199.33) C, 72.31; H, 12.64; N, 7.03. Found C, 72.29; H, 12.61; N, 7.00.
4.3.9. 1-Ethyl-3-(1-methylethyl)pyrrolidine, 8i. Yield 70%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.00(\mathrm{~d}, 6 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.11$ $(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.50-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.06(\mathrm{~m}, 1 \mathrm{H})$, $2.08-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.92(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 12.2,18.6,20.6,26.8,31.1,32.1,48.0$, 53.3, 59.8. MS m/z (\%): 141 ($\left.{ }^{+}, 20\right), 140(20), 126$ (100), 83 (12), 71 (18), 55 (11), 42 (11), 29 (4). Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}$ (141.25) C, 76.53; H, 13.56; N, 9.92. Found C, 76.59; H, 13.59; N, 9.89.
4.3.10. 3-Cyclohexyl-1-ethylpyrrolidine, 8j. Yield 85\%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.07(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.55-1.95$ (m, $14 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.70-2.86$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 13.6,26.2,28.6,30.0,31.7$, $32.0,44.9,50.5,53.6,58.4,61.8$. MS m/z (\%): $181\left(\mathrm{M}^{+}, 17\right)$, 180 (16), 166 (100), 98 (5), 81 (13), 71 (20), 58 (17), 41 (10). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}$ (181.32) C, 79.49; H, 12.79; N, 7.72. Found C, 79.45; H, 12.82; N, 7.75.
4.3.11. 3-Ethyl-1-phenylpyrrolidine, 8k. Yield 85%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.98(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.42-1.70(\mathrm{~m}$, $3 \mathrm{H}), 2.09-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.92(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.47(\mathrm{~m}$, $3 \mathrm{H}), 6.50-6.68(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.27(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR δ (ppm) 12.8, 26.8, 31.4, 40.6, 47.5, 53.3, 111.4, 115.27, 129.12, 148.0. MS m / z (\%): 175 ($\mathrm{M}^{+}, 68$), 174 (68), 144 (9), 119 (33), 104 (30), 91 (100), 77 (44), 51 (13), 41 (9). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}$ (175.27) C, 82.23; H, 9.78; $\mathrm{N}, 7.99$. Found C, 82.18; H, 9.82; N, 8.03.
4.3.12. 3-Butyl-1-phenylpyrrolidine, 81. ${ }^{19}$ Yield 79\%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 0.92(\mathrm{t}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}$), $1.25-1.58$ (m, $4 \mathrm{H}), 1.62-1.97(\mathrm{~m}, 3 \mathrm{H}), 2.12-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.06$ $(\mathrm{m}, 1 \mathrm{H}), 3.33-3.60(\mathrm{~m}, 3 \mathrm{H}), 6.50-6.68(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.27$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 14.0,22.5,29.9,30.4,34.6$, 44.3, 47.5, 54.3, 111.5, 115.4, 129.1, 148.0. MS m / z (\%): $203\left(\mathrm{M}^{+}, 88\right), 202$ (72), 144 (16), 119 (38), 106 (57), 91 (100), 77 (42), 55 (12), 41 (12), 29 (10). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}$ (203.32) C, 82.70; H, 10.41; N, 6.89. Found C, 82.65; H, 10.38; N, 6.86.
4.3.13. 3-(1-Methylethyl)-1-phenylpyrrolidine, 8m. Yield 77%; waxy solid; ${ }^{1} \mathrm{H}$ NMR $\delta(\mathrm{ppm}) 1.00(\mathrm{~d}, 6 \mathrm{H}, J=6.2 \mathrm{~Hz})$, $1.50-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.23(\mathrm{~m}, 1 \mathrm{H})$, $2.90-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.50(\mathrm{~m}, 3 \mathrm{H}), 6.50-6.68(\mathrm{~m}, 3 \mathrm{H})$, 7.18-7.27 (m, 2H). ${ }^{13} \mathrm{C}$ NMR $\delta(\mathrm{ppm}) 21.4,21.8,30.5$, 32.7, 46.7, 48.1, 52.5, 112.5, 115.4, 129.3, 148.1. MS m/z (\%): $189\left(\mathrm{M}^{+}, 67\right), 188$ (56), 146 (12), 119 (36), 104 (31), 91 (100), 77 (46), 51 (11), 41 (16). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}$ (189.30) C, 82.48; H, 10.12; N, 7.40. Found C, 82.51; H, 10.08; N, 7.38 .

Acknowledgements

Financial support from University of Camerino and MIUR (National Project 'Sintesi e Reattività-attività di Sistemi Insaturi Funzionalizzati’) is gratefully acknowledged.

References

1. Review (a) Mitchinson, A.; Nadin, A. J. Chem. Soc. Perkin Trans. 1 2000, 2862-2892. (b) Pinchon, M.; Figadère, B. Tetrahedron: Asymmetry 1996, 7, 927-964.
2. For some recent examples see: (a) Verma, S. K.; Atanes, M. N.; Busto, J. H.; Thai, D. L.; Rapoport, H. J. Org. Chem. 2002, 67, 1314-1318. (b) Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471-1474. (c) Palacios, F.; Alonso, C.; Amezua, P.; Rubiales, G. J. Org. Chem. 2002, 67, 1941-1946. (d) Smith, S. C.; Bentley, P. D. Tetrahedron Lett. 2002, 43, 899-902. (e) Karlsson, S.; Högberg, H.-E. Tetrahedron: Asymmetry 2001, 712, 1977-1982.
3. (a) Krow, G. R.; Yuan, J.; Lin, G.; Sonnet, P. E. Org. Lett. 2002, 4, 1259-1262. (b) Greenwood, E. S.; Parsons, P. J. Synlett 2002, 167-169. (c) Li, Z.; Feiten, H.-J-; Chang, D.; Duetz, W. A.; van Beilen, J. B.; Witholt, B. J. Org. Chem. 2001, 66, 8424-8430.
4. Reviews: (a) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817-3856. (b) De Koning, H.; Speckamp, W. N. Stereoselective Synthesis (Houben-Weyl); Helmchen, G., Hoffman, R. W., Mulzer, J., Schaumann, E., Eds.; Georg Thieme: Stuttgart, 1995; Vol. E21, pp 1953-2009.
5. (a) Enders, D.; Teschner, P.; Raabe, G.; Runsink, J. Eur. J. Org. Chem. 2001, 4463-4477. (b) Zhang, X.; Jang, W.; Schmitt, A. C. Tetrahedron Lett. 2001, 42, 4943-4945. (c) Hitchcock, P. B.; Starkmann, B. A.; Young, D. W. Tetrahedron Lett. 2001, 42, 2381-2384. (d) Cossy, J.; Tresnard, L.; Belotti, D.; Gomez Pardo, D. Tetrahedron Lett. 2001, 42, 251-254.
6. Chihab-Eddine, A.; Daïch, A.; Jilale, A.; Decroix, B. Tetrahedron Lett. 2001, 42, 573-576.
7. (a) Curran, D. P.; Geib, S.; De Mello, N. Tetrahedron 1999, 55, 5681-5704. (b) Mikami, T.; Harada, M.; Narasaka, K. Chem. Lett. 1999, 425-426. (c) Gutemberger, G.; Steckhan, E.; Blechert, S. Angew. Chem. Int. Ed. 1998, 37, 660-662. (d) Meggers, E.; Steckhan, E.; Blechert, S. Angew. Chem. Int. Ed. 1995, 34, 2137-2139.
8. Cunningham, I. D.; Brownhill, A.; Hamerton, I.; Howlin, B. Tetrahedron 1997, 53, 13473-13494.
9. (a) Ono, N. The Nitro Group in Organic Synthesis; WileyVCH: New York, 2001. (b) Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992.
10. (a) Ballini, R.; Bosica, G. Tetrahedron 1995, 51, 4213-4222. (b) Ballini, R.; Bosica, G. Liebigs Ann. 1996, 2087-2089.
11. Ballini, R.; Barboni, L.; Bosica, G.; Petrini, M. Synlett 2000, 391-393.
12. Ballini, R.; Bosica, G.; Fiorini, D.; Giarlo, G. Synthesis 2001, 2003-2006.
13. Ballini, R.; Bosica, G.; Fiorini, D.; Gil, M. V.; Petrini, M. Org. Lett. 2001, 3, 1265-1267.
14. Ballini, R.; Bosica Masè, A.; Petrini, M. Eur. J. Org. Chem. 2000, 2927-2931.
15. Katritzky, A. R.; Yao, J.; Qi, M.; Chou, Y.; Sikora, D. J.; Davis, S. Hetrocycles 1998, 48, 2677-2691.
16. (a) Ballini, R.; Bosica, G. Synlett 1996, 1115-1116. For a review on this reducing couple see: (b) Ganem, B.; Osby, J. O. Chem. Rev. 1986, 86, 763-780.
17. (a) Tsuzuki, Y.; Chiba, K.; Hino, K. Tetrahedron: Asymmetry 2001, 12, 1793-1799. (b) Zhang, H. K.; Chen, Q. F.; Huang, P. Q. Synth. Commun. 2000, 30, 2431-2444. (c) Rao, V. D.; Perisamy, M. Synthesis 2000, 703-706. (d) Kuwano, R.;

Takahashi, M.; Ito, Y. Tetrahedron Lett. 1998, 39, 1017-1020. (e) Marson, C. M.; Melling, R. C. Chem. Commun. 1998, 1223-1224. (f) Macor, J.; Blank, D. H.; Ryan, K.; Post, R. J. Synthesis 1997, 443-449.
18. Abramovitch, R. A.; Chapman, A. V. Heterocycles 1995, 40, 89-92.
19. Beugelmans, R.; Benadjila-Iguertsira, L.; Chastanet, J.; Negron, G.; Roussi, G. Can. J. Chem. 1985, 63, 725-734.

[^0]: ${ }^{a}$ Yields of pure, isolated products.
 ${ }^{\mathrm{b}}$ Reduction has been carried out using $\mathrm{NaBH}_{4} / \mathrm{NiCl}_{2}$.

