

Tetrahedron Letters 40 (1999) 6001-6004

TETRAHEDRON LETTERS

Synthesis of vinyl spirolactones and lactams by sequential cross-coupling metathesis, [2+2] photocycloaddition and cyclobutane ring-opening

Sophie Faure,^a Sylvie Piva-Le Blanc^a and Olivier Piva^{a,b,*}

*Laboratoire de photochimie, UMR 6519 CNRS, Université de Reims, Champagne, Ardenne, BP1039 51687, Reims cedex, France

^bLaboratoire de chimie organique, Photochimie et synthèse, UMR 5622 CNRS, Université Claude Bernard, Lyon I, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne, France

Received 20 May 1999; accepted 17 June 1999

Abstract

Unsaturated oxoesters and amides have been submitted to cross-coupling metathesis with trimethylallylsilane using Grubbs' catalyst. The resulting allylsilanes underwent, under irradiation, intramolecular [2+2] photocyclo-addition leading to trimethylsilylmethylcyclobutanes. By treatment with an appropriate Lewis acid, vinyl spiranic lactones and lactams were isolated in good yields. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: metathesis; allyltrimethylsilane; cyclobutane; spirolactone; spirolactam.

Spirocompounds are attractive derivatives not only due to their unusual geometry but also as key framework of numerous natural products including azaderivatives like perhistrionicotoxine,¹ nitramine, sibirine.² Some years ago, we reported, that irradiation of unsaturated oxoamides provided a direct access to spiranic β -lactams³ with potential cholesterol absorption inhibitor properties.⁴ Unfortunately, this process was not transposable to the synthesis of spiranic β -lactones or larger ring lactams (Scheme 1).⁵

Scheme 1.

^{*} Corresponding author. Fax: 00-33-(0)4-72-44-81-36; e-mail: piva@copssg.univ-lyon1.fr 0040-4039/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *P11*: \$0040-4039(99)01173-9

In order to find a more general method, we have searched reliable procedures starting from cyclobutane derivatives easily prepared by intramolecular [2+2] photocycloadditions.^{6,7} The selective cleavage of one bond of the four-membered ring using the internal strain of the molecule could afford a direct access to the expected spiroderivatives (Scheme 2).

In our approach, we considered the use of trimethylsilylmethylcyclobutane derivatives in which selective cleavage of a C-C bond is favoured by the presence of a neighbouring keto group.^{8,9} While our own work was in progress, a similar strategy involving a free radical process starting from iodomethyl compounds has been published;¹⁰ we wish to report herein our first results. Unsaturated oxoesters and oxoamides 1 were submitted to cross-coupling metathesis^{11,12} with 2 equivalents of trimethylallylsilane using Grubbs' catalyst (0.2 equiv.) and led to the formation of new allylsilane derivatives 2 (as a mixture of *E* and *Z* isomers, typically 60/40) (Scheme 3). While the yields of the reaction are moderate, the selectivities are quite high and the starting material could be recovered and reused. As expected, photocycloaddition led to [2+2] adducts in high yields as a predictable mixture of *syn* and *anti* isomers.⁸ By treatment in dichloromethane with BF₃,OEt₂ (3 equiv.), we observed a slow but clean transformation of compounds 3 into spiranic vinyl compounds. The yields were especially high in the case of lactam derivatives.

Scheme	3
--------	---

1			2	3	4		
	<u>n</u>	X	Yield (%)	Yield (%)	Conversion	Yield	
8	1	0	58	87	>90%	60%	
b	2	0	61	51	64%	36% (+ 34% S.M.)	
c	1	N-CH ₃	43	98	>95%	84%	
d	2	N-CH ₃	40	84	79%	70% (+ 21% S.M.)	

With substrates **3b** and **3d** (n=2), the reaction was not totally completed even after 3 days. In both cases, a single diastereoisomer was recovered which was shown to be *anti* according to NOE experiments. The lower reactivity of the *anti* isomers of **3** could be attributed to an unfavourable arrangement of the keto group and the trimethylsilylmethyl unit which prevent the formation of a chair-like cyclic transition state.^{9a,13}

Aiming to remove the vinyl group of the spiranic adducts, we investigated a two step sequence on compound **4d** as depicted in Scheme 4. Oxidative cleavage of the carbon-carbon double bond with osmium tetroxide and sodium periodate¹⁴ provided aldehyde **5** which was finally decarbonylated by heating to reflux in benzene in the presence of Wilkinson's catalyst.¹⁵

Scheme 4.

In conclusion, we have developed a new route to vinyl-spirolactones and spirolactams by using a three step procedure: cross-metathesis with allylsilane; intramolecular photocycloaddition; and finally selective cleavage of the cyclobutane ring using a Lewis acid activation. We demonstrated also the removal of the vinyl group by oxidation/decarbonylation procedure without any change of the spiro framework.¹⁶

Acknowledgements

S.P.L.B. and S.F. thank, respectively, the Région Champagne-Ardenne and MENRT for financial support. CNRS is warmly acknowledged for substantial support to O.P (A.I.P. Jeune Equipe).

References

- 1. (a) Comins, D. L.; Zhang, Y.-m.; Zheng, X. Chem. Commun. 1998, 2509–2510. (b) Williams, G. M.; Roughley, S. D.; Davies, J. E.; Holmes, A. B. J. Am. Chem. Soc. 1999, 121, 4900–4901 and references therein.
- François, D.; Lallemand, M.-C.; Selkti, M.; Tomas, A.; Kunesch, N.; Husson, H. P. Angew. Chem., Int. Ed. Engl. 1998, 37, 104–105.
- 3. Le Blanc, S.; Pete, J.-P.; Piva, O. Tetrahedron Lett. 1992, 33, 1993-1996.
- 4. Dugar, S.; Clader, J. W.; Chan, T. M.; Davis Jr, H. J. Med. Chem. 1995, 38, 4875-4877.
- 5. Piva, O. Unpublished results.
- Crimmins, M. T.; Rheingold, T. L. In Org. Reactions; Paquette, L. A., Ed.; John Wiley: New York, 1993; Vol. 44, pp. 298-588.
- 7. (a) Le Blanc, S.; Pete, J.-P.; Piva, O. Tetrahedron Lett. 1993, 34, 635–638. (b) Faure, S.; Piva-Le Blanc, S.; Piva, O.; Pete, J.-P. Tetrahedron Lett. 1997, 38, 1045–1048.
- (a) Ochiai, M.; Arimoto, M.; Fujita, E. J. Chem. Soc., Chem. Commun. 1981, 460–461. (b) Pirrung, M. C.; Webster, N. J. G. J. Org. Chem. 1987, 52, 3603–3613.
- (a) Fujiwara, T.; Suda, A.; Takeda, T. Chem. Lett. 1991, 1619–1622. (b) Fujiwara, T.; Suda, A.; Takeda, T. Chem. Lett. 1992, 1631–1634. (c) Fujiwara, T.; Sawabe, K.; Takeda, T. Tetrahedron 1997, 53, 8349–8370.
- 10. Lange, G. L.; Furlan, L.; MacKinnon, M. C. Tetrahedron Lett. 1998, 39, 5489-5492.

- Reviews: (a) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2036–2057. (b) Ivin, K. J.; Mol, J. C. Olefin Metathesis and Metathesis Polymerization; Academic Press: San Diego, 1997. (c) Fürstner, A. Topics in Catalysis 1997, 4, 285–299. (d) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371–388. (e) Pariya, C.; Jayaprakash, K. N.; Sarkar, A. Coord. Chem. Rev. 1998, 168, 1–48. (f) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450.
- For recent works on metathesis of allylsilanes: (a) Marciniec, B.; Foltynowicz, Z.; Lewandowski, M. J. Mol. Catal. 1994, 90, 125–133. (b) Crowe, W. E.; Goldberg, D. R.; Zhang, Z. J. Tetrahedron Lett. 1996, 37, 2117–2120. (c) Schuster, M.; Lucas, N.; Blechert, S. Chem. Commun. 1997, 823–824. (d) Meyer, C.; Cossy, J. Tetrahedron Lett. 1997, 38, 7861–7864. (e) Cassidy, J. H.; Marsden, S. P.; Stemp, G. Synlett 1997, 1411–1413. (f) Blanco, O. M.; Castedo, L. Synlett 1999, 557–558.
- 13. Fleming, I.; Barbero, A.; Walter, D. Chem Rev. 1997, 97, 2063-2192.
- (a) White, J. D.; Ruppert, J. F.; Avery, M. A.; Torii, S.; Nokami, J. J. Am. Chem. Soc. 1981, 103, 1813–1821. (b) Cainelli, G.; Contento, M.; Manescalchi, F.; Plessi, L. Synthesis 1989, 47–48.
- 15. Baldwin, J. E.; Barden, T. C.; Pugh, R. L.; Widdison, W. C. J. Org. Chem. 1987, 52, 3303-3307.
- 16. Selected data for: 2c (a mixture of two isomers). ¹³C NMR: characteristic signals: δ -1.9 (Si(CH₃)₃); 31.9 and 36.3 (N-CH₃); 169.6 (CONR₂); 198.5 and 198.7 (C=O). MS: 293 (M+), 278 (M-CH₃). HMRS calcd for C₁₆H₂₇O₂NSi: 293.181. Found: 293.188. 3c (two diastereoisomers). ¹H NMR: δ (diastereoisomer A): -0.03 (s, 9H), 0.70 (dd, 1H, J_{AB}=14.8 Hz and J=6 Hz), 0.76 (dd, 1H, J_{AB}=14.8 Hz and J=8.7 Hz), 1.75 (m, 2H); 1.80-2.00 (m, 2H), 2.00-2.10 (m, 1H); 2.25-2.50 (m, 4H), 2.63 (quint, 1H, J=8.5 Hz), 2.68 (d, 1H, J=9 Hz), 2.95 (s, 3H), 3.25 (dt, 1H, J_{AB}=12.6 Hz, J=4 Hz), 3.40 (ddd, 1H, J_{AB}=12.6 Hz, J=2.5 Hz, J=1.2 Hz); (diastereoisomer B): -0.01 (s, 9H), 0.38 (dd, 1H, J_{AB}=14.5 Hz and J=12.1 Hz), 0.88 (dd, 1H, J_{AB} =14.5 Hz and J=3.7 Hz), 1.60 (dt, 1H, J=13.4 and J=3.8 Hz); 1.67–1.80 (m, 2H), 1.83–2.05 (m, 2H); 2.05–2.10 (m, 1H), 2.15 (m, 1H), 2.25–2.50 (m, 4H), 3.02 (s, 3H), 3.32 (ddd, 1H, J_{AB}=12.6 Hz, J=4.5 Hz, J=6.1 Hz), 3.47 (ddd, 1H, J_{AB}=12.8 Hz, J=4.0 Hz, J=8.8 Hz). ¹³C NMR: characteristic signals: δ (diastereoisomer A): -1.19 (SiMe₃), 174.03 (CONR₂), 210.35 (CO); (diastereoisomer B): -1.07 (SiMe₃), 174.51 (CONR₂), 211.43 (CO). 4c: ¹H NMR: δ 1.70-1.76 $(m, 2H), 1.85-1.95 (m, 1H), 1.95 (dd, 1H, J_{AB}=14.9 Hz, J=0.7 Hz), 1.98-2.16 (m, 1H), 2.15-2.25 (m, 2H), 2.32 (m, 1H), 2.15-2.25 (m, 2H), 2.32 (m, 2H),$ 2.44-2.49 (m, 2H), 2.62 (dt, 1H, J_{AB}=14.9 Hz, J=1.9 Hz), 2.92 (s, 3H), 3.28 (ddd, 1H, J_{AB}=12.5 Hz, J=6.8 Hz, J=2.9 Hz), 3.42 (ddd, 1H, J_{AB}=12.5 Hz, J=11 Hz, J=5.8 Hz), 5.17 (d, 2H, J=10 Hz), 5.74 (dt, 1H, J=17.3 and 10 Hz). ¹³C NMR: δ 21.6 (t), 24.6 (t), 33.9 (t), 34.8 (q), 39.5 (t), 46.8 (t), 47.5 (d), 47.8 (t), 48.0 (s), 118.2 (CH₂=CH-), 136.3 (-CH=CH₂), 172.8 $(CONR_2)$, 209.2 (C=O). IR: υ (cm⁻¹) 1718(C=O), 1630 (CONR₂). MS: 221 (M⁺⁺), 193 (M⁺⁺-28). Elemental analysis: calcd for C13H19O2N: C 70.56, H 8.65, N 6.33. Found: C 70.47, H 8.96, N 6.24. 4a: ¹H NMR: δ 1.75–1.80 (m, 1H), 1.82 (td, 1H, J=7.3 Hz and J=2.0 Hz), 1.97 (m, 2H), 2.05 (d, 1H, J_{AB}=15.1 Hz), 2.17–2.30 (m, 2H), 2.35 (m, 1H), 2.48 (dt, 1H, J=15.7 Hz and J=4.6 Hz), 2.57 (quint, 1H, J=4.8 Hz), 2.64 (dt, 1H, JAB=15.1 Hz and J=1.9 Hz), 4.43 (dd, 1H, JAB=11.7 Hz and J=5.4 Hz), 4.49 (ddd, 1H, J_{AB}=11.7 Hz, J=9.5 Hz, J=5.0 Hz), 5.21 (d, 1H, J=16.8 Hz), 5.24 (d, 1H, J=10 Hz), 5.79 (dt, 1H, J=16.8 Hz and J=10 Hz). ¹³C NMR: δ 21.1 (t), 25.7 (t), 33.3 (t), 39.4 (t), 46.9 (d), 47.2 (t), 48.7 (s), 67.3 (t), 119.1 (CH₂=CH-), 135.3 (CH₂=CH-), 173.8 (CO₂), 207.8 (C=O). MS: 208 (M⁺⁺, 64), 180 (M⁺⁺-28).