AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by University of Sunderland

New Analytical Methods

Generic haptens synthesis, broad-specificity monoclonal antibodies preparation and ultrasensitive ELISA for five antibacterial synergists in chicken and milk

Hongfang Li, Shaoqin Ma, Xiya Zhang, Chenglong Li, Baolei Dong, Mari Ghulam Mujtaba, Yujie Wei, Xiao Liang, Xuezhi Yu, Kai Wen, Wenbo Yu, Jianzhong Shen, and Zhanhui Wang

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.8b03834 • Publication Date (Web): 25 Sep 2018 Downloaded from http://pubs.acs.org on September 27, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Generic hapten synthesis, broad-specificity monoclonal
2	antibodies preparation and ultrasensitive ELISA for five
3	antibacterial synergists in chicken and milk
4	Hongfang Li ^a , Shaoqin Ma ^a , Xiya Zhang ^b , Chenglong Li ^a , Baolei Dong ^a , Mari
5	Ghulam Mujtaba ^a , Yujie Wei ^a , Xiao Liang ^c , Xuezhi Yu ^a , Kai Wen ^a , Wenbo Yu ^a ,
6	Jianzhong Shen ^a , Zhanhui Wang ^a ,*
7	
8	^a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College
9	of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of
10	Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food
11	Quality and Safety, 100193 Beijing, People's Republic of China
12	^b College of Food Science and Technology, Henan Agricultural University, 450002
13	Zhengzhou, People's Republic of China
14	^c College of Veterinary Medicine, Qingdao Agricultural University, 266109 Qingdao,
15	People's Republic of China
16	
17	* Author to whom correspondence should be addressed
18	Tel: +86-10-6273 4565
19	Fax: +86-10-6273 1032
20	E-mail: wangzhanhui@cau.edu.cn

21 **ABSTRACT:** An antibody with broad-specificity and principally depending on 22 hapten structure and size is a key reagent for developing a class-selective 23 immunoassay. In the present study, three new generic haptens of antibacterial synergists (ASGs) were proposed using trimethoprim as the start molecule. These 24 25 haptens contained carboxyl groups on the *meta* position of trimethoxybenzene for 26 conjugating to protein, while, the common moiety of ASGs, i.e., diaminopyrimidine, was intentionally and maximally exposed to the immune system in animals in order to 27 induce antibodies with broad-specificity against ASGs. Five monoclonal antibodies 28 29 (mAbs) were finally obtained, and 5C4 from the hapten with a short spacer arm, 30 named Hapten A, showed not only uniform broad specificity but also high affinity to 31 all five ASGs. We further determined the possible recognition mechanism of mAbs in terms of conformational and electronic aspects. An indirect competitive ELISA 32 (icELISA) based-5C4 was established and exhibited IC₅₀ values of 0.067–0.139 µg 33 L^{-1} with cross-reactivity (CR) of 48.2%–418.7% for the five ASGs in buffer under 34 35 optimal conditions. The calculated limits of detection of the icELISA for chicken and milk were 0.06 μ g kg⁻¹–0.8 μ g kg⁻¹ and 0.05 μ g L⁻¹–0.6 μ g L⁻¹, respectively. The 36 37 recoveries in spiked chicken and milk samples were 75.2%-101.4% with a coefficient of variation less than 14.3%. In conclusion, we developed, for the first time, a rapid 38 and reliable icELISA for ASGs with significantly improved sensitivity and 39 40 class-selectivity.

- 41 **KEY WORDS:** antibacterial synergists, generic haptens, broad specificity antibodies,
- 42 high sensitivity, food samples

43 **INTRODUCTION**

Antibacterial synergists (ASGs, shown in Figure 1a), also known as sulfonamide 44 potentiators, are a group of dihydrofolate-reductase inhibitors that function by 45 blocking folic acid metabolism in bacteria.¹ ASGs are commonly used in combination 46 with sulfonamides or other antimicrobials, such as fluoroquinolones, β -lactams and 47 aminoglycosides, and are efficient in inhibiting Gram-positive and Gram-negative 48 bacteria.²⁻⁴ To date, the ASG family consists of 9 drugs, including trimethoprim 49 (TMP), diaveridine (DVD), brodimoprim (BOP), ormetoprim (OMP), baquiloprim 50 (BQP), tetroxoprim (TXP), metioprim (MTP), aditoprim (ADP) and iclaprim (ICL). 51 Of these ASGs, ADP and DVD are exclusively used in animals, while, ICL is used in 52 humans and the remainder are both human and veterinary medicines.^{1,5-8} DVD, OMP, 53 and especially TMP are the most commonly used medicines in animal husbandry for 54 the treatment of bacterial and protozoal diseases.⁹ For example, compounds of 55 TMP/sulfadiazine are used for urinary, gastrointestinal and respiratory tract infections 56 and compounds of DVD/sulfaquinoxaline are used for antiprotozoal drugs in food 57 animals.⁴ 58

However, the irrational and excessive use of ASGs could result in residues in the food chain. The residues of ASGs create a potential threat to human health and ecosystem, including chromosome variations, thrombocytopenia, leukopenia, emesis, nausea and antibiotic-resistance.¹⁰ Therefore, the maximum residue limits (MRLs) of ASGs in some food matrices have been established. The MRLs for TMP have been

4

ACS Paragon Plus Environment

64	set at 50 μ g kg ⁻¹ in edible tissues including muscle, liver, kidney, fat and milk in
65	most countries and the MRL for DVD in chicken is 50 $\mu g \; kg^{-1}$ in Japan. The MRL
66	of BQP has been set at 30 $\mu g \ kg^{-1}$ (in milk) and 50 $\mu g \ kg^{-1}$ (in porcine liver) by
67	European Union. ¹¹⁻¹⁴ Thus, a sensitive and reliable method is essential to be
68	established to detect residues of ASGs in animal-derived foods. Instrumental
69	methods are currently the most commonly reported techniques for the quantification
70	of ASGs, and include gas chromatography and mass spectrometry,15 high
71	performance liquid chromatography-tandem mass spectrometry ^{1,16} and
72	high-performance liquid chromatography. ¹⁷ Most of these instrumental methods are
73	used for the simultaneous detection of TMP and sulfonamides rather than ASGs
74	alone. Although instrumental methods are accurate and sensitive, complex extraction
75	steps are always necessary, which are not appropriate for screening numerous test
76	samples in a short term. As an effective alternative, immunoassay methods, just like
77	enzyme-linked immunosorbent assay (ELISA), possess the merit of simplicity and
78	cost-effectiveness, which make it particularly convenient to achieve screening
79	purposes. Nowadays, simultaneous detection of several analytes using immunoassay
80	has attracted increasing attention. Kuang's research group worked on the
81	development of multi-analyte immunoassays, i.e., the simultaneous detection of 26
82	sulfonamide, 32 (fluoro) quinolones and so on. ¹⁸⁻²¹
83	At present, a few immunoassays have been developed to analyze TMP residues

84 only.²²⁻²⁷ For effective surveillance, an icELISA which can detect multiple ASGs at

85	the same time would be preferable. To realize this goal, the preparation of antibodies
86	with broad-specificity for ASGs is essential. To author's knowledge, there exist no
87	reports on the production of antibodies with broad-specificity or the development of
88	a class-selective ELISA. Hapten design is a critical procedure for generating
89	antibodies with the desired affinity and specificity. As shown in Table 1, two haptens
90	were synthesized to produce antibodies against TMP and showed negligible
91	cross-reactivity (CR) with other ASGs. In the present study, we prepared three
92	generic haptens of ASG with different spacer arms and broad-specificity mAbs
93	against ASGs were obtained. An ultra-high sensitive indirect complete (icELISA)
94	based on the broad-specificity mAbs was developed for the simultaneous detection
95	of five ASGs (TMP, DVD, OMP, BOP and BQP) in chicken and milk samples. The
96	performance of the icELISA was assessed using fortified and recovery studies.

98 **MATERIALS AND METHODS**

Materials. TMP, DVD and OMP were bought from Dr. Ehrenstorfer Gmbh
(Ausburg, Germany). BOP and 3, 4, 5-trimethoxycinnamic acid, 5-(3, 4,
5-trimethoxybenzoyl)-2, 4-pyrimidinediamine (TBP), 3, 4, 5-trimethoxyphenylacetic
acid, and gallic acid trimethyl ether were obtained from J & K Chemical Technology
(Beijing, China). BQP, 2, 4-diaminopyrimidine, 2, 4-diamino-6-(4-fluorophenyl)
pyrimidine, 5-phenyl-4-pyrimidinamine, pyrimethamine, 3-(3, 4, 5-trimethoxyphenyl)
propionic acid, sulfaguanidine, sulfamethizole, sulfamerazine, norfloxacin and

106	furazolidone were supplied by Sigma-Aldrich (St. Louis, MO, USA). Hemocyanin
107	from megathura crenulata (KLH), ovalbumin (OVA), bovine serum albumin (BSA),
108	hypoxanthine aminopterin thymidine (HAT), complete and incomplete Freund's
109	adjuvant, poly (ethylene glycol) (PEG) 1500, fetal calf serum were acquired from
110	Sigma-Aldrich (St. Louis, MO, USA). Goat anti-mouse IgG (HRP labeled) and
111	mouse mAb isotyping kit were obtained from Bio-Rad Laboratories, Inc. (Hercules,
112	CA, USA). Cell culture medium (DMEM) was supplied by Thermo Fisher Scientific
113	Inc. (Waltham, MA, USA). TMB substrate, N, N-dicyclohexylcarbodiimide (DCC)
114	and N-hydroxy succinimide (NHS) and were purchased from Beyotime (Shanghai,
115	China). The remaining chemical reagents were supplied by Sinopharm Chemical
116	Reagent, Inc. (Beijing, China). Flat-bottomed high-binding polystyrene ELISA plates
117	were obtained from Corning Life Sciences (New York, NY, USA). The buffer
118	solutions used are listed in Supporting Information.

Instruments. The chemical structures of the haptens were confirmed by liquid
chromatography triple quadrupole mass spectrometry (Agilent Technologies, Santa
Clara, USA) and nuclear magnetic resonance spectrometry (NMR) DRX-600 (Bruker,
Rheinstetten, Germany). The conjugation ratio was determined by matrix-assisted
laser desorption ionization time of flight mass spectrometry (MALDI–TOF-MS)
(Bruker, Rheinstetten, Germany). Values of optical density (OD) were measured
using Multiskan FC microplate reader (Thermo Scientific).

128 Synthesis of Haptens and Conjugates. A schematic representation of the129 synthesis of three haptens is shown in Figure 2.

130 Hapten A, 4-(4-((2, 4-diaminopyrimidin-5-yl) methyl)-2, 6-dimethoxyphenoxy) 131 butanoic acid (3), was synthesized as follows: Briefly, TMP (20 g, 68.9 mmol) was 132 firstly added to the HBr (48%, 240 mL) in batches and then stirred at 100°C for 30 133 min. Then KOH solution (50%, 67 mL) was slowly added to the hot HBr solution to 134 quench the reaction. Then, mixture was cooled to room temperature followed by 135 stirring slowly to precipitate a white solid. The precipitate was filtered and then 136 washed by ice water. The pH of the mixture was then neutralized to 7 using ammonia 137 (28%) followed by filtering, washing and drying steps. The crude product was chromatographed and eluted with dichloromethane/methanol (20/1) to afford 138 139 compound (1) (2.9 g, yellow powder). Cs_2CO_3 (6.84 g, 21 mmol) was added to a 140 solution of compound (1) (2.9 g, 10.5 mmol) in DMF (35 mL) and stirred at room 141 temperature for 20 min. Ethyl 4-bromobutyrate (3.29 g, 15.8 mmol) was added into 142 the solution of compound (1) and the resulting mixture was stirred and refluxed at 143 40° C for 2 h. The mixture was extracted by ethyl acetate four times when it was cooled to room temperature. The obtained organic phases were combined, 144 145 successively washed by water, saturated aqueous NaHCO₃ solution, saturated brine 146 and then dried using anhydrous sodium sulfate. The crude product was chromatographed and eluted with the mixture of dichloromethane/methanol (25/1) to 147

148	afford compound (2) (3.2 g, yellow powder). Then, NaOH aqueous solution (2 mol
149	L^{-1} , 24.6 mmol) was added to a methanol solution of compound (2) (3.2 g, 8.2 mmol
150	in 35 mL) and stirred at 45°C for 2 h. After the mixture was cooled, methanol was
151	rotary evaporated. The pH of the crude product which was dissolved in 8 mL water
152	was neutralized to 7 using 1 mol L^{-1} HCl aqueous solution. The yellow precipitate
153	which was obtained after stirring for 30 min was filtered and dried to obtain the final
154	product of Hapten A (2.6 g, yellow powder). MS m/z 363.2. [M-H] ⁻ ; ¹ H NMR (400
155	MHz, DMSO–d6): δ 7.50 (s, 1H), 6.54 (s, 2H), 6.19 (s, 2H), 5.86 (s, 2H), 3.80 (t, J =
156	6.0Hz, 2H), 3.70 (s, 6H), 3.52 (s, 2H), 2.41 (t, J = 7.2Hz, 2H), 1.75–1.82 (m, 2H).
157	Hapten B, 6-(4-((2, 4-diaminopyrimidin-5-yl) methyl)-2, 6-dimethoxyphenoxy)
158	hexanoic acid (5). Hapten B was synthesized similar to the previous procedure.
159	Compound (1) was reacted with ethyl 6-bromohexanoate to obtain Hapten B (2.5 g,
160	yellow powder). MS m/z 391.2. [M-H] ⁻ , ¹ H NMR (400 MHz, DMSO-d6): δ 7.50 (s,
161	1H), 6.54 (s, 2H), 6.22 (s, 2H), 5.84 (s, 2H), 3.76 (t, J = 6.4Hz, 2H), 3.70 (s, 6H), 3.52
162	(s, 2H), 2.21 (t, J = 7.2Hz, 2H), 1.51-1.60 (m, 4H), 1.38-1.44 (m, 2H).
163	Hapten C, 4 -((4-((2, 4-diaminopyrimidin-5-yl) methyl)-2, 6-dimethoxyphenoxy)
164	methyl) benzoic acid (7). Hapten C was prepared with the similar procedure to that of
165	Hapten A. Compound (1) was reacted with ethyl 6-bromohexanoate to obtain Hapten
166	C (4.0 g, yellow powder). The MS m/z 411.1. [M-H] ⁻ ; ¹ H NMR (400 MHz,
167	DMSO-d6): δ 7.93 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.45–7.49 (m, 3H),
168	7.15 (s, 2H), 6.64 (s, 2H), 4.93 (s, 2H), 3.75 (s, 6H), 3.59 (s, 2H).

169	The three haptens with carboxylic acid groups were activated and coupled to a
170	protein (KLH, BSA or OVA) through the active-ester method. Firstly, 20 mg of each
171	hapten was dissolved in 0.6 mL DMF with the addition of NHS (10 mg) and DCC (20
172	mg). The mixture was reacted using a magnetic stirrer at 4°C for 5 h followed by the
173	removal of the precipitates. The supernatant of each hapten was divided into three
174	parts and then dropwise added into dissolved KLH solution (20 mg KLH in 9.5 mL
175	PBS), BSA solution (20 mg BSA in 9.5 mL PBS), and OVA solution (50 mg OVA in
176	10 mL PBS), respectively. The solutions containing the hapten-protein conjugates
177	were stirred for 12 h and then dialyzed in PBS for 2 days. Hapten-KLH served as an
178	immunogen and was stored at -70°C. Hapten-BSA and hapten-OVA acted as coating
179	antigens and then were stored at -20° C. The conjugation ratios of haptens-BSA were
180	characterized using MALDI-TOF-MS and were calculated as follows:
181	Conjugation ratio = $\{M \text{ (conjugates)} - M \text{ (BSA)}\}/M \text{ (haptens)}$ (Eq.1).
182	
183	Production of Monoclonal Antibodies. All animal treatments were in strict

accordance with Chinese laws and guidelines which were approved by the Animal Ethics Committee of China Agricultural University. Fifteen eight-week old female BALB/c mice were divided into three groups randomly (five mice per group) and were immunized with three immunogens (Hapten A-KLH, Hapten B-KLH and Hapten C-KLH). The mice were immunized three times with an interval of three weeks between immunizations. First immunization, 100 µg prepared immunogen (1 g

190	L ⁻¹ in PBS) was mixed and emulsified with equal complete Freund's adjuvant. The
191	prepared mixture was then injected into BALB/c mice (subcutaneously, 0.2 mL per
192	mouse). For the second immunization, the mice were boosted with the mixture of
193	immunogen (100 μ g) and incomplete Freund's adjuvant. The procedure for the third
194	immunization was the same as that for the second. Ten days after the third
195	immunization, antisera samples (approximately 50 μ L) obtained from the eye socket
196	of mice were collected to detect the sensitivity and specificity based on the icELISA.
197	The mice with a low IC_{50} and broad-specificity were selected for subsequent cell
198	fusion. The cell fusion procedures were carried out as described previously. ^{28, 29} The
199	selected mice were injected intraperitoneally with three times the immune dose (300
200	μg immunogen in 500 μL PBS buffer). Three days later, SP2/0 myeloma cells and
201	splenocytes from the selected mice were mixed together for cell fusion under the
202	assistance of PEG 1500. The successfully fusion cells were cultured in HAT medium
203	for 7 days and the cell supernatant was screened using the icELISA. The homologous
204	coating antigen (with a carrier protein of BSA) was used and the concentration was
205	0.35 mg L^{-1} for icELISA. The positive hybridoma with high sensitivity was then
206	subcloned using the limiting dilution method. Subcloning was carried out three times
207	and the optimum single cell mass was collected and cultured. Finally, one part of the
208	hybridoma was cryopreserved, and another part was collected to produce ascites via
209	intraperitoneal injection. The ascites collected from mice were extracted and purified
210	by the saturated ammonium sulfate. ³⁰ The isotypes of the purified mAbs were

characterized with the mice mAb isotyping kit.

213	Development of ELISA. The ELISA plates were firstly coated with coating
214	antigen (100 μ L well ⁻¹) which was diluted with CB buffer and then incubated at 4°C
215	for 12 h. The coating solution in the ELISA plates was then discarded. Blocking
216	buffer was then added to the plates (150 μ L well ⁻¹) which were placed in an incubator
217	for 2 h at 37°C. The standard solution (50 $\mu L)$ of TMP (or other competitors) was
218	added to the wells as well as 50 μ L of diluted mAbs solution. After an incubation of
219	30 min at 37°C, the plates were washed by PBST for two times. Goat anti-mouse IgG
220	(HRP labeled) (1:5000, 100 μ L well ⁻¹) was then added and incubated for 30 min at
221	incubator. 100 μL TMB substrate was added into wells and incubated for 15 min at
222	37°C after washing. Then 2 mol L^{-1} H ₂ SO ₄ (50 µL well ⁻¹) was used to stop the
223	enzymatic reaction and the OD values of 450 nm was measured.
224	The standard curves were fitted using the following equation:
225	$Y = (A-B)/[1+(X/C)^{D}]+B$ (Eq. 2)
226	where A and B are the responses at high and low asymptotes of the curve,
227	respectively, C is the concentration of the targets resulting in 50% inhibition. D is the
228	slope at the inflection point of the sigmoid and X is the calibration concentration.
229	Nineteen compounds associated with the structure of TMP were diluted to
230	produce a series of concentrations to estimate the IC_{50} using the standard curves. The
231	CR was calculated using the subsequent formula:

232
$$CR = (IC_{50} \text{ of TMP/IC}_{50} \text{ of compounds}) \times 100\%$$
 (Eq. 3)

Optimization of ELISA. To improve the performance of the ELISA, the concentrations and pairing combinations of coating antigen and mAb, some physicochemical parameters such as pH values, ionic strength and content of organic solvent were optimized. The effects of these parameters were evaluated by the A_{max}/IC_{50} ratio; A_{max} represents maximal absorbance, and IC_{50} was fitted using Eq. 2.

240 Molecule Alignment and Electrostatic Potential Analysis. All structures were built in Gaussian 09 (Gaussian, Wallingford, CT, USA) according to the ASGs 241 242 configurations in the PubChem database. Then, DFT calculations with the B3LYP functional and 6-311⁺⁺ G (d, p) basis set were performed to optimize the molecules 243 using the Gaussian 09 package.³¹⁻³³ The fundamental vibrations were calculated by 244 245 the same method to confirm whether they were true minima or not. TMP was chosen 246 as the template molecule to align TBP. The Molecule Overlay dialog in Discovery Studio 2016 (Accelrys Software, Inc., San Diego, CA, USA) was used to conduct 247 248 molecular alignment. The alignment root-mean-square value was introduced to measure the degree of molecular superposition in each group. The Gaussian 09 and 249 250 Gaussian View 5 packages were employed to conduct the molecular electrostatic 251 potential (ESP) analysis. The minima and maxima of the ESP were used in the Multiwfn software package and mapped onto the Van der Waal surface. 252

254	Matrix Effect and Recovery. ASGs negative chicken and milk were both
255	provided by the National Reference Laboratory for Veterinary Drug Residues
256	(Beijing, China). Five-gram chicken (in 50 mL tube) were put in an ultrasonic bath
257	for 5 min followed by the addition of 50% acetonitrile solution (5 mL for each tube).
258	Next, the mixture was agitated on a vortex mixer for 20 min and then centrifuged for
259	10 min at 3500 g. The supernatant was separated and then diluted with PBS to
260	evaluate the matrix effect using icELISA. ²² Milk samples were degreased by
261	centrifugation for 20 min at 8000 g. Defatted milk was diluted with PBS to eliminate
262	the matrix effect. ²⁹
263	Blank chicken and milk samples were spiked with TMP, DVD, OMP, BOP and
264	BQP at three different concentrations, respectively. After pretreatment, the samples

were diluted (20-fold for chicken samples and 15-fold for defatted milk) and submitted to icELISA for recovery analysis. All the recovery data were detected in triplicate (N = 3) using icELISA.

268

269 **RESULTS AND DISCUSSION**

Preparation of Haptens and Conjugates. In previous reports, several strategies for preparing TMP conjugates were proposed, resulting in antibodies which were highly specific to TMP with moderate affinity (Table 1). Using those strategies, the amino groups of TMP were direct derivatives of glutaric anhydride (GA) or maleic

274	anhydride, and then coupled to the carrier protein. ²²⁻²⁵ However, the amino groups on
275	diaminopyrimidine are not typical and are difficult to react with other reagents.
276	Moreover, the derivation of these two amino groups is not selective, and always
277	results in mixed and unpurified conjugates. These studies did not obtain purified and
278	identified haptens. The objective of the present study was to generate mAbs with
279	broad-specificity for ASGs which can be used to establish a class-selective ELISA for
280	determining the total range of ASGs. To produce antibodies which exhibit the desired
281	broad specificity, the key is the structure of the haptens which should closely mimic
282	the common part of target analytes, and maximize the steric, electronic and
283	hydrophobic similarity to the parent molecules. In the case of ASGs, all analogs share
284	the common structure of diaminopyrimidine (Figure 1a). Thus, it is highly possible to
285	generate broad-specificity antibodies against all ASGs by introducing active groups
286	on the trimethoxybenzene moiety. Of these ASGs, TMP is the most frequently used
287	ASG and has been used as a start molecule to prepare generic haptens of ASGs.
288	Previous research showed that haptens that possess spacer arms containing four to six
289	carbons were acceptable and appropriately sustain epitopes to produce high quality
290	antibodies. ³⁴⁻³⁶ Here, we synthesized three novel generic haptens by deriving butyric
291	acid, caproic anhydride and benzoic acid on the meta-OCH3 group of
292	trimethoxybenzene, and introduced different spacer arms ending with a carboxyl
293	group, which were named Hapten A, Hapten B and Hapten C, respectively (Figure 2).
294	All haptens were purified and identified by mass spectrometry and nuclear magnetic

resonance spectroscopy (Figure S1 and Figure S2), and the results indicated that the three haptens were successfully synthesized.

The haptens possessing active carboxyl groups were attached to the amino 297 298 groups of proteins using the active ester method; thus, the common moiety of ASG 299 was fully exposed to the immune system and could produce antibodies with 300 broad-specificity. The BSA conjugates were verified using MALDI-TOF-MS as KLH and OVA were mixed with an indeterminate molecular weight, which could not 301 302 be accurately identified. An observable shift in the peak maximum of BSA conjugates 303 in comparison to the control protein was observed, proving that the haptens had been 304 successfully conjugated to the carrier protein (Figure S3). The calculated molar ratios 305 of the hapten: BSA were2.0:1 (Hapten A: BSA), 8.4:1 (Hapten B: BSA) and 18.9:1 (Hapten C: BSA), respectively. The haptens-KLH conjugates were then used as the 306 307 immunogen, while, haptens-BSA and haptens-OVA were used as the coating 308 antigens.

309

Characterization of Antisera and mAb. The antisera of three groups of mice were monitored after the third immunization. Table S1 showed that all immunized mice had a positive immune response with high titers (1/5000-1/30000). Five ASGs, including TMP, DVD, OMP, BOP and BQP were used to determine the affinity (expressed by IC₅₀) and specificity (expressed by CR) of antisera using the homologous coating antigen. The results indicated that all antisera could recognize

316	ASGs with varied affinities (IC ₅₀ values of antisera were from 0.11 to 21.32 μ g L ⁻¹).
317	The mice, Hapten A-KLH-1# and Hapten A-KLH-3# exhibited relatively broad
318	specificity (CR $>$ 42%) against ASGs. Furthermore, the antisera derived from Hapten
319	A-KLH-1# showed generally lower IC_{50} values than those of Hapten A-KLH-3#. In
320	mice immunized with Hapten B-KLH and Hapten C-KLH, the antisera showed a
321	lower CR towards OMP (CR < 36%) and BQP (CR < 19.7%) compared with those
322	for Hapten A-KLH. These results indicated that Hapten A seemed more effective in
323	producing antibodies with broad-specificity than Hapten B and Hapten C. A possible
324	reason for this is that caproic anhydride and benzoic acid in the spacer arm of Hapten
325	A and Hapten B both had large steric hindrance thus resulting in exposure of the
326	characteristic structure of TMP. Compared with other reports on the production of
327	TMP, ²²⁻²⁵ all antisera derived from the three immunogens provided lower IC_{50} values
328	ranging from 0.22–2.47 μ g L ⁻¹ for TMP, indicating that the haptens prepared in the
329	present study had a more potent effect in inducing a strong immune response than the
330	immunogens previously reported. In addition to the more precise synthesis,
331	purification and identification of haptens and conjugates in this study, we conclude
332	that the high potency of these haptens may have been derived from the high polarity
333	of diaminopyrimidine which was distal to the protein and completely exposed to
334	immune system. The recognition of antibodies and haptens is mainly dependent upon
335	hydrogen bonding, electrostatic, and hydrophobic interactions.37 The two amino
336	groups of diaminopyrimidine could have contributed to the high immune response

and then induced a high affinity antibody, while haptens reported by other groups
exposed trimethoxybenzene with high hydrophobicity to the immune system,
resulting in relatively lower affinity. However, this will be proved by separately
immunizing diaminopyrimidine and trimethoxybenzene conjugates in our further
research.

342 For the cell fusion experiments, the best mice were chosen i.e., Hapten A-KLH-1#, Hapten B-KLH-4# and Hapten C-KLH-3#. After screening and cloning 343 three times, five hybridomas were obtained. In detail, mAb 5C4 and 9C9 were from 344 345 Hapten A, 3B6 and 14G1 were from Hapten B, and 1F1 from Hapten C, respectively. 346 The isotypes of all mAbs were determined and are shown in Table S2 and the 347 preliminary characterization of mAbs are shown in Table S3. Although all mAbs showed highly affinity to TMP with IC₅₀ values below 0.4 μ g L⁻¹, only 5C4 showed 348 349 broad-specificity towards other ASGs via homologous coating antigens.

350

Optimization and Development of icELISA. Aiming to improve the performance of icELISA, the concentration of mAbs and coating antigen, coating antigen types and several physicochemical factors related to the buffer were examined. As to competitive ELISAs, low concentrations of immunoreagents are required to obtain the best sensitivity.³⁸ Accordingly, the dilutions of immunoreagents were firstly optimized to get the lowest IC₅₀ and the optimum A_{max} values in the range of 1.8–2.2 (A_{max} is the absorbance value without analyte). We use checkerboard assays to study

358	the effect of different dilutions for mAbs and coating antigen on the A_{max} of icELISA.
359	The optimal dilutions of mAbs and coating antigens are summarized in Table S4,
360	which shows that any mAbs could recognize any coating antigens and all dilutions of
361	immunoreagents were above 1/20000. The highest dilutions of mAb and coating
362	antigen were for mAb 3B6 and homologous coating antigen, Hapten B-OVA. It is
363	well known that heterologous coating antigens usually lead to higher sensitivity and
364	lower dilution of immunoreagents in a competitive ELISA. As the heterologous
365	coating antigen could often result in a weak decrease in antibody recognition
366	compared with the homogenous coating antigen, this allows the analyte to compete
367	with the heterogeneous coating antigen at lower concentrations and higher sensitivity
368	can be obtained. ³⁹ Thus, the optimal pair of coating antigen types and mAbs were
369	then tested using a two-point (0 and 0.4 $\mu g \; L^{-1}$ TMP) competitive format and were
370	evaluated by inhibition rate. The higher inhibition rate represents the higher
371	sensitivity then better pair of coating antigens and mAbs. Figure 3a shows the
372	inhibition rate of five mAbs and six coating antigens in the presence of 0.4 $\mu g \ L^{-1}$
373	TMP. The affinities of mAbs (except 1F1) for TMP were improved using
374	heterologous coating antigens. Interestingly, BSA coating antigens all produced
375	higher inhibition rates than the OVA counterparts. Thus, Hapten C-BSA was selected
376	for subsequent studies. The detailed parameters of the five mAbs paired with Hapten
377	C-BSA in addition to the IC_{50} and CRs are listed in Table S1. The results
378	demonstrated that the mAb 3B6 and 1F1 showed low CRs values for OMP (< 4.4%)

and BQP (< 3.2%), while, mAb 9C9 and 14G1 showed similar recognition profiles with TMP (100%), DVD (> 49.6%), OMP (> 52.6%) and BOP (>893%), but not BQP (CR < 24.6%). The mAb 5C4 recognized all ASGs (TMP, DVD, BOP, OMP and BQP) with similar high affinity, and was used for further optimization and to develop a class-selective icELISA for the qualitative detection of total ASGs.

384 Several physicochemical factors were further optimized including pH value (6.0, 6.5, 7.0, 7.4 and 8.0 for PBS), ionic strength (concentrations of NaCl were 0.05, 0.1, 385 0.2, 0.5 and 1.0 mol L^{-1}) and organic solvent (proportion of methanol and acetonitrile 386 387 were 0%, 1%, 5%, 10% and 20%). The A_{max}/IC_{50} ratio was chose to be the primary 388 criterion to evaluate the icELISA and the highest ratio value meant the highest 389 sensitivity. It can be seen that the ratio of A_{max}/IC_{50} was highest at pH 7.4 in the range 6.0 to 8.0 evaluated (Figure 3b). These results illustrated that slight pH differences in 390 391 the assay buffer obviously affected the icELISA performance. Similar to pH, the 392 influence of ionic strength on the icELISA showed a similar tendency. The ratio of A_{max}/IC_{50} was better at an ionic strength of 0.1 mol L⁻¹ (Figure 3c). Deviation from 393 394 this concentration was detrimental to the icELISA performance. In addition, organic solvents are often chosen to extract ASGs from food matrices^{35, 40}. Excessive organic 395 solvent can result in denaturation of antibodies and lower sensitivity of the icELISA. 396 397 Therefore, the assay must be tested to determine the tolerance of organic solvents. 398 Several buffers containing different concentrations of methanol or acetonitrile were used for testing. As shown in Figure 3d and Figure 3e, a clear decrease in the 399

400 A_{max}/IC_{50} ratio was observed when the concentration of methanol was more than 10% 401 or the concentration of acetonitrile was more than 5%. The ELISA could be 402 performed with methanol concentrations up to 10% or acetonitrile concentrations up 403 to 5%. Thus, the optimum conditions (pH 7.4 and 0.1 mol L⁻¹ NaCl in PBS buffer) 404 were used in subsequent experiments.

405

Sensitivity and Specificity of the Optimized icELISA. The sensitivity and 406 specificity of the icELISA was determined by conducting competitive assays for 407 408 ASGs and other analogs (structures shown in Figure 1b). The sensitivity of mAb 5C4 was evaluated using the icELISA calibration curve for ASGs, and showed that the 409 IC_{50} was 0.067 µg L^{-1} , 0.076 µg L^{-1} , 0.016 µg L^{-1} , 0.112 µg L^{-1} and 0.139 µg L^{-1} for 410 411 TMP, DVD, BOP, OMP and BQP, respectively (Figure 3f). The IC₅₀ value of the 412 developed icELISA was 30 to 100-fold better than other reported immunoassays for 413 TMP. The limit of detection (LOD) of the icELISA we developed was 2.8 to 300-fold lower than the LOD or visual limit of detection (vLOD) of reported immunoassays.²³, 414 24, 27 415

The specificity of the icELISA was demonstrated by counting CRs against nineteen compounds, including five ASGs, nine structurally related compounds and five other antibiotics. It is not surprising that the icELISA showed no CRs (< 0.002%) for other frequently used antibiotics such as sulfaguanidine, sulfamethizole, sulfamerazine, norfloxacin and furazolidone. The IC₅₀ values and CR of the icELISA

421	for ASGs and other structurally related compounds are summarized in Table S5. It can
422	be seen that mAb 5C4 only recognized the compounds that possessed both
423	diaminopyrimidine and metoxybenzene, which was supported by observing the
424	ignorable CR for 3,4,5-trimethoxycinnamic acid; gallic acid trimethyl ether;
425	3-(3,4,5-trimethoxyphenyl)propionic acid; 3,4,5-trimethoxyphenylacetic acid; 2,
426	4-diamino-6-(4-fluorophenyl)pyrimidine, pyrimethamine and 2, 4-diaminopyrimidine.
427	These compounds only contained one moiety of TMP, i.e., diaminopyrimidine or
428	metoxybenzene. It is reasonable that the mAb could not recognize the compounds
429	only containing metoxybenzene as this moiety was used to conjugate with protein and
430	then was blocked when exposed to the immune system. We thought that the mAb
431	could recognize DAP which was fully exposed to the immune system; however, the
432	unstable immune-complex of mAb-DAP may lead to a high dissociation rate constant
433	resulting in very low affinity.

It should also be noted that diaminopyrimidine and metoxybenzene must be 434 connected by methylene instead of carbonyl. For example, the structure of TBP is 435 extremely similar to TMP except for the connect group as mentioned above, and this 436 437 difference resulted in an almost 800-fold decrease in the IC₅₀ value for TBP compared 438 to TMP (Table S5). The recognition profiles of mAb for TBP and TMP were not easy to explain by only viewing the 2D-chemical structure; thus, we further examined the 439 possible recognition mechanism of mAb in terms of conformational and electronic 440 aspects. We aligned TMP with TBP based on their lowest conformations and expected 441

442	that these two molecules would not be well superimposed. As shown in Figure 4a, our
443	expectation basically agreed with the alignment of these molecules. For concise
444	purposes, only the backbone of hapten molecules are viewed without hydrogen atoms.
445	The conformations of TMP and TBP were different to the orientation of
446	metoxybenzene as we superimposed the common part of diaminopyrimidine. The
447	dihedral angles between the pyrimidine ring and the benzene ring of TMP and TBP
448	were 88.67° and 50.79°, respectively. The torsion angles of C_7 - C_6 - C_9 - C_{11} were 118.6°
449	for TMP and 16.3° for TBP. The introduction of carbonyl around the connection site
450	of diaminopyrimidine (C ₉) resulted in the benzene ring bending away with an
451	approximately 100° difference in TBP compared with TMP, which may be partly
452	responsible for the almost 800-fold decrease in mAb recognition ability.
453	Complementary shape is an essential factor for molecules interacting with mAb, but
454	not sufficient to complete the stable complex of hapten-antibody. The electronic
455	contribution to antibody recognition was thought to be another important factor. As
456	seen in Figure 4b, the exit of carbonyl on TBP induced an obvious change in atom
457	partial charges in comparison with those of TMP, for example, the C2, C4 and C7
458	carbon (Figure 4b), which were maximally exposed to the immune system. To explain
459	the difference in TMP and TBP in terms of conformation and electron distribution,
460	the_ESP displayed on van der Waal surfaces of global lowest energy conformation for
461	TMP and TBP are shown in Figure 4c and 4d (in the same orientation as for Figure
462	4a). The ESP shows the potential energy of a proton placed at a point near the

463	molecule. The most positive potential energy is represented with blue areas which are
464	repulsive to a proton on the molecules. The most negative potential energy is
465	represented by red areas which are attractive to a proton. It is clear from Figure 4c
466	that the surface area in different ESP ranges of TMP and TBP represented similar but
467	obviously varied electrostatic potential characters. Furthermore, TBP has a stronger
468	area of negative potential (marked by arrow) which is associated with the carbonyl as
469	observed in Figure 4d. The comparisons in Figure 4 demonstrated that the connect
470	group between diaminopyrimidine and metoxybenzene markedly changed the whole
471	molecular conformations and electron distribution, and then resulted in low affinity.
472	The icELISA exhibited the highest CR with BOP (418.7%) and showed similar
473	CR with TMP (100.0%), DVD (88.2%), OMP (59.8%) and BQP (48.2%). Although
474	the other four ASGs are not commercially available, TXP, MTP, ADP and ICL, we
475	suggest that the mAb should recognize them with similar affinity to TMP. The
476	satisfactory CRs indicated mAb 5C4 was a group-specific antibody against the five
477	ASGs. The icELISA we developed had significant advantages in terms of sensitivity
478	and broad-specificity compared with the results of other authors. ^{22, 24-25}
479	

480 **Matrix Effect and Recovery.** ASGs are widely used in the feeding of poultry 481 and dairy cows, thus chicken and milk samples were chosen to determine the matrix 482 effect and recovery. The matrix effect of samples can influence quantification of the 483 target. The clean-up step is frequently used to eliminate matrix effects. However,

484	direct dilution of samples is a simpler way of eliminating matrix effects in rapid
485	screening methods, such as ELISA. ^{41, 42} Thus, in this study, the matrix effect of the
486	extract was expected to be removed just by dilution due to the high sensitivity of the
487	developed icELISA. Therefore, the pretreated chicken sample was diluted 10 times,
488	20 times and 40 times with PBS and the defatted milk was diluted 2-fold, 5-fold and
489	15-fold with PBS, respectively. The standard curves of TMP prepared in diluted
490	samples were then compared with those in PBS to evaluate the matrix interferences
491	(Figure 3g, 3h). The influence of the matrix on the performance of the icELISA
492	decreased as the dilution factor increased. Despite a 40-fold dilution of chicken
493	samples could farthest improve assay performance in term of A_{max} , the icELISA
494	standard curve in 20-fold dilution of chicken samples was more consistent with that in
495	PBS (Figure 3g). Accordingly, 20-fold dilution of chicken samples in PBS buffer was
496	chosen to establish the calibration curves. The matrix effects of milk were avoided by
497	15-fold dilution using PBS buffer (Figure 3h). The calculated limits of detection
498	(from IC ₁₀) were observed at 0.06 μ g kg ⁻¹ -0.8 μ g kg ⁻¹ in chicken samples and 0.05 μ g
499	L^{-1} -0.6 µg L^{-1} in milk samples, which was below the MRL of ASGs. The linearity
500	range (from IC_{20} to IC_{80}) is shown in Table 2.

The recovery and coefficient of variation (CV) of spiked samples were used to evaluate the effectiveness of sample preparation and utility of the icELISA. Negative samples were spiked with five individual ASGs (TMP, DVD, BOP, OMP and BQP) at three different concentrations to determine recoveries with the icELISA (Table 2).

505	The recoveries ranged from 75.2% to 94.6% with a CV lower than 13.2% in chicken
506	samples. The recoveries ranged from 75.3% to 101.4% and the CV between analyses
507	ranged from 5.7% to 14.3% in milk samples. These results demonstrated that the
508	icELISA based on mAb 5C4 was ultra-sensitive, class-selective and reliable for the
509	detection of ASGs in chicken and milk.
510	

511 **Support Information**

- 512 Buffer used in this article; The structures and mass spectra, and ¹H NMR spectra of
- three haptens (Figure S1–S2), MALDI–TOF-MS result of hapten-BSA (Figure S3);
- 514 Characterization of antiserum and mAbs (Table S1), the isotypes of mAbs (Table S2),
- 515 preliminary characterization of all the mAbs (Table S3), optimum dilution of coating
- antigens and mAbs (Table S4), cross-reactivity of structurally related compounds with
- 517 mAb 5C4 in the icELISA (Table S5).

518 **ACKNOWLEDGEMENTS**

- 519 This work is supported by the Beijing Municipal Natural Science Foundation (No.
- 520 6182019) and China Agriculture Research System (CARS–36).

522 **REFERENCES**

523	(1) Yang, Y.; Liu, X.; Li, B.; Li, S.; Kong, X.; Qin, Z.; Li, J. Simultaneous
524	determination of diaveridine, trimethoprim and ormetoprim in feed using high
525	performance liquid chromatography tandem mass spectrometry. Food Chem. 2016,
526	212, 358–366.
527	(2) Wang, H.; Yuan, B.; Zeng, Z.; He, L.; Ding, H.; Guo, C.; Kong, X.; Wang, W.;
528	Huang, X. Identification and elucidation of the structure of in vivo metabolites of

- 529 diaveridine in chicken. J. Chromatogr. B 2014, 965, 91–99.
- (3) Luo, H.; Zhang, L.; Xue, F.; Li, Y.; Wang, X.; Fei, C.; Zhang, C. Simultaneous
 determination of trimethoprim and diaveridine in tissues of chicken, porcine, and fish
- 532 by hydrophilic interaction liquid chromatography-tandem mass spectrometry. *Food*
- 533 Anal. Method **2014**, 7, 308–317.
- (4) Liu, Z.; Wu, Y.; Sun, Z.; Wan, L. Characterization of *in vitro* metabolites of
 trimethoprim and diaveridine in pig liver microsomes by liquid chromatography
 combined with hybrid ion trap/time-of-flight mass spectrometry. *Biomed.*
- 537 *Chromatogr.* **2012**, *26*, 1101–1108.
- 538 (5) Wang, L.; Huang, L.; Pan, Y.; Kuča, K.; Klímová, B.; Wu, Q.; Xie, S.; Ahmad, I.;
- 539 Chen, D.; Tao, Y.; Wan, D.; Liu, Z.; Yuan, Z. Metabolism and disposition of
- aditoprim in swine, broilers, carp and rats. *Sci. Rep.* **2016**, *6*, 20370.
- 541 (6) Huang, D. B.; Morrissey, I.; Murphy, T.; Hawser, S.; Wilcox, M. H. Efficacy
- 542 evaluation of iclaprim in a neutropenic rat lung infection model with methicillin-

- 543 resistant Staphylococcus aureus entrapped in alginate microspheres. Eur. J. Clin.
- 544 *Microbiol. Infect. Dis.* **2018**, *37*, 673–678.
- 545 (7) White, G.; Daluge, S. M.; Sigel, C. W.; Ferone, R.; Wilson, H. R. Baquiloprim, a
- new antifolate antibacterial: in vitro activity and pharmacokinetic properties in cattle.
- 547 Res. Vet. Sci. 1993, 54, 372–378.
- 548 (8) Song, N.; Zhang, S.; Li, Q.; Liu, C. Liquid chromatographic/mass spectrometry
- stage assay of bromotetrandrine in rat plasma and its application to pharmacokinetic study.
- 550 *Biomed. Chromatogr.* **2009**, *23*, 623–629.
- (9) Felix, J. P. F.; Lira, R. P. C.; Zacchia, R. S.; Toribio, J. M.; Nascimento, M. A.;
- 552 Arieta, C. E. L. Trimethoprim–sulfamethoxazole versus placebo to reduce the risk of
- 553 recurrences of *Toxoplasma Gondii* retinochoroiditis: randomized controlled clinical
- 554 trial. Am. J. Ophthalmol. 2014, 157, 762–766.
- 555 (10) Ono, T.; Sekiya, T.; Takahashi, Y.; Sasaki, Y. F.; Izumiyama, F.; Nishidate, E.;
- 556 Tsuda, S.; Ohta, T. The genotoxicity of diaveridine and trimethoprim. *Environ*.
- 557 *Toxicol. Pharmacol.* **1997**, *3*, 297–306.
- 558 (11) Ministry of Agriculture and Rural affairs in China. Regulation No. 235 of 24
- 559 December 2002 setting maximum residue levels of veterinary medical products in
- 560 foodstuffs of animal origin. *Regulation NO. 235*, **2002**.
- 561 (12) Commission Regulation (EC). No. 37/2010 of 22 December 2009 setting
- 562 maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2009,
- 563 L15/67.

- (13) Commission Regulation (EC). No. 37/2010 of 22 December 2009 setting
 maximum levels for certain contaminants in foodstuffs. *Off. J. Eur. Union* 2009,
 L15/10.
- 567 (14) Department of Food Safety, Ministry of Health, Labour and Welfare. No.
- 568 0526004 of June 2006 for agricultural chemical residues in foods. Japanese Positive
- 569 *List System No. 0526004*, **2006**.
- 570 (15) Sichilongo, K. F.; Mutsimhu, C.; Obuseng, V. C. Gas chromatography-mass
- spectral characteristics of six pharmacologically active compounds-analytical
 performance characteristics on a raw sewage impacted water sample. *Can. J. Chem.*2013, *91*, 704–710.
- 574 (16) Gavilan, R. E.; Nebot, C.; Patyra, E.; Miranda, J. M.; Franco, C. M.; Cepeda, A.
- 575 Simultaneous analysis of coccidiostats and sulphonamides in non-target feed by
- 576 HPLC-MS/MS and validation following the Commission Decision 2002/657/EC.
- 577 Food Additives Contaminants: Part A 2018, 1–14.
- 578 (17) Cheng, L.; Zhang, S.; Shen, J.; Liu, J.; Lequn, W. Determination of trimethoprim
- in feedstuffs by HPLC. *Journal of Instrumental Analysis* **2008**, *1*, 88–90.
- 580 (18) Isanga J.; Mukunzi D.; Chen Y. Development of a monoclonal antibody assay
- and immunochromatographic test strip for the detection of amikacin residues in milk
- 582 and eggs. *Food Agr. Immunol.* **2017**, *28*, 668–684.
- 583 (19) Chen Y.; Liu L.; Xu L. Gold immunochromatographic sensor for the rapid
- detection of twenty-six sulfonamides in foods. *Nano Res.* **2017**, *10*, 2833–2844.

- (20) Isanga J.; Mukunzi D.; Chen Y. Development of a monoclonal antibody assay
 and a lateral flow strip test for the detection of paromomycin residues in food
 matrices. *Food Agr. Immunol.* 2017, *28*, 355–373.
 (21) Chen Y.; Guo L.; Liu L. Ultrasensitive immunochromatographic strip for fast
 screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal
 antibody. *J. Agric. Food Chem.* 2017, *65*, 8248–8255.
 (22) Chen, Y.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Establishment of a monoclonal
- 592 antibody-based indirect enzyme-linked immunosorbent assay for the detection of
- trimethoprim residues in milk, honey, and fish samples. *Food Agric. Immunol.* 2016,
 27, 830–840.
- 595 (23) Chen, Y.; Liu, L.; Xie, Z.; Zhu, J.; Song, S.; Kuang, H. Gold
- immunochromatographic assay for trimethoprim in milk and honey samples based on
- a heterogeneous monoclonal antibody. *Food Agric. Immunol.* **2017**, *28*, 1–12.
- 598 (24) M Rtlbauer, E.; Meier, R.; Usleber, E.; Terplan, G. Enzyme immunoassays for
- 599 the detection of sulfamethazine, sulfadiazine, sulfamethoxypyridazine and 600 trimethoprim in milk. *Food Agric. Immunol.* **1992**, *4*, 219–228.
- 601 (25) Han, S.; Wu, X.; Jia, F.; Luo, X.; Wan, Y.; He, F. Preparation of monoclonal
- antibodies to trimethoprim and ELISA kit for rapid detection. Agriculture Science and
- 603 *Technology* **2016**, *10*, 2267–2270.

604	(26) Wan, Y.; Feng, C.; Zhao, Z.; Zhang, Y.; Han, J. Study on gold
605	immunochromatography assay for rapid detection of trimethoprim. Dairy Industry
606	2013 , <i>41</i> , 24–27.

- 607 (27) M Rtlbauer, E.; Usleber, E.; Schneider, E.; Dietrich, R. Immunochemical
- detection of antibiotics and sulfonamides. *Analyst* **1994**, *119*, 2543–2548.
- 609 (28) Zhang, X.; Eremin, S. A.; Wen, K.; Yu, X.; Li, C.; Ke, Y.; Jiang, H.; Shen, J.;
- 610 Wang, Z. Fluorescence polarization immunoassay based on a new monoclonal
- antibody for the detection of the zearalenone class of mycotoxins in maize. J. Agric.
- 612 *Food Chem.* **2017**, *65*, 2240–2247.
- 613 (29) Wang, Z.; Mi, T.; Beier, R. C.; Zhang, H.; Sheng, Y.; Shi, W.; Zhang, S.; Shen, J.
- Hapten synthesis, monoclonal antibody production and development of a competitive
- 615 indirect enzyme-linked immunosorbent assay for erythromycin in milk. *Food Chem.*
- **616 2015**, *171*, 98–107.
- 617 (30) Zhang, X.; Wen, K.; Wang, Z.; Jiang, H.; Beier, R. C.; Shen, J. An ultra-
- sensitive monoclonal antibody-based fluorescent microsphere
 immunochromatographic test strip assay for detecting aflatoxin M1 in milk. *Food Control* 2016, *60*, 588–595.
- 621 (31) Wang, Z.; Luo, P.; Cheng, L.; Zhang, S.; Shen, J. Hapten-antibody recognition
- 622 studies in competitive immunoassay of α -zearalanol analogs by computational
- chemistry and pearson correlation analysis. J. Mol. Recognit. 2011, 24, 815–823.

- 624 (32) Zhang, F.; Liu, B.; Liu, G.; Zhang, Y.; Wang, J.; Wang, S. Substructure-activity
- 625 relationship studies on antibody recognition for phenylurea compounds using
- 626 competitive immunoassay and computational chemistry. *Sci. Rep.* **2018**, *8*, 3131.
- 627 (33) Arshad, M. N.; Asiri, A. M.; Alamry, K. A.; Mahmood, T.; Gilani, M. A.; Ayub,
- 628 K.; Birinji, A. S. Synthesis, crystal structure, spectroscopic and density functional
- 629 theory (DFT) study of
- 630 N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine.
- 631 *Spectrochim Acta A* **2015**, *142*, 364–374.
- 632 (34) Wang, Z.; Beier, R. C.; Shen, J. Immunoassays for the detection of macrocyclic
- lactones in food matrices-A review. *TrAC-Trend Anal Chem.* **2017**, *92*, 42–61.
- 634 (35) Vasylieva, N.; Barnych, B.; Rand, A.; Inceoglu, B.; Gee, S. J.; Hammock, B. D.
- 635 Sensitive immunoassay for detection and quantification of the neurotoxin,
- tetramethylenedisulfotetramine. *Anal. Chem.* **2017**, *89*, 5612–5619.
- 637 (36) Lei, H.; Shen, Y.; Song, L.; Yang, J.; Chevallier, O. P.; Haughey, S. A.; Wang,
- H.; Sun, Y.; Elliott, C. T. Hapten synthesis and antibody production for the
- development of a melamine immunoassay. *Anal. Chim. Acta* **2010**, *665*, 84–90.
- 640 (37) Galve, R.; Camps, F.; Sanchez-Baeza, F.; Marco, M. P. Development of an
- 641 immunochemical technique for the analysis of trichlorophenols using theoretical
- 642 models. Anal. Chem. 2000, 72, 2237–2246.

- 643 (38) Abad, A.; Montoya, A. Development of an enzyme-linked immunosorbent assay
- to carbaryl. 2. assay optimization and application to the analysis of water samples. J.
- 645 Agric. Food Chem. **1997**, 45, 1495–1501.
- 646 (39) Wang, Z.; Liu, M.; Shi, W.; Li, C.; Zhang, S.; Shen, J. New haptens and
- antibodies for ractopamine. *Food Chem.* **2015**, *183*, 111–114.
- 648 (40) Cliquet, P.; Cox, E.; Haasnoot, W.; Schacht, E.; Goddeeris, B. M. Generation of
- group-specific antibodies against sulfonamides. J. Agric. Food Chem. 2003, 51,
- 650 5835–5842.
- (41) Zhou, Q.; Peng, D.; Wang, Y.; Pan, Y.; Wan, D.; Zhang, X.; Yuan, Z. A novel
- hapten and monoclonal-based enzyme-linked immunosorbent assay for sulfonamides
- 653 in edible animal tissues. *Food Chem.* **2014**, *154*, 52–62.
- 654 (42) Wang, Z.; Zhu, Y.; Ding, S.; He, F.; Beier, R. C.; Li, J.; Jiang, H.; Feng, C.; Wan,
- 455 Y.; Zhang, S.; Kai, Z.; Yang, X.; Shen, J. Development of a monoclonal antibody-
- based broad-specificity ELISA for fluoroquinolone antibiotics in foods and molecular
- modeling studies of cross-reactive compounds. *Anal. Chem.* **2007**, *79*, 4471–4483.
- 658 **AUTHOR INFORMATION**
- 659 **Corresponding Author**
- 660 *E-mail: wangzhanhui@cau.edu.cn
- 661 Notes
- 662 The authors declare no competing financial interest.

FIGURE CAPTIONS

Figure 1. The chemical structures used in the study: (a) Chemical structures of ASGs;(b) Other compounds tested in the study.

667

Figure 2. The synthetic route of generic haptens.

669

670 Figure 3. The optimization of antigen-antibody pairs and physicochemical parameters 671 on the icELISA and calibration curves assessed by the icELISA: (a) Inhibition rates of 672 different mAb-coating antigen pairs in the icELISA. The concentrations of mAbs and coating antigens were optimized using checkerboard titration. The inhibition ratio was 673 674 calculated at the optimum concentration of mAbs and coating antigen when the OD value ranged from 1.8 to 2.2. The effect of (b) pH value, (c) ionic strength, (d) 675 methanol and (e) acetonitrile on the icELISA (N = 3). Hapten C-BSA was used as 676 coating antigen and the concentration was 0.25 μ g L⁻¹, TMP was used as a model 677 analyst for constructing the standard curves at 0.0033, 0.01, 0.03, 0.09, 0.27, 0.81 and 678 2.43 μ g L⁻¹. Each value represents the average of three independent replicates. (f) The 679 680 icELISA standard curves based on mAb 5C4 for five ASGs in buffer. The icELISA 681 calibration curves for TMP in PBS and PBS diluted samples of (g) chicken, (h) milk. 682 Parallels were found between the standard curve prepared in PBS and diluted samples, respectively (N = 3). 683

685	Figure 4. Molecular superposition and electrostatic potential energy of TMP and TBP.
686	(a) Superposition of the lowest energy conformation of TMP and TBP. Gray sections
687	represent carbon atoms, blue represent nitrogen atoms, red represent oxygen atoms
688	and light blue represent polar hydrogen atoms. (b) Calculated partial atomic charges
689	of selected atoms marked by the numbers shown in (a). (c) Surface area in each ESP
690	range on the van der Waal surface of TMP and TBP. (d) The structures optimized by
691	DFT and the ESP of TMB and TBP on the 0.001 a.u. contours of the electronic
692	density of the molecules. The negative ESP regions are indicated in red, and the
693	positive regions in blue.

Haptens	Coupling method	Antibody type	$IC_{50} \\ (\mu g L^{-1})$	$LOD/vLOD^{a}$ (µg L ⁻¹)	CR	Immunoassays	Related references
NH2 H2N N O	GA	pAb	6.0	6.0	TMP, 100%	ELISA	Erwin Martlbauer et al. (1992, 1994)
	CDI ^b	mAb	_c	50	TMP, 100%	LFIA ^d	Yuping Wan et al. (2013)
	CDI	mAb	4.8	2.34	TMP, 100% DVD, <1%	ELISA	Shen Han et al. (2016)
H ₂ N NH ₂	GA	mAb	4.14	_	TMP, 100% DVD, < 10%	ELISA	Yanni Chen et al. (2016)
H ₂ N N O	GA	mAb	1.98	10-15	TMP, 100% DVD, < 10%	LFIA	Yanni Chen et al. (2017)
H_2N N H_2 H_2N	Active Ester	mAb	0.067	0.05-0.8	TMP, 100% DVD, 88.2% BOP, 418.7% OMP, 59.8% BQP, 48.2%	ELISA	This study

Table1. Reported immunoassays for the determination of antibacterial synergists in the literature.

^a vLOD refers to visual limit of detection of method.

^b CDI refers to the carbodiimide method.

^c Not exhibited in paper. ^d LFIA is lateral flow assay.

			Chicken					Milk		
ASGs	Spiked	Recovery	CV	LOD ^a	Linearity range ^b	Spiked	Recovery	CV	LOD	Linearity range ^b
	$(\mu g k g^{-1})$	(%)	(%)	$(\mu g k g^{-1})$	$(\mu g k g^{-1})$	$(\mu g L^{-1})$	(%)	(%)	$(\mu g L^{-1})$	$(\mu g L^{-1})$
	0.5	82.5	12.7			0.5	90.2	14.3		
TMP	1.5	89.6	10.4	0.25	0.44-3.6	1.5	87.8	5.7	0.20	0.33-2.7
	3.5	94.3	8.5			2.5	101.4	8.0		
	1.0	79.5	5.6			0.5	81.6	8.6		
DVD	3.0	83.3	8.3	0.32	0.54-6.8	2.0	90.5	12.2	0.24	0.41-5.1
	6.0	94.6	12.1			5.0	87.1	9.8		
	0.2	65.8	11.2			0.1	75.3	13.6		
BOP	0.5	69.1	10.6	0.06	0.1-0.8	0.3	78.4	10.9	0.05	0.1-0.6
	0.8	75.9	9.6			0.6	89.6	12.9		
	1.0	75.2	7.6			0.5	80.7	5.9		
OMP	3.0	80.9	5.2	0.28	0.60 - 7.0	2.0	92.6	11.7	0.22	0.45-5.3
	6.0	87.6	11.5			5.0	91.9	7.6		
	2.0	82.3	13.2			1.0	79.6	10.4		
BQP	4.0	92.3	10.6	0.8	1.28-6.0	2.0	95.8	12.4	0.6	0.96-4.5
	6.0	87.6	9.6			4.0	89.7	12.1		

Table 2. The LOD, linearity range, recovery and CV of five ASGs from spiked samples using the icELISA.

^a The LOD was the concentration of standard showing a 10% inhibition (IC₁₀) in diluted chicken (20-fold) and milk (15-fold).

^b The linearity range was calculated between IC₂₀ and IC₈₀ of the calibration curves in diluted chicken (20-fold) and milk (15-fold).

Figure 2

86x47mm (600 x 600 DPI)

Figure 3

103x61mm (600 x 600 DPI)

Figure 4

106x65mm (600 x 600 DPI)

Table of content

34x15mm (600 x 600 DPI)