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ABSTRACT: Using the collective body of known (CETP) inhibitors as inspiration for design, a structurally novel series of
tetrahydroquinoxaline CETP inhibitors were discovered. An exemplar from this series, compound 5, displayed potent in vitro
CETP inhibition and was efficacious in a transgenic cynomologus-CETP mouse HDL PD (pharmacodynamic) assay. However,
an undesirable metabolic profile and chemical instability hampered further development of the series. A three-dimensional
structure of tetrahydroquinoxaline inhibitor 6 was proposed from 1H NMR structural studies, and this model was then used in
silico for the design of a new class of compounds based upon an indoline scaffold. This work resulted in the discovery of
compound 7, which displayed potent in vitro CETP inhibition, a favorable PK−PD profile relative to tetrahydroquinoxaline 5,
and dose-dependent efficacy in the transgenic cynomologus-CETP mouse HDL PD assay.
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High levels of plasma low-density lipoprotein (LDL) are
clinically associated with atherosclerosis and its con-

sequences, which can include coronary heart disease, stroke,
and peripheral vascular disease.1,2 Despite the successful
development of therapies targeting cholesterol absorption,
biosynthesis, and clearance, atherosclerosis remains a serious
public health issue.3 As such the development of additional,
novel therapies for cardiovascular disease is needed.
In contrast to LDL, high plasma levels of high-density

lipoprotein (HDL) are correlated with a cardioprotective
effect.4 This may be attributed to higher hepatic clearance of
cholesterol via HDL relative to LDL through a process known
as reverse cholesterol transport.5−7 However, HDL has
antioxidant and anti-inflammatory properties that may also
contribute to its antiatherogenic effects.8,9 The balance and
interplay between LDL and HDL is influenced by cholesterol

ester transfer protein (CETP), a plasma protein that facilitates
the exchange of cholesterol esters from HDL particles to LDL
particles and triglycerides from LDL to HDL. Thus, inhibition
of CETP would augment cholesterol excretion by increasing
the HDL to LDL ratio and could hypothetically provide an
opportunity for the treatment of cardiovascular disease via
increased cholesterol efflux. Because of the prevalence of health
conditions caused by cardiovascular disease this hypothesis is
currently being tested in the clinic by multiple organiza-
tions.10−13

Due to our continuing interest in new therapies for
cardiovascular disease, including CETP inhibition, we initiated
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an effort to identify structurally novel CETP inhibitors. We
were inspired by the structural homology of the CETP
inhibitors 1, 2, and 3 that had been described by Pfizer,
Pharmacia, and Johnson and Johnson for two reasons.14−16

First, these three classes of compounds had all demonstrated
efficacy in vivo. Second, we sought to investigate diverse
chemical matter that would be complementary to Merck’s
established class of oxazolidinone CETP inhibitors, exemplified
by the clinical compound, 4, anacetrapib (Figure 1).17 From

this exercise we designed a novel series of substituted
tetrahydroquinoxalines that bear elements of the four
aforementioned classes of CETP inhibitors, while at the same
time being distinct from each of them. This investigation led to
the discovery of compound 5, which displayed promising in
vitro CETP inhibition and reasonable rat PK (Figure 2).18

Interestingly, the optimal stereochemistry at C-2 of the
tetrahydroquinoxaline is opposite to that found in tetrahy-
droquinoline 3.19

During the course of this work we discovered that compound
5, analogues of 5, and tetrahydroquinoxaline intermediates en
route to 5 would gradually oxidize to the monocationic and
aromatic dicationic quinoxalinium species when stored under
ambient conditions over a timespan of days. These degradation
products could be observed by LCMS. Additionally, metabolite
identification studies following incubation of 5 in human liver
microsomes showed extensive oxidative metabolism leading to
dealkylation and the formation of possible reactive intermedi-
ates (Figure 3).20 Although 5 was found to be efficacious in

vivo in a transgenic cynomologus-CETP mouse pharmacody-
namic assay, it displayed highly nonlinear PK.21,22 These
observations lead us to view the pharmacodynamic effects of 5
with skepticism.
We first sought to address the oxidative liabilities of the core

by stabilizing the tetrahydroquinoxaline ring system through
introduction of a heteroatom or an electron withdrawing
substituent in the aromatic portion of the core. Unfortunately
these strategies generally led to a reduction in potency and little
or no change in the metabolic or chemical stability of the
compounds.23 Due to concerns about the generation of reactive
intermediates, the potential difficulties of progressing a
chemically unstable compound, and our inability to stabilize
the tetrahydroquinoxaline core without a substantial loss of
potency we chose to re-engineer this series.
Faced with this challenge, we turned our attention to

elucidation of the three-dimensional structure of compounds
like 5 with the hope that structural insight would spur the
design of novel scaffolds that would mimic the three-
dimensional chemical shape of the tetrahydroquinoxalines but
would be devoid of the metabolic and chemical instability
inherent to this core. Stereochemical analysis by 1H NMR
revealed a dependence of the molecular conformation on the
relative stereochemistry of C-2 and the 1,1,1-trifluoropropanol
side chain that allowed for the assignment of the absolute
stereochemistry of compound 6. This led to the proposal of a
U-shaped three-dimensional structure in which the C-2
aromatic group is in a pseudoaxial position and the N-benzyl
group lies parallel to the C-2 group on the same face of the
tetrahydroquinoxaline core (Figure 4).24

Figure 1. Structures used as inspiration for design of structurally novel
CETP inhibitors.

Figure 2. In vitro and PK properties of tetrahydroquinoxaline CETP
inhibitor 5.

Figure 3. Proposed structures of oxidative metabolites observed after
incubation of compound 5 with human liver microsomes.

Figure 4. Proposed three-dimensional structure of 6.
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Using the proposed solution-phase conformation of the
tetrahydroquinoxalines as inspiration, we designed molecules
that could adopt the U-shape that we speculated was critical for
CETP inhibition and that would lack the metabolic and
chemical instability of the tetrahydroquinoxaline core. Although
we were well aware that the solution-phase conformation may
not be representative of the active conformation of the
tetrahydroquinoxaline inhibitors when bound to CETP, we
nevertheless chose to pursue this strategy in the hope that we
would uncover novel CETP inhibitor chemotypes. Using this
strategy, we designed the 3,3-disubstituted indoline 7, which
overlaid well with the tetrahydroquinoxaline inhibitor 6 fixed in
the proposed U-shaped three-dimensional structure arrived at
from NMR structural studies (Figure 5).25 Compounds of this

type should not inherently be prone to the oxidative chemical
instability associated with the tetrahydroquinoxaline core
because the aromatization process that results from oxidation
of 7 is not possible on an indoline scaffold in which the 3-
position is a fully substituted quaternary carbon atom.
In order to rapidly survey a broad range of substituents at the

C-3 position of the indoline core, compounds were evaluated
for CETP inhibition first as a mixture of diastereomers at C-3,
and the results are presented in Table 1. To our delight,
indoline 8 afforded significant intrinsic CETP inhibitory
potency with an IC50 of 69 nM. Truncation of the arene at
R1 or R2 completely ablated CETP activity (compounds 9 and
10). Substitution at the 3-position of the R1 arene was
preferred over unsubstituted, 2-substituted, and 4-substituted
benzenes (compounds 11, 12, and 13). Multiple 3-substituted
benzenes and heteroarenes were explored at R1. However,
none of these substituents were found to be superior to the 3-
trifluoromethoxy group (compounds 14 through 19). Attempts
to transpose the 3,5-bis-trifluoromethylbenzene group of
anacetrapib and torcetrapib onto the indoline core were
unsuccessful (compounds 20 and 21). The 3-trifluoromethox-
ybenzene was again found to be optimal at R2 despite attempts
to find suitable replacements (compounds 22 through 27).
Finally, 4-, 5-, 6-, and 7-substituted indolines were explored, but
the unsubstituted core was found to be superior to those that
were surveyed with respect to CETP inhibition (compounds 28
through 34).
The diastereomers and enantiomers of compound 8 were

synthesized and resolved to determine the impact of stereo-
chemistry on CETP inhibitory potency (Table 2). The C-3
diastereomers, 7 and 35, show a substantial difference in CETP

inhibition as would be expected from consideration of overlays
with compound 6. The remaining two diastereomers, 36 and
37, were also considerably less potent. From this data it appears
that the quaternary stereocenter is the primary driver for
potency (7 and 36 versus 35 and 37), while the alcohol
stereochemistry has a less of an impact on potency (7 versus
36). In the CETP RTA in vitro assay in 95% human serum
compound 7 is superior to compounds 2 and 3 (2, IC50 = 197
nM; 3, IC50 = 295 nM) and comparable with the clincical

Figure 5. Overlay of tetrahydroquinoxaline 6 with 3,3-disubstituted
indoline 7 (hydrogens removed for clarity).

Table 1. 3,3-Disubstituted Indoline CETP Inhibitor SAR

aThe compounds are a 1:1 mixture of diastereomers (C-2 stereocenter
is racemic). bThis in vitro assay measures the ability of the compounds
to inhibit the CETP mediated transfer of [3H]-cholesterol or [3H]-
triolein from LDL to HDL. The assay was performed using
endogenous CETP in 95% human serum (HS), n = 1. Data for the
same in vitro assay run in 2% human serum are available in the
Supporting Information.

ACS Medicinal Chemistry Letters Letter

DOI: 10.1021/acsmedchemlett.5b00404
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.5b00404/suppl_file/ml5b00404_si_001.pdf
http://dx.doi.org/10.1021/acsmedchemlett.5b00404


CETP inhibitors 1 and 4 (1, IC50 = 45 nM; 4, IC50 = 53
nM).15,16

The CETP inhibitory action of the indoline series was further
confirmed by the ability of 7 to increase HDL-cholesterol in an
exposure-dependent manner when orally administered to
cynomologus-CETP transgenic mice (Figure 6).21,26 This

exposure-dependent PD effect of 7, which displays good
pharmacokinetic properties in a rat (dose 0.15 mg/kg: Cl =
36.0 mL/min/kg; t1/2 = 4.76 h; Vdss = 6.70 L/kg) is in stark
contrast to 5, which exhibited an unusual exposure−PD
relationship. This difference is most likely due to the increased
chemical and metabolic stability of 7 relative to 5.
Unfortunately, the in vivo efficacy of 7 can not be directly
compared with compounds 1−4 because HDL measurements
from the cyno-CETP mouse PD assay were recorded at
different time points for the respective sets of compounds.27

However, the PK profile, promising in vivo efficacy, and
structural novelty of the indoline series render them an
attractive starting point for the development of future CETP
inhibitors.

In summary, a novel class of CETP inhibitors based on an
indoline scaffold has been discovered.28,29 The indoline series
was designed from in silico overlays with tetrahydroquinoxaline
CETP inhibitor 6, of which a three-dimensional structure was
proposed from structural information derived from 1H NMR
studies. Indoline 7 is a potent inhibitor of CETP in vitro,
displays improved metabolic and chemical stability relative to
its progenitor, tetrahydroquinoxaline 5, and shows dose-
dependent efficacy in the cynomologus-CETP mouse HDL
pharmacodynamic assay. Furthermore, the three-dimensional
structures of 6 and 7 proposed herein may be a useful template
from which to design additional novel classes of CETP
inhibitors.
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