Rh-Catalyzed Sequential Hydroarylation/Hydrovinylation–Heterocyclization of β-(2-Aminophenyl)-α,β-ynones with Organoboron Derivatives: A New Approach to Functionalized Quinolines

Giorgio Abbiati,^a Antonio Arcadi,^b Fabio Marinelli,*^b Elisabetta Rossi,^a Mirella Verdecchia^b

^a Ist. di Chimica Organica 'Alessandro Marchesini', Università di Milano, via Venezian 21, 20133 Milano, Italy

^b Dipartimento di Chimica, Ingegneria Chimica e Materiali, Università degli Studi dell'Aquila, via Vetoio – Coppito due, 67010 L'Aquila, Italy

Fax +39(0862)433753; E-mail: fmarinel@univaq.it

Received 27 July 2006

Abstract: 4-Aryl and 4-vinyl quinolines were prepared via a sequential procedure involving regioselective Rh(acac)(C_2H_2)/dppfcatalyzed hydroarylation/hydrovinylation of β -(2-aminophenyl)- α , β -ynones with arylboronic acids or potassium aryl and vinyl trifluoroborates, followed by nucleophilic attack of the amino group onto the carbonyl.

Key words: quinolines, hydroarylation, rhodium, alkynones, arylboronic acids

The quinoline scaffold is found in a variety of biologically active compounds, and quinoline-containing drugs are widely used in treatment of Plasmodium falciparum malaria.¹ Pharmacological studies on new quinoline derivatives appears frequently in current literature dealing with HIV-1 replication inhibition,² antimicrobial activity,³ antihelmintic properties,⁴ antimalarial activity⁵ and inhibition of VEGF receptors;⁶ in particular, 4-arylquinolines have been evaluated for their activity against West Nile Virus,⁷ and have found application as ligands of peripheral benzodiazepine receptor.8 Moreover, conjugated polymers incorporating a 2,4-diarylquinoline subunit are useful chemosensors for fluoride ion,9 and 1,8-di(4quinolyl)naphtalene derivatives are selective fluorescent sensors for metal ions in aqueous solution.¹⁰ Consequently, there is a great current synthetic interest in assembling quinoline ring system from acyclic precursors.¹¹

As a part of our ongoing efforts¹² to discover new routes to heterocycles starting from functionalized alkynes bearing proximate nucleophilic centers, we focused on β -(2aminophenyl)- α , β -ynones **1** as useful building blocks for the synthesis of quinolines through sequential processes involving conjugate-addition-type¹³ or cycloaddition¹⁴ reactions followed by cyclization through nucleophilic attack of the amino group onto the carbonyl (cycloamination). In this context, we showed that the reaction of **1** with NaI in acetic acid affords 4-iodoquinolines **3**. The potential of **3** as precursors for increasing molecular complexity via palladium-catalyzed reactions has been considered;¹³ therefore, the combined addition of NaI to **1**/palladium-

SYNLETT 2006, No. 19, pp 3218–3224 Advanced online publication: 23.11.2006 DOI: 10.1055/s-2006-956462; Art ID: G21106ST © Georg Thieme Verlag Stuttgart · New York catalyzed Suzuki–Miyaura cross-coupling reaction¹⁵ could represent a general entry into 4-aryl and 4-vinylquinolines. Indeed, the reaction of **1a** with NaI in acetic acid gave the 4-iodoquinoline **3a** (Scheme 1, *a*); subsequent cross-coupling with phenylboronic acid at room temperature¹⁶ resulted in the formation of **4aa** in good yield (Scheme 1, *b*).

Ar = 2,4-dimethylphenyl

Scheme 1

Nevertheless, the one-pot synthesis of 4-aryl and 4-vinylquinolines **4** starting from **1** represents a more interesting challenge.¹⁷ In order to achieve this goal, we investigated the development of a one-pot/two-step synthetic protocol. NaI (2 equiv) was added to **1a** in ethanol at 80 °C in the presence of 1 equivalent of TsOH; after the complete conversion of **1a** to **3a** (3 h), PhB(OH)₂ (1.3 equiv), K₃PO₄ (3 equiv), Pd(OAc)₂ (0.03 equiv) and TBAB (0.08 equiv) were added to the reaction mixture allowing the formation of **4a** in 47% overall yield after 6 hours at 80 °C (Scheme 1, *c*). Probably there is room for optimization; however, the main drawback of this procedure is constituted by the acidic conditions required in the first step,¹⁸ while the Suzuki–Miyaura cross-coupling requires the presence of a base.¹⁵ This hampers the possibility of a multicomponent process. Considering that sequential processes that allows the direct conversion of starting materials into products are more environmentally benign than traditional multistep procedures,¹⁷ we turned to a completely different methodology.

The Pd-catalyzed hydroarylayion/hydrovinylation reaction of disubstituted alkynes with aryl halides or vinyl triflates represents a useful tool in heterocyclic synthesis, since the *syn*-stereochemistry of the addition allows cyclization reactions to occur when the two substituents on the triple bond posses suitable nucleophilic/electrophilic centers.¹⁹ The palladium-catalyzed sequential hydroarylation of α , β -ynones **1** with aryl iodides/cycloamination has been previously investigated.²⁰ Disappointingly, the reaction proceeded with low regioselectivity, affording a mixture of 4-aryl- and 3-arylquinolines.

On the other hand, the rhodium-catalyzed hydroarylation of alkynes with arylboronic acids has recently received much attention.²¹ The reaction shows the same stere-ochemical outcome of the above-mentioned palladium-catalyzed process, but electronic factors seems to play a more important role in determining the regioselectivity.^{21e} In particular, methyl trimethylsilylpropynoate was selectively arylated at the β -position with respect to the carbonyl, despite the presence of a bulky SiMe₃ group on that position.^{21a}

Then, we envisaged that α,β -ynones 1 could be regioselectively converted into 4 in a sequential manner employing this methodology (Scheme 2).

Scheme 2

Although several examples of rhodium-catalyzed tandem addition–cyclization reactions have been described,²² to the best of our knowledge, the sequential rhodium-catalyzed addition of an organoboron species to alkynones/cy-cloamination reaction has not been yet studied. Herein, we report the results of our investigation.

The reaction of phenylboronic acid with **1a** was chosen as a model system (Scheme 3), and some of the results ob-

tained under different reaction conditions are reported in Table 1. By using Rh(acac)(C_2H_2)/dppf as catalyst, **4a** was isolated in good to high yield with almost complete regioselectivity (NMR and GC-MS analysis showed that its regioisomeric purity is higher than 96%).

According to a reported procedure,^{21a} an excess of **2a** is necessary to obtain the best result (entry 1); however, the quantity of boronic acid could be reduced with still-acceptable results (entry 3-5). The use of a 2:1 Rh/dppf ratio seems preferable to a 1:1 ratio (entries 1, 2). The replacement of dioxane with a greener solvent such as aqueous ethanol is also possible, although in our hands the former gave better yields (entries 7–9). The dppp was slightly less effective than dppf in dioxane-water (compare entries 1 and 6), and in ethanol the two ligands gave similar yields. We next extended the methodology to different α,β ynones/boron derivatives.^{23,24} Our results are summarized in Table 2. Quinolines 4 were isolated in moderate to high yields; reaction conditions are not fully optimized, and five equivalents of arylboronic acid 2 were generally used, although the use of a lower excess is also possible (entries 3, 4). The process tolerates electron-withdrawing as well as electron-donating substituents on the α , β -ynone and arylboronic acid moieties. Substituents on the benzenic ring of quinoline can also be introduced (entry 12), and heteroarylboronic acids can be used as well (entries 8-11). Moreover, the use of aryl- and vinyltrifluoroborate salts 5 is allowed (entries 5, 6, 14); the reactions of 1 with 5 were not optimized, and were carried out in the same manner as arylboronic acids.²³ Organotrifluoroborate salts have emerged as promising new compounds that can overcome some limitations of other organoboron derivatives;²⁵ however, to the best of our knowledge, these salts have not been used in the rhodium-catalyzed hydroarylation of alkynes. Finally, starting from the vinyl-substituted α,β -ynone **1g**, 2-vinyl-4-arylquinolines or 2,4divinylquinolines can be obtained (entries 13, 14). It is also worth nothing that addition of the organorhodium intermediates onto the ketone moiety of 1 was never observed under the present reaction conditions. This process (that is a useful tool for the conversion of aldehydes to alcohols^{26a} and ketones^{26b}) has been reported starting from cyclobutanones and ArB(OH)₂ in the presence of $Rh(acac)(C_2H_4)_2/t$ -Bu₃P and Cs_2CO_3 in dioxane at 100 $^{\circ}\text{C}^{27a}$ or, intramolecularly, starting from 5-yn-1-ones at room temperature.^{27b}

Table 1 Rhodium-Catalyzed Sequential Hydroarylation-Cyclization of 1a with Phenylboronic Acid 2aª

Entry	Solvent	Temp (°C)	Time (h)	Equiv of 2a	Yield of $4a (\%)^b$
1	10:1 dioxane-H ₂ O	100	4	5	80
2	10:1 dioxane-H ₂ O	100	6	5	65 ^c
3	10:1 dioxane-H ₂ O	100	5.5	2	55
4	10:1 dioxane-H ₂ O	100	5.5	3	67
5	10:1 dioxane-H ₂ O	100	5.5	4	70
6	10:1 dioxane-H ₂ O	100	4	5	75 ^d
7	95:% EtOH–H ₂ O	80	4	5	67
8	95:% EtOH–H ₂ O	100	4	5	66
9	95:% EtOH–H ₂ O	100	4	5	67 ^d

^a Reactions were carried out on a 0.4 mmol scale in 1 mL of solvent under nitrogen atmosphere using the following molar ratios: $1a:Rh(acac)(C_2H_2):dppf = 1:0.033:0.066.$

^b Yields are based on **1a**, refer to single runs and are given for isolated product.

^c Using 0.033 equiv of dppf.

^d Using dppp as ligand.

 Table 2
 Synthesis of 4-Aryl/Vinylquinolines 4^{a,b}

Downloaded by: The University of Hong Kong. Copyrighted material.

LETTER

I able 2	Synthesis of 4-Aryi/ vinyiquinonnes	4 ^{4,*} (continued)			
Entry	α,β-Ynone 1	Organoboron compound 2	Reaction time (h)	Quinoline 4	Yield (%)
4	1b	2c	8	N OMe	60
5	1b	BF3 ⁻ K ⁺	8	4e 4e	50
6	1b	5c Ph BF ₃ ⁻ K ⁺ 5d	6	Ph N OMe	61
7	NH ₂ Ic	2a	4.5	4f	82
8	1c	B(OH) ₂ S	16	4g	68
9	NH ₂	2a	7	411 Ph N	50
10	1d O H_2 CF_3	2a	5	4i	59
	1e			4j	

 Table 2
 Synthesis of 4-Aryl/Vinylquinolines 4^{a,b} (continued)

Synlett 2006, No. 19, 3218-3224 © Thieme Stuttgart · New York

 Table 2
 Synthesis of 4-Aryl/Vinylquinolines 4^{a,b} (continued)

^a Reactions were carried out at 100 °C on a 0.4 mmol scale in 1 mL of dioxane and 0.1 mL of H₂O, under N₂ atmosphere, using the following molar ratio: **1:2**:Rh(acac)(C₂H₄)₂:dppf = 1:5:0.033:0.066 or **1:5**:Rh(acac)(C₂H₄)₂:dppf = 1:5:0.033:0.066.

^b Yields refer to single runs and are given for pure isolated product.

^c Using 3 equiv of 2a.

^d Using 0.06 equiv of Rh(acac)(C₂H₄)₂ and 0.12 equiv of dppf.

In conclusion, we have developed an efficient and experimentally simple procedure for the conversion of β -(2-aminophenyl)- α , β -ynones **1** into 4-aryl and 4-vinylquinolines **4** through an unprecedented sequential process involving a regioselective rhodium-catalyzed hydroarylation–cycloamination reaction.

Acknowledgment

Work supported by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica, Rome, and by the University of L'Aquila (Italy).

References and Notes

4n

- (1) Bray, P. G.; Ward, S. A.; O'Neill, P. M. Curr. Top. *Microbiol.* **2005**, 295, 3.
- (2) (a) Zouhiri, F.; Danet, M.; Bérnard, C.; Normand-Bayle, M.; Mouscadet, J. F.; Leh, H.; Thomas, C. M.; Mbemba, G.; d'Angelo, J.; Desmaële, D. *Tetrahedron Lett.* 2005, 46, 2201. (b) Normand-Bayle, M.; Bérnard, C.; Zouhiri, F.; Mouscadet, J. F.; Leh, H.; Thomas, C. M.; Mbemba, G.; Desmaële, D.; d'Angelo, J. *Bioorg. Med. Chem. Lett.* 2005, 15, 4019.

^tBu

- (3) Narender, P.; Srinivas, U.; Ravinder, M.; Anada Rao, B.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U. S. N.; Jayathirtha Rao, V. *Bioorg. Med. Chem.* **2006**, *14*, 4600.
- (4) Rossiter, S.; Péron, J. M.; Whitfield, P. J.; Jones, K. Bioorg. Med. Chem. Lett. 2005, 15, 4806.
- (5) Joshi, A. A.; Viswanathan, C. L. Bioorg. Med. Chem. Lett. 2006, 16, 2613.
- (6) Kiselyov, A. S.; Piatnitsky, E.; Semenova, M.; Semenov, V. V. Bioorg. Med. Chem. Lett. 2006, 16, 602.

- (7) Goodell, J. R.; Puig-Basagoiti, F.; Forshey, B. M.; Shi, P. Y.; Ferguson, D. M. J. Med. Chem. 2006, 49, 2127.
- (8) Cappelli, A.; Pericot Mohr, G.; Gallelli, A.; Giuliani, G.; Anzini, M.; Vomero, S.; Fresta, M.; Porcu, P.; Maciocco, E.; Concas, A.; Biggio, G.; Donati, A. J. Med. Chem. 2003, 46, 3568.
- (9) Tong, H.; Wang, L.; Jing, X.; Wang, F. *Macromolecules* 2003, *36*, 2584.
- (10) Tumambac, G. E.; Rosencrance, C. M.; Wolf, C. *Tetrahedron* **2004**, *60*, 11293.
- (11) Selected references: (a) Anguille, S.; Brunet, J. J.; Chu, N. C.; Diallo, O.; Pages, C.; Vincendeau, S. *Organometallics* 2006, 25, 2943. (b) Ichikawa, J.; Sakoda, K.; Moriyama, H.; Wada, Y. *Synthesis* 2006, 1590. (c) Savitha, G.; Perumal, P. T. *Tetrahedron Lett.* 2006, 47, 3589. (d) Kouznestov, V. V.; Bohorquez, A. R. R.; Saavedra, L. A.; Medina, R. F. *Mol. Diversity* 2006, 10, 29. (e) Janza, B.; Studer, A. *Org. Lett.* 2006, 8, 1875. (f) Jia, C. S.; Wang, G. W. *Lett. Org. Chem.* 2006, 3, 289. (g) Lin, X. F.; Cui, S. L.; Wang, Y. G. *Tetrahedron Lett.* 2006, 47, 3127. (h) Sivaprasad, G.; Rajesh, R.; Perumal, P. T. *Tetrahedron Lett.* 2006, 47, 1783. (i) Duggineni, S.; Sawant, D.; Saha, B.; Kundu, B. *Tetrahedron* 2006, 62, 3228. (j) Chaudhuri, M. K.; Hussain, S. J. Chem. Sci. 2006, 118, 199.
- (12) Arcadi, A.; Marinelli, F.; Rossi, L.; Verdecchia, M. Synthesis **2006**, 2019.
- (13) Arcadi, A.; Marinelli, F.; Rossi, E. *Tetrahedron* **1999**, *55*, 13233.
- (14) Abbiati, G.; Arcadi, A.; Marinelli, F.; Rossi, E. Eur. J. Org. Chem. 2003, 1423.
- (15) Suzuki, A. In Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 1; Negishi, E., Ed.; Wiley: New York, 2002, 249–262.
- (16) Deng, Y.; Gong, L.; Mi, A.; Liu, H.; Jiang, Y. Synthesis 2003, 337.
- (17) Clark, J.; Macquarrie, D. In *Handbook of Green Chemistry and Technology*; Blackwell Science Ltd.: Oxford, **2002**.
- (18) Taniguchi, M.; Kobayashi, S.; Nakagawa, M.; Hino, T.; Kishi, Y. Tetrahedron Lett. **1986**, 27, 4763.
- (19) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Verdecchia, M. Synlett 2006, 909. (b) Cacchi, S.; Fabrizi, G. In Handbook of Organopalladium Chemistry for Organic Synthesis, Vol. 1; Negishi, E., Ed.; Wiley: New York, 2002, 1335–1359.
- (20) Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 1999, 401.
- (21) (a) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918. (b) Lautens, M.; Yoshida, M. Org. Chem. 2002, 4, 123. (c) Lautens, M.; Yoshida, M. J. Org. Chem. 2003, 68, 762. (d) Genin, E.; Michelet, V.; Genêt, J. P. Tetrahedron Lett. 2004, 45, 4157. (e) Genin, E.; Michelet, V.; Genêt, V.; Genêt, J. P. J. Organomet. Chem. 2004, 689, 3820.
- (22) (a) Miura, T.; Sasaky, T.; Nakazawa, H.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1390. (b) Miura, T.; Shimada, M.; Murakami, M. Synlett 2005, 667. (c) Miura, T.; Murakami, M. Org. Lett. 2005, 7, 3340. (d) Shitani, R.; Okamoto, K.; Hayashi, T. Chem. Lett. 2005, 34, 1294. (e) Matsuda, T.; Makino, M.; Murakami, M. Chem. Lett. 2005, 34, 1416. (f) Miura, T.; Shimada, M.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1094. (g) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54.
- (23) **Typical Procedure:** To a mixture of **1c** (0.106 g, 0.40 mmol), phenylboronic acid (0.244 g, 2 mmol), Rh(acac)(C_2H_4)₂ (0.0035 g, 0.014 mmol) and dppf (0.015 g, 0.027 mmol) in a screw-capped Pyrex tube were added dioxane (1 mL) and H₂O (0.1 mL). The tube was purged with

N₂, closed and the mixture was stirred at 100 °C for 4.5 h. After cooling, the mixture was purified by column chromatography (silica gel; hexane–EtOAc, 97:3) to give **4g** (0.106 g, 82% yield); mp 116–117 °C. IR (KBr): 1690, 1610, 1600 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.29 (d, *J* = 8.5 Hz, 2 H), 8.26–8.22 (m, 1 H), 8.09 (d, *J* = 8.5 Hz, 2 H), 7.91 (d, *J* = 8.4 Hz, 2 H), 7.83 (s, 1 H, C3–H), 7.78–7.70 (m, 1 H), 7.54–7.45 (m, 6 H), 2.65 (s, 3 H). ¹³C NMR (CDCl₃): δ = 197.8, 155.4, 149.5, 148.8, 143.8, 138.2, 137.4, 130.2, 129.8, 129.5, 128.8, 128.6, 128.5, 127.7, 126.9, 126.0, 125.7, 119.2, 26.8. MS (EI): *m/z* (%) = 323 (100) [M⁺], 309 (8), 281 (20).

(24) Characterization of other quinoline derivatives. Compound 4a: oil. IR (neat): 1610, 1590, 1550 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.22$ (d, J = 8.3 Hz, 1 H), 7.95 (d, J = 7.9Hz, 1 H), 7.76–7.68 (m, 1 H), 7.55–7.44 (m, 8 H), 7.14 (s, 1 H), 7.17–7.10 (m, 1 H), 2.45 (s, 3 H), 2.38 (s, 3 H). ¹³C NMR $(CDCl_3)$: $\delta = 159.8, 148.4, 148.3, 138.3, 138.2, 137.8, 135.9,$ 131.7, 130.0, 129.8, 129.6, 129.4, 128.6, 128.3, 126.7, 126.3, 125.6, 125.1, 122.6, 21.2, 20.4. MS (EI): m/z $(\%) = 309 (100) [M^+].$ Compound **4b**: oil. IR (neat): 1610, 1590, 1550 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.22$ (d, J = 8.4 Hz, 1 H), 7.89 (d, J = 8.3Hz, 1 H), 7.76-7.68 (m, 1 H), 7.54-7.42 (m, 5 H), 7.24-7.09 (m, 3 H), 7.13 (s, 1 H), 2.44 (s, 3 H), 2.37 (s, 3 H). $^{13}\mathrm{C}$ NMR (CDCl₃): δ = 162.9 (d, J = 248.0 Hz, C–F), 159.9, 148.5, 147.2, 138.4, 137.7, 135.9, 134.2 (d, *J* = 3.2 Hz), 131.7, 131.4, 131.2, 130.1, 129.8, 129.5, 126.8, 126.5, 125.3, 122.7, 115.7 (d, J = 21.5 Hz), 21.2, 20.4. MS (EI): m/z $(\%) = 327 (100) [M^+].$ Compound 4c: oil. IR (neat): 1600, 1590, 1550 cm⁻¹.¹H NMR (CDCl₃): $\delta = 8.24$ (d, J = 8.3 Hz, 1 H), 7.98 (d, J = 8.4Hz, 1 H), 7.74–7.66 (m, 1 H), 7.48–7.42 (m, 5 H), 7.30 (d, *J* = 7.9 Hz, 2 H), 7.13 (s, 1 H), 7.17–7.09 (s, 1 H), 2.45 (s, 3 H), 2.43 (s, 3 H), 2.37 (s, 3 H). ¹³C NMR (CDCl₃): δ = 159.8, 148.4, 148.3, 138.2, 137.8, 135.8, 135.2, 131.6, 129.9, 129.8, 129.5, 129.3, 128.7, 126.7, 126.2, 125.6, 125.3, 122.6, 21.3, 21.2, 20.4. MS (EI): m/z (%) = 323 (100) [M⁺]. Compound **4d**: oil. IR (neat): 1610, 1600, 1550 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.20$ (d, J = 8.5 Hz, 1 H), 8.14 (d, J = 8.8Hz, 2 H), 7.85 (d, J = 8.3 Hz, 1 H), 7.74 (s, 1 H), 7.71–7.63 (m, 1 H), 7.53–7.50 (m, 5 H), 7.43–7.35 (m, 1 H), 7.01 (d, J = 8.8 Hz, 2 H), 3.83 (s, 3 H). ¹³C NMR (CDCl₃): $\delta = 160.8$, 156.4, 148.9, 148.8, 138.5, 132.1, 129.9, 129.5, 129.4, 128.9, 128.5, 128.3, 125.9, 125.6, 125.5, 118.8, 114.2, 55.3. MS (EI): m/z (%) = 311 (100) [M⁺]. Compound **4e**: mp 118–120 °C. IR (KBr): 1600, 1550 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.21 - 8.10$ (m, 1 H), 8.15 (d, J = 8.8Hz, 2 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.74 (s, 1 H), 7.72–7.65 (m, 1 H), 7.43 (d, J = 8.0 Hz, 2 H), 7.44–7.35 (m, 1 H), 7.32 (d, *J* = 8.0 Hz, 2 H), 7.01 (d, *J* = 8.8 Hz, 2 H), 3.84 (s, 1 H), 2.45 (s, 1 H). ¹³C NMR (CDCl₃): δ = 160.9, 156.5, 149.1, 148.9, 138.2, 135.7, 132.4, 129.9, 129.5, 129.34, 129.27, 128.9, 127.4, 125.8, 125.7, 118.8, 114.2, 55.4, 21.3. MS (EI): m/z (%) = 325 (100) [M⁺]. Compound 4f: mp 120-121 °C. IR (KBr): 1620, 1600, 1550 cm^{-1} . ¹H NMR (CDCl₃): $\delta = 8.17 - 8.10$ (m, 4 H), 7.97 (s, 1 H), 7.79 (d, J = 16.1 Hz, 1 H), 7.72–7.59 (m, 3 H), 7.52–7.30 (m, 5 H), 7.04 (d, J = 8.8 Hz, 2 H), 3.86 (s, 3 H). ¹³C NMR $(\text{CDCl}_3): \delta = 160.7, 156.8, 148.8, 143.5, 136.8, 134.8, 132.5,$ 130.2, 129.4, 128.9, 128.7, 127.1, 125.9, 123.7, 123.3, 114.7, 114.2, 55.4. MS (EI): m/z (%) = 337 (100) [M⁺]. Compound 4h: mp 89-90 °C. IR (KBr): 1680, 1610, 1590 cm^{-1} . ¹H NMR (CDCl₃): $\delta = 8.25 - 8.23$ (m, 1 H), 8.27 (d, *J* = 8.5 Hz, 2 H), 8.08 (d, *J* = 8.5 Hz, 2 H), 8.10–8.05 (m, 1 H), 7.87 (s, 1 H), 7.94–7.17 (m, 1 H), 7.60–7.50 (m, 3 H), 7.40–7.35 (m, 1 H), 2.65 (s, 3 H). ¹³C NMR (CDCl₃):

Synlett 2006, No. 19, 3218-3224 © Thieme Stuttgart · New York

δ = 197.8, 155.5, 148.5, 144.5, 143.4, 138.5, 137.4, 130.2, 129.9, 128.9, 127.7, 127.0, 126.5, 125.6, 125.1, 119.1, 26.7. MS (EI): *m/z* (%) = 329 (71) [M⁺], 314 (100), 286 (41). Compound **4i**: mp 112–113 °C. IR (KBr): 1600, 1560 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.30 (d, *J* = 8.6 Hz, 1 H), 8.26–8.20 (m, 1 H), 8.01 (d, *J* = 8.4 Hz, 1 H), 7.96–7.90 (m, 2 H), 7.81– 7.72 (m, 2 H), 7.67 (s, 1 H), 7.61–7.47 (m, 9 H). ¹³C NMR (CDCl₃): δ = 159.0, 148.7, 138.7, 138.1, 134.0, 131.3, 130.1, 129.6, 129.1, 128.6, 128.5, 128.4, 127.8, 126.6, 125.9, 125.7, 125.5, 125.4, 123.4. MS (EI): *m/z* (%) = 331 (100) [M⁺], 255 (40).

Compound **4j**: mp 82–83 °C. IR (KBr): 1600, 1560 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.49$ (s, 1 H), 8.37 (d, J = 7.5 Hz, 1 H), 8.25 (d, J = 8.6 Hz, 1 H), 7.91 (d, J = 8.5 Hz, 1 H), 7.80 (s, 1 H), 7.80–7.60 (m, 3 H), 7.55–7.44 (m, 6 H). ¹³C NMR (CDCl₃): $\delta = 155.1$, 149.7, 148.9, 140.4, 138.2, 130.8, 130.3, 129.8, 129.6, 129.3, 128.7, 128.6, 126.8, 125.9 (q, J = 3.6 Hz), 125.7, 124.4 (q, J = 3.7 Hz), 118.9, 29.7. MS (EI): m/z (%) = 349 (100) [M⁺].

Compound **4k**: mp 75–77 °C. IR (KBr): 1600, 1570, 1550 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.48-8.33$ (m, 3 H), 8.19 (d, J = 8.4 Hz, 1 H), 8.06 (s, 1 H), 7.76–7.55 (m, 5 H), 7.01 (d, J = 3.3 Hz, 1 H), 6.63 (m, 1 H). ¹³C NMR (CDCl₃):

δ = 155.2, 151.0, 149.2, 144.1, 140.2, 136.9, 130.7, 130.5, 129.8, 129.3, 127.2, 125.9 (q, *J* = 3.6 Hz), 125.2, 124.4 (q, *J* = 3.7 Hz), 123.7, 116.1, 112.4, 112.1. MS (EI): *m*/*z* (%) = 339 (100) [M⁺].

Compound **4**I: mp 125–127 °C. IR (KBr): 1610, 1590, 1570 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.96 (s, 1 H), 7.97–7.91 (m, 1 H), 7.56–7.49 (m, 5 H), 7.46–7.10 (m, 4 H), 7.01 (d, *J* = 8.2 Hz, 1 H), 3.85 (s, 3 H). ¹³C NMR (CDCl₃): δ = 159.6 (dd, J_I = 247.1 Hz, J_2 = 12.0 Hz), 158.8 (dd, J_I = 259.9 Hz,

 $J_2 = 13.4$ Hz), 157.3, 156.1, 146.8 (dd, $J_1 = 3.2$ Hz, $J_2 = 5.4$ Hz), 137.8, 131.8, 130.7, 129.4, 129.0, 128.8, 128.6, 125.4, 121.4, 111.3, 105.2-104.2 (two overlapping multiplets), 55.7. MS (EI): m/z (%) = 347 (100) [M⁺], 316 (51). Compound 4m: mp 88-90 °C. IR (KBr): 1790, 1590, 1550 cm^{-1} . ¹H NMR (CDCl₃): $\delta = 8.15 - 8.06$ (m, 3 H), 7.74–7.60 (m, 4 H), 7.52 (s, 1 H), 7.46–7.42 (m, 1 H), 6.81 (t, *J* = 2.6 Hz, 1 H), 3.05–2.95 (m, 1 H), 2.66 (s, 3 H), 2.60–2.25 (m, 2 H), 2.10–1.90 (m, 2 H), 1.45–1.35 (m, 2 H), 0.94 (s, 9 H). ¹³C NMR (CDCl₃): δ = 197.5, 158.4, 148.4, 147.0, 139.2, 137.6, 134.0, 133.0, 130.9, 130.1, 129.3, 128.8, 128.5, 128.3, 128.1, 126.0, 125.0, 118.3, 43.9, 32.2, 27.9, 27.5, 27.2, 26.7, 24.3. MS (EI): m/z (%) = 384 (100) [M⁺], 327 (40). Compound 4n: mp 117-119 °C. IR (KBr): 1590, 1550, 1510 cm^{-1} . ¹H NMR (CDCl₃): $\delta = 8.13-8.06$ (m, 2 H), 7.78 (d, J = 15.9 Hz, 1 H), 7.74 (s, 1 H), 7.70–7.56 (m, 3 H), 7.51– 7.26 (m, 4 H), 7.30 (d, J = 15.9 Hz, 1 H), 6.81 (t, J = 2.6 Hz, 1 H), 3.05–2.92 (m, 1 H), 2.65–2.30 (m, 2 H), 2.20–2.00 (m, 2 H), 1.50–1.35 (m, 2 H), 0.94 (s, 9 H). ¹³C NMR (CDCl₃): $\delta = 158.9, 148.4, 142.7, 137.8, 136.9, 134.5, 130.4, 130.2,$ 129.1, 128.9, 128.6, 127.1, 125.7, 125.4, 123.9, 123.2, 114.2, 44.0, 32.3, 27.9, 27.7, 27.3, 23.3. MS (EI): *m/z* $(\%) = 368 (50) [M^+], 353 (15), 311 (100).$

- (25) (a) Darses, S.; Genêt, J. P. *Eur. J. Org. Chem.* 2003, 4313.
 (b) Molander, G. A.; Figueroa, R. *Aldrichimica Acta* 2005, 38, 49.
- (26) (a) Ueda, M.; Miyaura, N. J. Org. Chem. 2000, 65, 4450.
 (b) Pucheault, M.; Darses, S.; Genêt, J. P. J. Am. Chem. Soc. 2004, 126, 15356.
- (27) (a) Matsuda, T.; Makino, M.; Murakami, M. Org. Lett. 2004,
 6, 1257. (b) Takezawa, A.; Yamaguchi, K.; Toshimichi, O.;
 Yamamoto, Y. Synlett 2002, 1733.