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A Biomimetic Route to the Peptide Alkaloid
Anachelin**

Karl Gademann* and Yann Bethuel

The acquisition and storage of iron is a central challenge for
virtually all life forms due to its low bioavailability. Although
cyanobacteria are one of the most successful life forms on
earth, the molecular mechanism of iron acquisition by
cyanobacteria remains largely unknown. Recently, the first
complex secondary metabolites were isolated from Anabaena
cylindrica These compounds were postulated to have
biological activity as ligands for Fe (siderophores). While
Budzikiewicz et al. isolated mixtures of anachelin H (1) and
anachelin-1 (2),!) Murakami et al. described the isolation and
determination of the constitution of 2 and anachelin-2 (3).”!
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These compounds are composed of a fascinating blend of
alkaloid, peptide, and polyketide building blocks. In partic-
ular, they contain structurally interesting fragments such as
the rare tetrahydroquinolinium ring, which contains a qua-
ternary N atom, as well as a polyhydroxylated e-amino acid.”!
The biological activity and the mode of action of compounds
1-3 as siderophores are not yet established. In addition, the
absolute and relative configuration of the four stereogenic
centers was not determined. Since these questions can be
addressed by total synthesis, we chose anachelin H as the
subject for our synthetic studies.!

We propose the following hypothetical transformations
for the biogenesis of the unique tetrahydroquinolinium
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peptide A containing a C-terminal tyrosine residue could
serve as precursor. Oxidation to dihydroxyphenylalanine,
subsequent reductive amination, and methylation would

N HO N
mN‘peptide—’ ]@/\L “peptide
—_— _CH
HO 0” “OH HO N
A B Cfh
[O]
H H
o No o
Hom“‘ N~ peptide D/\L peptide
+ -~ .CH
HO N, o N
HsC CHs, CHs
D Cc

Scheme 1. A biogenetic hypothesis for the formation of the anachelin
chromophore D. The key intermediate B could be formed from the
tyrosine peptide A. Subsequent oxidation to the ortho-quinone C and
spontaneous intramolecular aza annulation would result in formation
of the chromophore D.

result in the dopamine derivative B. This key precursor
could then be transformed by enzymatic oxidation into the
ortho-quinone C, which would react by spontaneous aza
annulation to generate the anachelin chromophore D.!

In order to evaluate this biogenetic hypothesis in the
chemical laboratory, we chose the transformation B—D as
the key step of our biomimetic strategy.®! The starting
material L-DOPA (4) was Boc-protected using standard
reagents (Scheme 2). Activation via the mixed anhydride
and subsequent transformation with dimethylamine in THF
gave Boc-L-DOPA-dimethylamide (5) as a crystalline solid.”
A three-step sequencel® (deprotection using trifluoroacetic
acid, borane reduction, and Boc protection) resulted in the
air-sensitive Boc-protected diamine 6, the low yield of which
is attributed to problems in the isolation and purification. The
key intermediate 7 analogous to B in Scheme 1 was obtained
after Boc removal and coupling with a serine derivative in
good yield. After testing different oxidants, we found that the
oxidative aza annulation of 7 using dianisyltellurium oxide!”!
gave the desired cyclization product in 80 % yield. Again, this
compound is not stable on silica gel. Thus the hydroxy groups
were protected as benzyl ethers, and the resulting quaternary
ammonium salt 8 was isolated after flash chromatography.
Cleavage of the N-terminal protecting group and coupling
with the protected dipeptide derivative Boc-Thr-Ser-OH,
which is readily available in four steps,”” gave, after removal
of the Boc group of 9, fragment 10.

The unknown relative and absolute configuration of the e-
amino acid forced us to choose a flexible strategy for the
construction of the aldol skeleton. Through biomimetic C,-
homologation by means of a crossed Claisen condensation
and subsequent reduction of the [3-keto ester, we can prepare
all the possible isomers in good yields and few steps. Our
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Scheme 2. a) 1. Boc,0, dioxane, ag. NaOH, 2. iBuOCOCI, THF,

3. HN(CHs3),, 61%; b) TFA, CH,Cl,; ) BH; THF; d) Boc,O, dioxane,
aq. NaOH, (16% over three steps starting from 5); €) TFA, CH,Cl,,
quant.; f) Boc-L-Ser(OBn)-OH, EDC, HOBt, 58 %; g) dianisyltellurium
oxide, CH,Cl,, 80%,; h) BnBr, Cs,CO;, acetone, 85%; i) TFA, CH,Cl,,
quant.; j) Boc-L-Thr(OBn)-p-Ser(OBn)-OH, EDC, HOBt, 73 %; k) TFA,
CH,Cl,, quant. Abbreviations: Boc= butoxycarbonyl, DOPA =3,4-dihy-
droxyphenylalanine, EDC = N-ethyl-N'-(dimethylaminopropyl)carbodi-
imide hydrochloride, HOBt = 1-hydroxybenztriazole, TFA=CF,CO,H.

synthesis started with the protected serine derivative 11,
which, after activation to the imidazolide, was allowed to
react using the procedure of Masamune et al. with mono-
methylpotassium malonate in the presence of MgClL!"
(Scheme 3). The resulting B-keto ester 12 was deliberately
reduced with low selectivity using NaBH, in order to produce
both isomers.'! The secondary hydroxy group in 13 was
protected (—14) and the methyl ester saponified. This
reaction called for careful optimization of the reaction
conditions, as major amounts of the corresponding y-lactam
were isolated as a side product. The carboxylic acid 15 was
again homologated to 16 using a Claisen condensation, and
the silyl group was cleaved. A stereoselective 1,3-anti
reduction of the hydroxyketoester following the Evans
protocol!™ and subsequent TBS protection gave 18 in 75%
yield. Hydrogenolytic cleavage of the benzyl protecting
groups, coupling to the salicylic acid derivative, and TBS
protection resulted in 19 (70% yield over three steps); the
methyl ester was easily hydrolyzed at this time to give 20.

Fragments 10 and 20 were then coupled using EDC to the
protected anachelin H derivative 21 (Scheme 4) The benzyl
groups were cleaved hydrogenolytically in acidic medium
(MeOH, AcOH). Since the use of TBAF resulted only in
partial deprotection of the TBS-protected secondary hydroxy
groups, the reagent of choice proved to be 1 % HClin MeOH,
and the completely deprotected peptide alkaloid 22 was
isolated.
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Scheme 3. a) 1. CDI, THF, 2. KO,CCH,CO,Me, MgCl,, 71%; b) NaBH,,
MeOH, Et,0, —60°C, 90%, then separation of the diastereoisomers,
48%; c) TBSOTH, 2,6-lutidine, CH,Cl,, 78%; d) NaOH, MeOH, THF,
54%; €) 1. CDI, THF, 2. KO,CCH,CO,Me, MgCl,; f) TBAF (1m in
THF), 60% (over two steps starting from 15); g) Me,NB(OAc);H
AcOH, CH;CN (d.r.>95:5); h) TBSOTY, 2,6-lutidine, CH,Cl,, 75%
(over two steps from 17); i) Pd/C, H,, MeOH; j) EDC, HOBt, 2-BnO-
salicylic acid, CHCl;; k) TBSCI, imidazole, DMAP, DMF, 70% (over
three steps from 18); I) NaOH, MeOH, THF, quant. Abbreviations:
CDI = carbonyldiimidazole, DMAP = 4-N,N-dimethylaminopyridine,
PG = protecting group, TBAF =tetrabutylammonium fluoride,

TBS =tert-butyldimethylsilyl, Tf=triflate.
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Scheme 4. a) EDC, HOBt, CHCl;, 63 %,; b) Pd/C, H,, MeOH, AcOH;
) 1% conc. aq. HCl in MeOH (45 % over two steps).
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Both the exact mass of compound 22 as well as the
fragmentation pattern in the mass spectrum are identical to
those of an authentic sample of anachelin H (1);I"*! however,
the '"H NMR spectra of 1 and 22 display minor differences.
This indicates that compound 22 could be a diastereoisomer
of anachelin H (1). The synthetic route shown here allows for
the preparation of all possible fifteen diastereoisomers of 22
and thus should lead the determination of the absolute and
relative configuration of anachelin H (1).

In addition, our synthesis described herein delivers
intermediates that serve in the further evaluation of our
biogenetic hypothesis. For example, the postulated cascade
B—D in Scheme 1 can be corroborated by biochemical
experiments. While one can assume that in this transforma-
tion C spontaneously reacts to give D, we postulate that an
enzyme in the class of catechol oxidases catalyzes the
oxidation of B to C. Therefore, we decided to test this
hypothesis using an intermediate of our synthesis. We chose
diamine 6 as model substrate, which was transformed in
18 mm phosphate buffer at pH 6.8 with commercially avail-
able tyrosinase (catechol oxidase, EC 1.14.18.1) isolated from
mushrooms (Scheme 5). Interestingly, the formation of the
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Scheme 5. Catalytic oxidation of diamine 6 with O, and catechol
oxidase.

cyclization product 23 could be observed by UV spectroscopy
at 305 nm!" This biochemical experiment corroborates our
postulated biogenesis and indeed suggests that a catechol
oxidase is likely involved in the biosynthesis of the anachelin
chromophore.

We present in this communication a biomimetic strategy
for the preparation of the peptide alkaloid anachelin featur-
ing a Te-mediated oxidative aza annulation as well as Claisen
condensations under mild conditions as key steps. This route
also delivers substrates, by which our biogenetic hypothesis
can be corroborated. For example, we were able to show that
the enzyme tyrosinase catalyses the cyclization of a key model
substrate of the biogenetic hypothesis. This experiment
suggests that a catechol oxidase could be involved in the
biosynthesis of anachelin. Additional experiments concerning
the biosynthesis, the configuration of anachelin, and the
mechanism of iron acquisition of A. cylindrica are being
pursued in our laboratory and will be reported in due course.
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