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Abstract: : Starting with R-(-)-phenylglycinol, the synthesis of a new bicyclic hydrazinolactam 3 was 
realized on a multigram scale. The reaction scope of the corresponding enolate with various electrophiles 
has been studied. Good to excellent diastereoselectivities were obtained. © 1998 Published by Elsevier Science Ltd. 
All rights reserved. 

The last ten years have shown an increased interest in the chemistry and in the biological properties of 

cyclic hydrazine derivatives. 1 Structures like piperazic acid 1 are present in a large number of pharmacologically 

active molecules that include potent antitumour antibiotics in the matlystatin or luzopeptin series 2 or synthetic 

products with therapeutic applications, like Cilazapril. 3 

In this area, a con'ectly functionalized hydrazinolactam core can provide useful new conformationally 

constrained peptidomimetics. 4 Synthetic strategies for such a pattern must therefore be versatile enough to allow 

the introduction of various substituents. 

1 2 3 

Previous studies in our laboratory toward the asymmetric synthesis of lactam derivatives have provided 

excellent diastereoselectivities in the alkylation of the homochiral synthon 2 via bicyclic chelated enolate 

intermediates. 5 

Our ongoing interest in natural and non-natural biologically active compounds prompted us to investigate 

the new chiral hydrazino-lactam synthon 3 derived from (R)-(-)-phenylglycinol. We therefore wish to report a 

short and efficient route to this novel enantiopure bicyclic hydrazinolactam and the diastereoselective formation 

of various 7-substituted derivatives. 

Our route to 3 is outlined in Scheme 1. The strategy for the construction of such a bicyclic hydrazine 

involved the regioselective substitution of chiral diazacarbamate 8 with an halocarbonyl compound. This 

enantiopure precursor could be obtained in four steps from N-benzyl (R)-(-)-phenylglycinol 4 on a multigram 

scale. 6 
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(-)4 5 R = N O  7 8 (-)3 
6 R = NH2 

Scheme 1. Reagents and conditions : a) NaNO2, H20/HCI, 70°C, 92%; b) LiAIH4, Et20, -78 °C to -10 °C, 84% ; c) 1m2CO, 

CH2C12, r.t., 74%; d) H2, Pal(OH)2, 10 bars, MeOH, 97%; e) Br(CH2)3COCI, K2CO 3, CH3CN, r.t., 81%. 

The reduction of the nitroso-derivative 5 was not straightforward and required a low temperature (-78 °C 

to -10 °C) in order to obtain hydrazine 6 in good yield. Subsequent treatment with carbonyl diimidazole 

afforded the cyclic diazacarbamate 7. Pure 8 was then obtained by N-debenzylation, the use of Pd(OH)2 as a 

catalyst under pressure of hydrogen proved to be the best conditions for this transformation. Trituration of the 

crude reaction mixture led to white crystals in 55% overall yield from 4. Finally, diazacompound 8 was 

condensed with bromobutyryl chloride under classical basic conditions to give the bicyclic derivative (-) 3. 7 

We then turned our attention toward the functionalization of the C-7 position via classical enolate 

chemistry, in the expectation that steric factors would induce good diastereoselectivity. As observed in another 

related series, 8 the use of strong bases like LDA led to benzylic deprotonation and subsequent p-elimination. 

After optimization, hexamethylsilylamides appeared to be more convenient for the generation of the enolate, 

leading to less than 10% of this undesirable elimination. We then investigated the reactivity of such an anion 

with several electrophiles under various conditions (Table). 

E + Compound Yield a % d.c. b % 

o°. ' ° .  

CH31 9 67 77 c 
O eq. O ~ , , , N , ~  , , , , , ' ~O  CH2=CHCH2Br 10 56 0 

E +, THF,-78 °C " - E ~ , , " ~  s PhCH2Br 11 63 95 

BrCH2CO2tBu 12 50 >95 
(-) 3 (-) 9-13 

DBAD 13 68 >95 
a) Isolated yield. 
b) Determined by H 1 NMR of the crude reaction mixture 
c) LiCI (3 eq.) was usexl instead of DMPU. 

Table - Enolate Alkylation of (-) 3, Survey of Electrophiles 

In a typical procedure, deprotonation of 3 with 1.1 eq. of LiHMDS and subsequent reaction with 

halogenated derivatives in the pt~esence of DMPU (3 eq.) afforded alkylation products 9-12 in good yields with 

up to 95% diastereoselectivity (Table) 9. In the case of methyl iodide, better results were obtained using LiC1 (3 

eq.) as an additive (compound 9 : yield, 67% ; d.c., 77%). For allyl bromide, no diastereoselectivity was 
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observed, probably due to an SN2' mechanism. Reaction with di-ter-butylazodicarboxylate 10 as an electrophile 

gave the hydrazino derivative 13 with good yield and excellent diastereoselectivity. For all the major 

diastereomers 9, 11-13, I H-NMR spectra proved to be almost identical for the H-3, H-4, H-8 and H-9 signals. 

The absolute configuration of the newly created asymmetric center was determined by crystal structure 

X-ray analysis of the methyl derivative (-) 9 (Figure). I I It appeared thai this original heterocyclic system adopts 

an essentially planar conformation with the bulky phenyl group in a quasi-axial position and the methyl 

substituent in a pseudo-equatorial orientation. 

X-ray analysis of compound 9 

Figure 
Origin of diastereoselectivity 

Alkylation is apparently prefen'ed syn to the most hindered side of the enolate intermediate. This 

unexpected diastereoselectivity is probably the result of a partial pyramidalization of the bridghead amide N- 

atom, converting the original planar bicycle 3 into a strongly folded one (Figure). In such a model, the phenyl 

group is partially pushed out of the plane, leading to a molecule with a more congested upper side. The 

electrophile will then approach from the other, less hindered side. 

In conclusion, we have developped an efficient asymmetric synthesis of a new diazabieyclic system 

incorporating two different carbonyl functions. We have shown that in most cases, alkylation occurred with a 

remarkable diastereoselectivity. A large variety of functionalizations can be efficiently conceived with this new 

type of diazacompounds. We ate currently exploring applications to the preparation of biologically active 

derivatives. 
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