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Abstract : The photocyclization of enaminoester 5a gave indoline 8 which was used in the 

synthesis of tricyclic Spiro compound 4a. 

In previous work, we have described the synthesis of Aspidosperma alkaloids, such as 19-0x0- 

aspidospermidine la,’ through an [ABC] --f [ABCE] 4 [ABCED] sequential ring construction based on the 

photochemical conversion of arylcnaminones into hexahydrocarbazol-4-ones.2 The success of this 

methodology led us to consider an alternative route in which the tetracyclic spiro compounds 2,ja that 

constitute the key intermediates of pentacyclic alkaloids 1, are accessible by an intramolecular Mannich 

cyclization of a suitable acyliminium acetal3 (X = 0) related to our general procedure (Scheme 1).3h A very 

close strategy, using allylsilanes, has been recently reported in the context of the preparation of the 

Aspidosperma framework.4 
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In the present work we report the synthesis of spiroindoline 4a with the natural relative 

stereochemistry, i.6, cis ,s essential for the synthetic usefullness of our approach to prepare natural 

compounds. The synthesis of 4a was envisaged through photocyclization of enaminoesters 5, whose 

preparation was first assayed by direct condensation6 of the suitable aniline with 1,3_dimethylacetone 

dicarboxylate. 

Nevertheless, while 5b (Z/E mixture) was obtained in high yield, this procedure only furnished 5a7 in 

very poor yield, leading mainly to amide 6.8 On the other hand, the alkylation of 5b led exclusively to a 

complex mixture where no desired N-alkylated 5a was found. Alternatively, 5a9 was c,btained as a single 

isomer by condensationlO of N-benzylaniline with dimethyl 2,3-pentanedienedioate 711 in 85% yield. 

Irradiation of 5b turned out to be unsuccessful1 leading only to the corresponding Z isomer.12 

However, photocyclization of 5a led to indoline 8’3 as a Y : 1 mixture of cis : tram diastereomers in excellent 

yield.14 Alkylation of the crude mixture with iodoacetonitrile furnished the expected 3,3_disubstituted 

compound 915 together with N-benzyl-3-methyl indole carboxylate 10,te the latter resulting from a retro- 

Michael reaction. Structure and relative configuration5 of 9 were inferred from 1H and f3C NMR analyses and 

ROE experiments.17 Finally, treatment of 9 with basic hydrogen peroxide 18 furnished tbe target compound 

419 in 20% yield ( 80 % on transformed product) (Scheme 2). 

5a: A=CHPPh 
5b : R=H 

iii 
5a - 

I 4a 

Reagents and conditions : i) APTS, C6H6, A, Dean-Stark, 12h ; ii) MeOH, r.t., 8h, 85% ; iii) hv (Pyrex, 

4OOW), CeHe : MeOH (1 : l), 45min., 95%; iv) LDA, 1.1 eq., -60°C then ICHzCN, r.t., 58% ; v) H202/ 

OH- / BqN+HS04-, CH2C12, r,t, 24h, 20%. 

Scheme 2 

Further applications of this methodology to the total synthesis of dihydroindole alkaloids are in progress. 
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4a : foam ; IR (CC14) vmax 3420,1770,1740, 1602 cm-l ; tH NMR (CDC13,300 MHz) 6 2.90 

(dd, J = 3.7 and 16.5 Hz, lH, CUCOOCH3) ; 3.12 (d, J = 18 Hz, lH, CHCONH) ; 3.20 (dd, J = 

10.5 and 16.5 Hz, lH, CHCOOCH3) ; 3.22 (d, J = 1X Hz, lH, CHCONH) ; 3.63 (s, 3H, OCH3) ; 

4.09 (dd, J = 3.7 and 10.5 Hz, IH, H-C2) ; 4.28 (d, J = 16.5 Hz, IH, N-CHPbl) ; 4.45 (d, J = 16.5 

Hz, lH, N-CuPh) ; 6.50 (d, J = SH7., IH) ; 6.75 (t, J = 8Hz, 1H) ; 7.02 (d, J = X Hz, 1H) ; 7.15 (t, 
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151.1, 172.1, 175.3, 177.1. 

(Received in France 4 July 199 1) 


