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Nucleophilic Fluorination Facilitated by a CsF-CaF2 Packed Bed 

Reactor in Continuous Flow. 

M. B. Johansen
a
 and A. T. Lindhardt

a
 

A simple to prepare, dry and handle packed bed reactor carrying 

CsF on CaF2, towards nucleophilc fluorinations in continuous flow, 

is reported. The reactor also proved adaptable for silyl-ether 

deprotection and trifluoromethylations with Ruppert’s reagent. 

The study includes reactor stability and scale-up investigations. 

The substitution of hydrogen with fluorine during the design of 

pharmaceuticals and agrochemicals, has become a well-

established method, towards alteration of a compounds 

metabolic stability and bioavailability.
1
 Given the success of 

fluorinated structures several methods for fluorine 

introduction have been developed. These methods are divided 

into four categories, named accordingly to the character of the 

fluorine being installed; being radical, electrophilic, 

nucleophilic, and metal mediated.
2
 Nucleophilic fluorination 

often occurs through SN2-type displacement of leaving groups, 

at sp
3
-hybridized carbon centres. Similar leaving groups, bound 

directly to an electron deficient aromatic core (sp
2
-carbon) can 

also be displaced through SNAr reactions.
3
 Despite their simple 

appearance, nucleophilic fluorinations are hampered by the 

low solubility of metal fluorides, such as CsF, and the need for 

perfectly dry reaction conditions. These drawbacks are 

normally addressed by superstoichiometric amounts of metal 

fluoride, addition of phase transfer catalysts, elevated 

temperatures and long reaction times. Drying, handling and 

storage of anhydrous metal fluorides is problematic and 

requires the use of a glovebox.
4
 Furthermore, drying of the 

soluble fluoride source tetrabutylammonium fluoride (TBAF), is 

hampered by the Hofmann elimination, leading to its 

decomposition. This was circumvented by the group of 

DiMagno who reported on the in situ formation of anhydrous 

TBAF by reacting hexafluorobenzene with 

tetrabutylammonium cyanide.
5
 Later, the groups of Melanie 

Sanford and Yossi Zafrani have reported on soluble quaternary 

ammonium fluorides that tolerates drying.
6
 In 2011, Noël et. 

al. reported on the palladium catalysed fluorination of aryl 

triflates in continuous flow, using pre-dried CsF packed in a 

bed reactor.
7
 To obtain high reactivity and to avoid obstruction 

of flow, Noël used CsF particles obtained by two-fold sieving of 

CsF-powder through different mesh-nets inside a glovebox.  

During our research into fluorination reactions, and inspired by 

the work of Noël et. al., we became interested in the potential 

benefits of adapting nucleophilic fluorinations into a 

continuous flow setup.
8
 Besides acting as a static mixer and 

heat exchanger, a packed bed reactor (PBR) will enhance the 

mass transport of otherwise insoluble fluoride anions by its 

inherent large surface-to-volume ratio of loaded reagents. 

Importantly, a PBR loaded with a metal-fluoride will push any 

halide exchange equilibriums in favour of the fluorinated 

product (See Figure 1).
9
 This effect arises as the reactor 

simulates a setup in which expelled CsCl is removed 

continuously from the reaction while being replenished with  

 

 
Figure 1. Nucleophilic Fluorination using CsF and the CsF-CaF2 

Packed Bed Reactor. 

PBR - Before 

PBR - After 
CsCl    CaF2    = 

CaF2 Particles coated  

with CsF or CsCl 

CsF-CaF2

Packed Bed Reactor

(N)

R

Cl
(N)

R

F
Phase Transfer Catalyst

Pump

Classical Nucleophilic Flourination with CsF

CsF TBACl CsCl TBAF

TBAF
(N)

R

Cl (N)

R

F

TBACl

This Manuscript

CsF    CaF2    = 

Page 1 of 4 ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
2 

Ja
nu

ar
y 

20
18

. D
ow

nl
oa

de
d 

by
 G

R
A

N
D

 V
A

L
L

E
Y

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/0
1/

20
18

 1
4:

25
:3

4.
 

View Article Online
DOI: 10.1039/C7CC09035H

http://dx.doi.org/10.1039/c7cc09035h


COMMUNICATION Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

fresh CsF, as the reaction mixture moves through the column 

(Figure 1).
10

 Finally, as the encaged metal-fluoride is sealed 

from its surroundings, extractive in-line drying, by flushing of 

the PBR with superheated solvents, will remove any CsF-bound 

water, thereby setting the stage for nucleophilic fluorinations. 

In this manuscript we wish to report on the development of an 

efficient CsF-CaF2 packed bed reactor towards nucleophilic 

fluorinations. The reactor material was obtained by 

evaporation of dissolved CsF onto correctly sized CaF2 

particles. Efficient in-line drying was achieved by passing 

superheated acetonitrile or toluene through the reactor bed. 

This “simple to handle and dry” flow setup provided reactive 

CsF applied in nucleophilic halo-substitution reactions of both 

benzylic bromides and chloro-(hetero)aromatic derivatives. 

Reactor stability and accessibility tests proved that a total 

loading of only 2 equivalents of CsF was sufficient in these 

transformations. Finally, the continuous flow setup also 

proved reactive in fluoride-mediated removal of silyl-based 

protection groups and trifluoromethylations of aldehydes and 

ketones with excellent isolated yields and residence times 

down to 2 minutes.  

Initial experiments using a packed bed reactor loaded with 

commercial available CsF (directly from the bottle, ball-milled 

or grinded in a mortar) failed. This failure can be ascribed to 

the presence of small CsF particles that leads to high pressure 

drops and clogging of the PBR. In order to circumvent sorting 

of hygroscopic metal fluoride particles, focus was instead 

turned towards the identification of a solid support upon 

which CsF could be loaded. Silica gel and alumina oxide failed 

as solid supports, due to the Lewis basic nature of fluoride 

(Figure 2).
11

 Next, the reactor was loaded with fluoride ion 

exchanged Amberlyst IRA-900 polymer beads. This amberlyst 

system provided a reactor with apparent good conversion into 

the desired nucleophilic substituted 2-fluoropyridine. 

However, the mass balance was poor with the majority of 

injected material being retained inside the polymeric matrix. 

After significant experimentation, attention was finally turned 

towards fluorospar (CaF2) as a solid support. Early reports by 

the group of Clark, indicated that KF or CsF loaded onto CaF2 

did not impede the fluoride nucleophilicity in batch 

reactions.
12

 Commercially available CaF2 with 98% of all 

particles ranging in size from 0.1 μm – 60 μm was chosen for 

further testing.
13

 The support was prepared by addition of 

 

  
Figure 2. Failed Solid Supports for CsF-Loaded Reactor. 

CaF2 to the metal fluoride dissolved in MeOH followed by slow 

evaporation of the solvent (see electronic supplementary 

information (ESI) for details). Gentle grinding of the material 

provided a MF-CaF2 support that, when loaded into the PBR, 

did not lead to the obstruction of flow or resulted in large 

pressure drops. Prior to the first application of each MF-CaF2 

packed bed reactor simple in-line drying was preformed by 

passing acetonitrile or toluene through the column at 180 °C 

until no more water was expelled (Table 1 A, see ESI for 

details). The initial experiments were centred on the 

nucleophilic fluorination of benzyl bromides and chlorides in 

continuous flow (Table 1). CsF-CaF2 proved more reactive than 

its corresponding KF-CaF2, and hence, CsF was chosen as the 

fluoride source (see ESI for reactions with KF-CaF2). 

The benzyl halide (0.5 M) and tetrabutylammonium chloride 

(TBACl – 40 mol %) were dissolved in MeCN and passed 

through the PBR with a residence time of 25 minutes at 110 °C 

(See ESI for reactor setup). This setup afforded the desired 

benzyl fluorides in isolated yields ranging  

 

Table 1. In-Line Drying and Nucleophilic Fluorinations
a 

 

a
See ESI for specific reaction details for each entry. 

b
 The corresponding benzyl 

chloride was used instead. 

from 65 – 74% (Table 1 – B, Compounds 1 – 4).
14,15
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elimination products, when subjected to the flow-setup.
16

 In 

order to test the fluoride accessibility of the CsF-CaF2 material 

a scale-out experiment was performed with 1-bromomethyl-4-

tertbutylbenzene (5) (Table 1 – C). 5 (0.5 M) was pumped 

through the PBR, under identical conditions as above, and 

samples were collected in 20-minute intervals. The 
1
H-NMR 

yield of 2 was determined for all samples using dimethyl 

terephthalate as internal standard. The yield of 2 slowly 

decreased from 80 % – 66 % over the first 240 minutes after 

which it quickly deteriorated. The combined yield of the first 

240 minutes corresponds to the formation of 11.4 mmol of 2. 

21 mmol of CsF loaded onto CaF2 was packed on the reactor, 

corresponding to more than 50 % of loaded CsF being 

accessible, or a loading of only 2 equivalents of CsF!
17

 

Next, attention was turned towards the nucleophilic 

substitution of chlorinated heteroaromatics, the results of 

which are depicted in Table 2. 2-Chloropyridine carrying either 

a 5-neopentyl amide or a 5-cyano as substituent afforded the 

fluorinated compounds 6 and 9 in 68% and 59% isolated yields, 

respectively. 4,7-Dichloroquinoline afforded mono 4-

fluorinated 7 in 58% isolated yield and 64% of 8 was secured 

after column chromatography. Next, two pyrimidine analogues 

were tested affording the desired products in 66% and 65% 

isolated yields (compunds 10 and 11, respectively). Finally, 

nucleophilic displacement of chloride on isopropyl 2-chloro-5-

nitrobnzoate afforded 12 in a good 75% isolated yield. Full 

conversion was obtained for all entries in Table 2, and besides 

the fluorinated products, side-products resulting from 

heteroaromatic dimerization or hydrolysis were identified. 

Having established the nucleophilicity of the in-line dried CsF-

CaF2 support, it was next decided to investigate its utility in 

fluoride-mediated reactions. Three alcohols, the ethyl ester of 

lithocholic acid, vaniline and the Morita-Baylis-Hillman alcohol, 

prepared from 4-chlorobenzaldehyde with methyl acrylate, 

 

Table 2. Nucleophilic Aromatic Fluorinations in Flow. 

 

  
a
See ESI for specific reaction details for each entry. 

 

Table 3. CsF-CaF2 Mediated Deprotection of Silyl Ethers
a 

  

a
The silylether (0.1 M) and trifluoroethanol (0.5 M) in DMF:toluene (7:1) at 120 °C 

with rT = 5 min. 
b
 TES-protected vaniline (0.5 M) with trifluoroethanol (2.5 M). 

c
 

Trifluoroethanol (0.12 M) at room temp. with rT = 20 min.  

where all protected as their corresponding TES, TIPS, and TBS 

silyl ethers (See Table 3). Full conversion to the alcohols were 

obtained by passing the silylethers dissolved DMF:toluene 

(7:1) through the CsF-CaF2 PBR at 120 °C with a residence time 

of 5 minutes.
18,19

 Trifluoroethanol functioned as the proton 

source for the deprotection. TIPS removal from 13 afforded 

alcohol in a near quantitative 94% isolated yield. The TES-

ether, and the more stable TBS ether, was cleaved from 

vaniline in isolated yields of 93% and 90%, respectively. 

Increasing the concentration to 0.5 M of 14 did not affect the 

reaction and afforded the free alcohol in an identical 93% 

isolated yield. Finally, TBS-ether removal from 15 at room 

temperature with a residence time of 20 minutes afforded the 

free alcohol in a good 86% isolated yield. 

As the last part of this study the trifluoromethylation of 

aldehydes and ketones using Ruppert’s reagent was 

investigated.
16a,20

 With a residence time of only 5 minutes, at 

room temperature, full trifluoromethylation was accomplished 

using the CsF-CaF2 reactor (See Table 4). The crude reactions 

were obtained as a mixture of the alcohol and the 

corresponding TMS-protected ethers, the latter that was 

cleaved during acidic workup. Four aldehydes were tested, 

carrying both electron donating and electron withdrawing 

groups, and afforded isolated yields ranging from 70% – 83% 

(compounds 16, 17, 19 and 20). One heteroaromatic aldehyde 

was tested, 1-methyl-1H-pyrrole-2-carbaldehyde, and afforded 

18 in 84% isolated yield. 4-Cyanoacetophenone (22) proved 

highly reactive, affording 21 in an excellent 94 % isolated yield. 

Finally, compound 22 was selected for a scale-out experiment. 

Additional optimization revealed that the residence time 

needed to convert 22 to 21 was less than 60 seconds, even at 

an increased concentration of 0.75 M for 22. However, the 

reaction exotherm caused the PBR to overheat. This heat was 

dissipated by cooling the CSF-CaF2 PBR in a water bath at room 

temperature combined with an increase in rT to 120 seconds. 

This setup afforded a stable system and the scale-out reaction 

was run for 42 minutes resulting in the isolation of 34 mmol of 

21 (7.4 grams). Interestingly, catalytic behaviour of fluoride 

was observed as 34 mmol of 21 was secured with only 21 

mmol of CsF loaded onto the onto the packed bed reactor. 

MeCN or 
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Table 4. CsF-CaF2 Mediated Trifluoromethylations.
a
  

  

a
See ESI for specific reaction details for each entry. 

In conclusion, a simple to prepare, store and handle 

continuous flow packed bed reactor carrying cesium fluoride 

loaded onto a calcium fluoride support has been developed. 

Efficient in-line water removal from the CsF-CaF2 support was 

accomplished by passing superheated solvents through the 

reactor, thereby avoiding the need for glovebox handling of 

hygroscopic metal fluoride salts. As the reaction mixture is 

continuously passed on to sections with higher fluoride 

concentrations any unfavourable halide exchange equilibriums 

are eliminated. The reactor was applied in nucleophilic fluoride 

substitution reactions of benzylic bromides and the more 

challenging nucleophilic aromatic substitution of 

chloro(hetero)aromates. Fluoride accessibility was determined 

by a scale-out experiment and only a loading of 2 equivalents 

of CsF is required. The CsF-CaF2 packed bed reactor also 

proved highly adaptable towards classical deprotection of silyl 

ethers with residence times down to 5 minutes. Finally, CsF-

CaF2 mediated trifluoromethylation of aldehydes and ketones 

were performed with excellent isolated yields. Scale-out of the 

trifluoromethylation of 4-cyanoacetophenone, with a 

residence time of 2 minutes at room temperature, afforded 

more than 7 grams of the desired product in only 42 minutes.  
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