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1. Introduction

Spirocycles are important natural products,1 chiral ligands,2 
drug scaffolds,3 and optoelectronics.4  Spirolactones are an 
important class of spiro compounds (Figure 1).  Drospirenone 
(1), is a synthetic spirolactone analog of progesterone and is used 
as an oral contraceptive (marketed as Yasmin in the US).5  
Drospirenone contains a tertiary carbon spiro center which is 
prevalent in many other biologically interesting or naturally 
occurring spirolactones.6  All carbon spiro centers as seen in 
spirosesquiterpenes 2 and 3 are much less common.7-8 We predict 
that a straightforward enantioselective synthesis of these types of 
scaffolds would lead to their increased use and study as a new 
core structure for development.9
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Figure 1. Spirocyclic lactones.

We have recently developed a novel asymmetric cyclization 
strategy for the formation of chiral lactones with all carbon 
quaternary stereocenters in up to 98% ee and 96% yield (Scheme 
1).10-11  This desymmetrization method utilized a chiral 
phosphoric acid catalyzed intramolecular lactonization.  DFT 

calculations of the analogous kinetic resolution indicate that the 
reaction proceeds via a step-wise mechanism promoted by dual 
activation of both the carbonyl via the Brønsted acidic proton and 
the hydroxyl group via the Lewis acidic oxygen of the chiral 
phosphoric acid.12  

Herein we disclose the synthesis of novel spirocyclic scaffolds 
via an analogous protocol.  We envisioned that the 
desymmetrization of diesters such as 4 with two alkyl chains that 
contain nucleophiles would proceed to yield an enantioenriched 
lactone that could undergo a second cyclization with a general 
acid (Scheme 1).  Formation of the -lactone during the initial 
enantioselective cyclization is proposed due to previous 
indications of higher enantioselectivities and shorter reaction 
times for the cyclization of 5-membered ring lactones.11
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Scheme 1. All carbon spirocycle strategy.
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A straightforward method for the asymmetric preparation of novel lactone and lactam 
spirocycles is described.  An initial desymmetrization via a chiral Brønsted acid yields 
enantioenriched lactones which readily undergo a second cyclization to give the desired 
spirocycle.  

2009 Elsevier Ltd. All rights reserved.
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2. Results

A series of basic spirocyclic scaffolds were prepared using the 
general strategy outlined above (Table 1).  Remarkably, other 
than compound 6a,13 the prepared spirocycles are novel even in 
their racemic form.  Initially, diesters 4 were prepared via two 
alkylations from di-tert-butyl malonate.  Deprotection of 
protecting group #1 (PG1) yielded the free alcohol which, when 
cyclized with TRIP gave the enantioenriched -lactones 5 in 
modest to good yields and enantiopurities.  Deprotection of 
protecting group #2 (PG2) followed by cyclization with either 
trifluoroacetic acid or para-toluene sulfonic acid yielded the 
desired spirocycles 6.14  In general, a moderate drop in ee was 
seen during this second cyclization, likely due to some 
scrambling of the stereocenter in the second cyclization (see 
further discussion below).  Spirocycle 6a was obtained in 
racemic form, even after a nearly enantiopure first cyclization.  
This likely is due to the fast cyclization of 5a under deprotection 
conditions.  Spirocycle 6d was prepared via cyclization of 
precursor 5d with trifluoroacetic acid (para-toluene sulfonic acid 
is not effective at inducing cyclization).  Careful monitoring of 
the reaction indicates that this cyclization goes through a 
carboxylic acid intermediate.  Recrystallization of spirocycles 
leads to an increase in optical purity as seen in spirocycle 6d 
which goes from 6085% ee in one recrystallization.  
Lactone/lactam spirocycle 6e was formed via a CDI (1,1′-
Carbonyldiimidazole) coupling reaction of the carboxylic acid 
formed upon saponification of 5e.  The more substituted 
spirocycle 6f, containing a dihydro benzopyrone ring was 
prepared in good enantiomeric purity (72% ee). The absolute 
stereochemistry of spirocycle 6e was determined by x-ray 
crystallography15 and all others were assigned based on analogy.  

There are two potential pathways for the second cyclization 
and formation of the spirocycle.  The first, is that the second 
cyclization takes place with “retention” of stereochemistry via 
the second nucleophile reacting with the remaining tert-butyl 
ester (see red arrows, 5b’(R)-6b in Scheme 2).  Another 
possible pathway is that the second nucleophile initially attacks 
the lactone ester to form intermediate 7, which is followed by 
cyclization to yield the “inverted” spirocyclic product (see blue 
arrows, 5b’7(S)-6b in Scheme 2).  To probe these potential 
pathways we monitored the cyclization of 5b’ via 1H NMR.16 
Figure 2 shows a snapshot of this experiment.  The signal at 3.6 
ppm represents protons a (Ha) in 5b’ and the signal at 2.9 ppm 
represents protons b (Hb) in 6b.  This time-dependent NMR 
suggests direct conversion of 5b’ to 6b. We postulate that the 
decrease in ee seen in the second cyclization is due to trace and 
undetectable by 1H NMR, formation of 7 under the longer 
reaction times required for optimized spirocycle formation yields.  
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Scheme 2. Mechanistic pathway considerations.

Table 1. Results
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Figure 2. 1H NMR experiment.

3. Conclusion

In conclusion, we describe a straightforward method for the 
synthesis of novel enantioenriched all-carbon spirocycles.  
Formation of the first lactone ring via an asymmetric Brønsted 
acid catalyzed desymmetrization of dialkylated diesters is 
followed by a second cyclization utilizing a general acid.  This 
method offers access to new scaffolds that are likely find use in 
future applications.
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