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Abstract: A quinine-promoted, enantioselective Mi-
chael addition reaction of diphenyl phosphite with
nitroalkenes has been developed. This methodology
affords a facile access to enantiomerically enriched
b-nitrophosphates, precursors for the preparation of
synthetically and biologically useful b-amino-
phosphonates.
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In the recent past, the enantioselective synthesis of a-
and b-aminophosphonic acids has received considera-
ble attention as a result of their increasing applica-
tions in peptide and medicinal chemistry.[1,2] They
serve as the surrogates of a- and b-amino acids in
peptides and peptidomimetics with significantly im-
proved bioactivities and stabilities and as therapeutic
agents with a broad spectrum of biological activi-
ties.[1,2] A great deal of effort has been directed
toward the development of asymmetric methods for
synthesis of a-aminophosphonic acids.[1,3] In contrast,
the approaches for enantioselective synthesis of b-
aminophosphonic acids are sparse.[2] Among the small
number of non-racemic strategies described thus far
are those relying on the use of chiral precursors[4] or
auxiliaries,[5] and enzymatic resolutions.[6] To our
knowledge, only one single enantioselective, catalytic
method has been disclosed using the Sharpless asym-
metric aminohydroxylation of a,b-unsaturated phos-
phonates.[7] Herein, we report a new organocatalytic,
enantioselective Michael addition reactions of phos-
phites with nitroolefins to afford b-nitrophosphonates.
The Michael adducts can be conveniently transformed
to chiral a-substituted b-aminophosphonic acids.

The Michael addition of phosphorus compounds to
nitroolefins is a convenient method for synthesis of b-
nitrophosphonates, precursors for preparation of b-
aminophosphonic acids. The non-asymmetric conjuga-
tion addition processes were first reported by Pudovik
et al.[8] Yoshimura described an improved procedure
for the Michael addition reaction by employing di-
alkyl phosphites as Michael donors.[9] The asymmetric
version of the process was recently disclosed by
Enders and co-workers using TADDOL as chiral aux-
iliary for stereocontrol.[10] However, a catalytic, enan-
tioselective approach for the process has not yet been
reported. The study we present here showed that it
was possible to develop such a process in the presence
of an organocatalyst.[11,12]

In the exploratory study, 10 bifunctional organoca-
talysts, including l-proline I,[13] l-pyrrolidinol II,
(1R,2S)-ephedrine III, amine thioureas IV[14] and V,[15]

Cinchona alkaloids VI–X,[16] were screened for their
catalytic ability to promote the Michael addition reac-
tion of diphenyl phosphite 1a with trans-b-nitrostyr-
ene 2a (Figure 1 and Table 1) since they had been
demonstrated for the activation of nitroolefins in or-
ganocatalysis. The initial reactions were performed by
using 10 mol% of the catalyst at room tmperature in
Et2O. Examination of the results revealed that their
catalytic activities varied significantly (Table 1). For
example, processes promoted by l-pyrrolidinol II and
(1R,2S)-ephedrine III exhibited good activity (1 h and
1.5 h, respectively), but with low enantioselectivities
(18% and 0% ee, respectively, Table 1, entries 2 and
3). Under the same reaction conditions, poor results
were obtained for l-proline I and amine thioureas IV
and V (entries 1, 4 and 5). A promising result came
from the study of natural product Cinchona alkaloid
quinine VI (entry 6). By using catalyst VI, reaction of
diphenyl phosphite 1a with trans-b-nitrostyrene 2a
took place to form adduct 3a more rapidly (5 min)

1052 H 2007 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Adv. Synth. Catal. 2007, 349, 1052 – 1056

COMMUNICATIONS



albeit with poor enantioselectivity (23% ee). The en-
couraging outcome prompted us to carry out a more
detailed investigation aimed at improving the enantio-
selectivity of the Michael reaction with a focus on the
modification of quinine. First, a benzyl group was in-
troduced at the position C-9 in catalyst VIII to restrict
the rotation of C-4’/C-9 bond, however, no gain was
observed (entry 8). Second, the results turned out to
be disappointing when an acidic and a possible addi-
tional H-bonding donor C-6’-OH was incorporated
into catalyst IX (entry 9), indicating an extra hydro-
gen bond donor affecting the reaction rate. The obser-
vation was further confirmed by cinchonidine VII cat-
alyzed the process (entry 7). Finally, a more structur-
ally rigid Cinchona alkaloid dimer X was surveyed
with an unsatisfactory result observed as well
(Table 1, entry 10). As a result, the organocatalyst VI
proved to be of the choice for further investigation.
To further improve the enantioselectivity of the VI-

catalyzed Michael reaction, we have studied the effect
of nucleophilic phosphites 1 (Table 2). Among the di-
alkyl and diphenyl phosphites examined, diphenyl
phosphite (1a) still afforded the best result (5 min,
88% yield, 23% ee, entry 1). If substituents (methyl
group or chloride) were introduced to the 2- or 3,5-
positions on the phenyl rings, the reaction rates signif-
icantly decreased (entries 2–4). When the diethyl
phosphite (1e) was used, the reaction also proceeded
very slowly (48 h, <5% yield, entry 5).
A survey of solvents revealed that the reaction

media had a significant effect on this process. For ex-
ample, the reaction carried out in xylenes gave the
highest enantioselectivity (42% ee, Table 3, entry 3).
Lower enantioselectivities were observed when other
solvents were used in the processes (Table 3, entries 1,
2 and 7–10). By lowering the reaction temperature,
the ee was improved in xylenes (entries 3–6). At
�55 8C, the enantioselectivity was increased to 70%
ee (entry 6). Therefore, xylenes were selected as the

Figure 1. Structures of chiral organocatalysts.

Table 1. Results of exploratory studies of catalytic asymmet-
ric Michael addition reaction of diphenyl phosphite (1a)
with trans-b-nitrostyrene (2a).[a]

Entry Catalyst t Yield [%][b] % ee[c]

1 I 24 h 29 �13
2 II 1 h 93 �18
3 III 1.5 h 87 rac.[d]

4 IV 24 h 38 11
24 h 21 �8

6 VI 5 min 88 23
7 VII 5 min 91 16
8 VIII 2 h 86 �17
9 IX 24 h 42 15
10 X 24 h <5 n.d.[e]

[a] Reaction conditions: see Experimental Section.
[b] Isolated yields.
[c] Determined by chiral HPLC analysis (Chiralpak AS-H).
[d] Racemic.
[e] Not determined.

Table 2. Optimization of phosphites 1.[a]

Entry R t Yield [%][b] % ee[c]

1 Ph, 1a 5 min 88 23
2 2-Cl-C6H4, 1b 48 h 37 19
3 2-Me-C6H4, 1c 48 h <5 n.d.[d]

4 3,5-Me2-C6H3, 1d 48 h <5 n.d.[d]

5 Et, 1e 48 h <5 n.d.[d]

[a] Unless specified, see Experimental Section.
[b] Isolated yields.
[c] Determined by chiral HPLC analysis (Chiralpak AS-H).
[d] Not determined.
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reaction medium for the processes to probe the scope
of the asymmetric processes at �55 8C.
To demonstrate the generality of the VI-catalyzed

Michael addition processes, reactions of a variety of
nitroalkenes 2 with diphenyl phosphite 1a in xylenes
were explored (Table 4). As the data show, the pro-
cesses took place smoothly to give adducts 3 in mod-
erate to good yields (60–85% yield) with moderate to
high ee (45–88% ee). Analysis of these data reveals
that the nature of the electronic and substitution pat-
tern of the substituents on the aromatic rings has an
impact on enantioselectivity. Reactions of nitroolefins
with electron-withdrawing groups at the para-position
(entries 2–4) or electron-donating substituents at the
ortho-position of the phenyl ring (entries 7 and 8) oc-
curred with relatively lower enantioselectivities (64–
77% ee). However, the nitrostyrenes bearing elec-
tron-donating groups at the para-positions gave the
higher ee (75–88% ee, entries 5, 6, 9 and 10). The re-
action is also applicable to heterocyclic nitroolefins
(entries 11 and 12) with good yields (67% and 79%,
respectively) and good to high enantioselectivities
(72% and 88% ee, respectively). Relatively low ee
values were also observed for aliphatic nitroalkenes
(45–63% ee, entries 13–16). The absolute configura-
tion of 3k prepared under the conditions was deter-
mined by X-ray crystallography to be R (Figure 2).[17]

In a study, we demonstrated that the chiral b-nitro-
phosphonate 3c could be conveniently converted to
corresponding b-aminophosphonic acid 4 in a two-
step transformation (Scheme 1).

Table 3. Solvent effect on VI-catalyzed asymmetric Michael
addition of diphenyl phosphite (1a) with trans-b-nitrostyrene
(2a).[a]

Entry Solvent t Yield [%][b] % ee[c]

1 Et2O 5 min 88 23
2 toluene 5 min 95 30
3 xylenes 5 min 93 42
4[f] xylenes 45 min 90 52
5 g] xylenes 8 h 86 53
6 h] xylenes 6 days 82 70
7 CH2Cl2 30 min 82 30
8 CH3NO2 8 h 88 22
9 MeOH 36 h <5 n.d.[d]

10 DMF 5 min 85 rac.[e]

[a] Unless specified, see Experimental Section.
[b] Isolated yields.
[c] ee determined by chiral HPLC analysis (Chiralpak AS-
H).

[d] Not determined.
[e] Racemic mixture.
[f] Reaction at 0 8C.
[g] Reaction at �20 8C.
[h] Reaction at �55 8C.

Table 4. The scope of VI-catalyzed asymmetric Michael ad-
dition of diphenyl phosphite (1a) to trans-b-nitrostyrene
(2a).[a]

Entry R t
[days]

Yield
[%][b]

%
ee[c]

1 Ph, 3a 6 82 70
2 4-F-C6H4, 3b 6 85 77
3 4-Cl-C6H4, 3c 6 82 72
4 4-Br-C6H4, 3d 6 83 66
5 4-Me-C6H4, 3e 6.5 83 80
6 4-MeO-C6H4, 3f 7 78 75
7[d] 2-MeO-C6H4, 3g 7 77 64
8[d] 2,4-(MeO)2-C6H3, 3h 6 78 71
9[d] 3-BnO-4-MeO-C6H3, 3i 5 82 82
10[d] 3,4-(OCH2O)-C6H3, 3j 5 78 81
11 2-thiophene, 3k 7 79 88
12[d] 2-furan, 3l 6 67 72
13[d] Me2CHCH2, 3m 4 77 45
14[d] PhCH2CH2, 3n 4 68 63
15[d] n-C5H11, 3o 5 62 60
16[d] n-C6H13, 3p 5 60 55

[a] Unless specified, see Experimental Section for reaction
conditions.

[b] Isolated yields after flash chromatography.
[c] Determined by chiral HPLC analysis (Chiralpak AS-H).
[d] Reaction performed at �20 8C.

Figure 2. X-ray crystal structure of 3k.

1054 asc.wiley-vch.de H 2007 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Adv. Synth. Catal. 2007, 349, 1052 – 1056

COMMUNICATIONS Jian Wang et al.

http://asc.wiley-vch.de


Our preliminary understanding of this enantioselec-
tive Michael addition reaction invokes H-bonding in-
teraction between both substrates and the catalyst VI
(Figure 3). In this proposed simple transition state
(TS) model, the trans-b-nitrostyrene is activated by
the OH group of the catalyst. Meanwhile, the amino
moiety via the second H-bonding interaction activates
and directs the phosphite group for si face attack of
the trans-b-nitrostyrene, which affords the observed
(S) product.
In summary, the first small molecule quinine VI

catalyzed enantioselective conjugate addition of di-
phenyl phosphite to nitroolefins has been developed.
This methodology provides a general and convenient
access to a wide range of good to high enantiomeri-
cally enriched b-nitrophosphates, precursors for prep-
aration of synthetically and biologically useful b-ami-
nophosphonates. Further investigation of the full
scope of the Michael reaction, its mechanism and ap-
plications are underway in our laboratory and the re-
sults will be reported in due course.

Experimental Section

Typical Procedure (Table 4, entry 1)

Catalyst quinine (VI) (8 mg, 0.025 mmol) was added to a
vial containing xylenes (3 mL), diphenyl phosphite (1a)
(52.5 mL, 0.25 mmol) and trans-b-nitrostyrene (2a) (38 mg,
0.25 mmol) at �55 8C. After 6 days of stirring, TLC analysis
indicated completion of the reaction. The reaction mixture
was concentrated under vacuum. The residue was purified
by flash silica gel chromatography (ethyl acetate/hexane=
1:15 to 1:4) to afford the adduct 3a as a white solid; yield:
79 mg (82%) with 70% ee, determined by HPLC (Chiralpak

AS-H, 2-propanol/hexane=40/60, flow rate 0.5 mLmin�1,
l=254 nm): tminor=12.6 min, tmajor=17.2 min, ee=70%; [a]

25
D

(major):=�9.7 (c 1.0 in CHCl3).
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