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summary 
Optimization methods based on the continuous maximum principle and the 

calculus of variations were used to calculate optimum temperature profiles for 
batch penicillin fermentations. These methods were first applied to several 
general models to develop effective techniques for the numerical solution of the 
equations. Subsequently, these methods were applied to two particular models, 
derived from experimental data, and the optimum temperature profiles were 
determined. The results indicated that an improvement in penicillin yield of 
about 15% was possible if the optimum temperature profiles were followed. 

INTRODUCTION 

Commercial batch fermentation processes are ordinarily operated 
under essentially constant temperature conditions, while pH and the 
concentrations of nutrients, cell mass, and products are allow-ed to 
change with little or no control as the fermentation progresses. 
Direct pH control by acid or base addition has been developed but 
is not widely practiced. Developmental studies carried out to de- 
termine optimum process conditions follow the same pattern; condi- 
tions are kept constant during each experiment and changed only 
from one experiment to the next. 

Aside from tradition, there is no inherent reason why batch fer- 
mentations should be run a t  constant temperature or uncontrolled 
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pH, when a controlled variation of these factors might, in fact, result 
in higher yields. Indeed, methods for establishing optimal operating 
procedures have been amply developed elsewhere and are now widely 
employed in the chemical process industries. 

Little has been done, hoffever, to determine continuous optimal 
profiles of temperature, pH, etc., for fermentations. This lack of 
progress is normally attributed to  the complexity of the chemical 
reactions involved, which makes it difficult to evaluate quantita- 
tively the effects of process conditions on the various kinetic param- 
eters. Even so, optimization is still possible and it is important to 
make preliminary attempts, not only for their inherent value but 
because they will point out the areas in which further biochemical 
knowledge is most critically needed. 

In  the work reported here, optimum temperature profiles were 
determined for batch penicillin fermentations. Optimization meth- 
ods based on the continuous maximum principle were found most 
suitable for this purpose and were applied to general and particular 
models for the penicillin process developed by the authors in an 
earlier paper.' 

The general models were based on averaged, nondimensionalized 
data for cell mass and antibiotic titre taken from a group of com- 
mercial-scale penicillin fermentations carried out a t  constant tem- 
perature. Parameter-temperature functions for this class of model 
were assumed to have general forms applicable to many other fer- 
mentations as well as penicillin. The particular models, on the other 
hand, were developed entirely from experimental results, with 
parameter-temperature functions determined from experiments 
carried out a t  different temperatures. 

These models, comprising the differential equations describing the 
dynamic behavior of the system and the relationships between the 
parameters of the model and the control variable, constitute the 
mathematical formulation of the system under study. In  order to 
completely specify the system, two more terms, which become in- 
tegral parts of the model, must be clearly defined. These are the 
objective function and the constraints on the state or control vari- 
ables. The latter are self explanatory; the former may be looked 
upon as the profit or loss criterion of the process, depending on 
whether one is maximizing or minimizing. In  the discussion that 
follows, the objective function will be maximized. Therefore, the 
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problem of optimization becomes that of establishing the values of 
the control variable a t  each point on the path of the process, subject 
to some constraints, in such a way that the objective function is 
maximized. 

OPTIMIZATION METHODS 

Optimization methods based on Pontryagin’s continuous maximum 
principle*v3 and on the calculus of variations4s5 were applied to the 
models to determine the optimum temperature profiles. Since these 
two methods are fundamentally the same, the results obtained were 
essentially identical. The discussion which follows will therefore 
center on the application of the continuous maximum principle only. 

Continuous Maximum Principle 

Consider the continuous process shown in Figure 1, where x( t )  and 
0(t) are vectors of the state and control variables respectively, and 
t is time. 

The performance equations for this process are: 

dx/d t  = k = f[x,b(O)] for t o  5 t 5 T ( 1) 

where b(0) terms are the parameter-control functions and the initial 
conditions are : 

x(to) = a (2) 

x(t) is an sdimensional vector function representing the state of the 
process a t  time t, and 0( t )  is an r-dimensional vector function repre- 
senting the value of the control variable a t  time t. Therefore there 
are s ordinary differential equations describing the evolution of the 
state of the system. 

Fig. 1. Schematic process diagram. 
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In  the continuous maximum principle, the objective function S 
is usually defined as a linear combination of the final values of the 
state variables: 

s = c’x(T)  , (3) 
where c’ is the transpose of a vector, c, of constants. In  order to 
optimize the system it is necessary to find a piecewise continuous 
control vector function, e(t ) ,  possibly subject to some constraints, 
such that S is maximized. The control vector function so chosen 
is called optimal and is denoted by 8 ( t ) .  

When the time interval is fixed and the initial conditions of the 
state variables are given, there are two types of problems; those with 
free and those with fixed terminal values for some components of x .  
The first type is characteristic of batch fermentation processes and 
will therefore be considered here. 

The continuous maximum principle uses an sdimensional adjoint 
vector, z( t ) ,  and the Hamiltonian function, H ,  which satisfy the 
following equations : 

H = z’f (4) 

(5) 

z ( T )  = c ,  (6) 

i = - ( b H / d ~ )  = - z ‘ ( b f / b x )  , 

where z‘ denotes the transpose of the vector z, and b j / b x  is the 
matrix whose elements are the partial derivatives of the rates of 
change of the state variables with respect to the state variables. 
The j t h  adjoint variable, zj(t)’, corresponds to the increase in the 
objective function caused by an increase in the j th  state variable a t  
time t .  

The necessary condition for the objective function to be maximum, 
when the control variable is unconstrained, is the following: 

aH/be = o (7) 
In the case where the control variable is on the constraint the 

following must be met: 
H = max t 8)  

In  summary, this algorithm involves the following: the state 
equations, (l), the initial conditions of the state variables, (2), the 
objective function, (3), the Hamiltonian function, (4), the adjoint 
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equations, (5 ) ,  the final conditions of the adjoint variables, (6), and 
the necessary condition, (7) or (8). 

The state equations contain the state and control variables and 
the initial conditions for these equations are usually known. The 
adjoint equations are functions of the state, adjoint and control 
variables and the final conditions for the adjoint equations are known 
if all the state variables are free at t = T. Obviously, the adjoint 
equations are coupled to the state equations and cannot be solved 
independently. The necessary condition for a maximum also in- 
volves all three kinds of variables. Therefore, the use of the con- 
tinuous maximum principle produces a two-point boundary value 
problem, with the added difficulty that the Hamiltonian may be a 
very complex function of the control variable. Finally, the solution 
of the necessary condition will often require the use of a search 
technique. 

Methods of Solution 
Two methods for the solution of the two-point boundary value 

problems which arose in this study were examined: 
(a) The bidirectional integration method, in which the state 

equations are integrated forward and the adjoint equations are 
integrated backwards, with the control variable not changed during 
the integration, but corrected between integrations. 

(b) The unidirectional integration method in which the state and 
adjoint equations are integrated in the same direction. 

The second method has two basic disadvantages: (1) the adjoint 
equations are often unstable when integrated forward, and the state 
equations are often unstable when integrated backwards, and (2) The 
method requires an explicit solution in the control variable of the 
necessary condition for optimality. In order to eliminate these 
difficulties a double iterative procedure was developed.6 With this 
procedure both the control variable and the unknown boundary 
conditions are adjusted iteratively. 

The bidirectional integration method was found to be simpler to 
use and slightly faster than the unidirectional method. However, 
the latter would be very useful in the case where some of the state 
variables are fixed a t  t = 0 and others a t  t = T .  Under such condi- 
tions, the state and adjoint equations must all be integrated in the 
same direction. 
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Three different techniques for finding the values of the control 
variable which satisfy the necessary condition were used in conjunc- 
tion with the above integration methods. These techniques were: 

(a) Using the explicit solution, in the control variable, of the 
necessary condition for optimality. This is often the best technique 
because it is exact and rapid. How-ever, the necessary condition for 
optimality is usually a transcendental equation in the control vari- 
able and cannot be solved explicitly. 

(b) Applying the Fibonacci search technique to the maximization 
of the Hamiltonian. This technique was quite effective, but more 
time consuming than the other two. This method is applicable in 
the case where only one control variable is being optimized. The 
Fibonacci search must be used with caution because, if the Hamil- 
tonian is not unimodal in the interval of search, the method may 
converge on a local maximum instead of the global maximum. 

(c )  Using the method of steepest ascent of the Hamiltonian, ie., 
correcting the control variable in the direction in which the Hamil- 
tonian rises most rapidly. This technique is as effective as the 
explicit solution, but it takes longer to converge when there are dis- 
continuities in the optimal control profile. This method can be 
used when several control variables are being optimized. 

These methods were applied to the general and particular models 
developed earlier.' Although model 1F fitted the data better than 
the other general models, model 1A was a simpler one to optimize 
because i t  allowed an explicit solution of the necessary condition for 
optimality. The optimization methods were therefore first applied 
to model 1A in order to find the most effective computational tech- 
niques for the solution of these methods. Figure 2 summarizes the 
overall approach which was followed. 

The optimal profile for model 1A was obtained using the bidirec- 
tional integration method with the correction of e performed by the 
explicit solution first, the Fibonacci search second, and the steepest 
ascent third. In  addition, the equations for this model were solved 
using unidirectional integration combined with the analytical solu- 
tion. All four methods of solution gave identical results for model 1A. 

The bidirectional integration method using the analytically ob- 
tained value of e was found to be the most effective and most rapid. 
However the necessary condition for optimality of model IF could 
not be solved explicitly for the control variable, so that this method 
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could not be applied to model 1F. The three methods of solution 
used for model 1F gave identical optimal temperature profiles. 

The particular models which were subjected to the optimization 
techniques were models C2 and 52.' The bidirectional integration 
method was used in the solution of the state and adjoint equations 
of these models. Both models C2 and 52 have necessary conditions 
which cannot be solved explicitly for the control variable. There- 
fore the Fibonacci search technique was used in determining the 
control profile which maximizes the Hamiltonian. 

Models C2 and 52 included a twenty-hour lag in penicillin syn- 
thesis, i.e., the cell concentration a t  time (t - 20) hours was used in 
the evaluation of the penicillin synthesis rate a t  time t. For t 5 20 
hours the rate of penicillin production was set equal to zero. Physi- 
cally, this is equivalent to saying that the cell does not produce any 

ANALYTICAL 
SOLUTION 

I GENERAL MDELS I 
lA h IF 

/ m D E L  1A 
I I 

FIBONACCI STEEFTSI 

1 I 

INTEGRATION 
WETHOD 

A S C M T  S U R C H  

BIDIRECIIONAL U N I D I R e C I I O N N  '3 
Fig. 2. Summary of the application of optimization methods to general and 

particular models. 
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penicillin until it is a t  least twenty hours old. This time lag was 
incorporated into the optimization method using the technique 
developed by Pontryagin et aL2 

RESULTS 

The optimal temperature profiles determined for models lF,  C2, 
and S2 are presented in the next three sections; the solution of model 
1A has been omitted. The interested reader is referred to Con- 
stantinidess where the optimal profiles for all the models appear. 

Optimum Temperature Projib for General Model 1F 
The equations which constitute the algorithm of the maximum 

principle for model 1F are the follovling: 
State equations : 

i i  = blzl[l.O - (~1/bz)] , a(0)  = 0.0294 (9) 

X2 = b g i  - b 4 z  , ~ ( 0 )  = 0.0 (10) 

Parameter-temperature functions : 

1 
1 

1.0 - 0.005(e-30)2 

1.0 - 0.005(e-30)2 

1.0 - 0.005(25-30)2 
bl = 13.10 

1.0 - 0.005(25-30)* 
bz = .943 

1 1.0 - 0.005(e-20)2 
1.0 - 0.005(25-20)2 

bi = 4.66 

1 
b4 = 4.4555 exp ___ 

~ - l ~ l o  [ B  + 273.1 298.1 

(Note that for this set of parameters the ratio bl/bz is not a function 
of temperature.) 

Objective function : 

Adjoint equations: 
S = x~(T) 

i l  = -zlbl + 2~,(bl/bz)zi - Z2b3 , z (T)  = 0.0 (16) 

i s  = Zzb+ , z(T) = 1.0 (17) 
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If equations (11) through (14) are differentiated with respect to 
B and substituted into equation (19), the resulting equation is trans- 
cendental in B and cannot be solved explicitly. This complication 
necessitates the use of the Fibonacci search or the steep ascent 
method. 

An interesting phenomenon was observed in the integration of the 
logistic law (equation 9) under a decreasing temperature profile. 
The value of bz is equivalent to the cell concentration a t  infinite 
time, i e . ,  maximum growth, for constant temperature (0) .  When 
one controls the value of bz with equation (12) under a condition of 
decreasing temperature, there exists a point where the value of b2- 
the maximum cell concentration-becomes smaller than the value of 
the instantaneous cell concentration, xl, a t  that point in time. The 
bracketed term of equation (9) therefore becomes negative and cell 
concentration subsequently decreases. This mathematical behavior 
is not inconsistent with physical realities. For example, when auto- 
lysis occurs, the cell concentration can fall. 

If, however, a decreasing cell concentration is not allowed, then 
an inequality constraint is required so that 

The constraint has the physical meaning that the net rate of cell 
formation becomes zero when the temperature drops below a certain 
level. This level is determined by the point a t  which the constraint 
is reached. The presence of a constraint makes the model mathe- 
matically more interesting and introduces into it the difficulties of 
handling such constraints in optimization. When the constraint is 
reached, the state equation for cell growth, equation (9), becomes 

xl = 0.0 when xi 2. b2 ( 9 4  
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The Hamiltonian of the system changes to 

H = ZzbGi - Zzb&z , 
and the adjoint equation for z, is modified according to the method 
developed by Bryson et al.?: 

( 1 W  

i l  = - Z Z b 3  . 
The numerical computational methods switch from the uncon- 

strained part of the model to the constrained part when the con- 
straint is reached. 

The results obtained for model IF, using the methods of solution 
shown on Figure 2, are presented in Figures 3 and 4. The optimum 
temperature profile (Fig. 3) began a t  30°C because this temperature 
favors growth and a t  this point z1 (Fig. 4) is much larger than 22, 

ie., an increase in cell mass has a much higher value than an increase 
in penicillin titre. The optimal temperature then remained above 
28.6"C throughout the first part of the process, resulting in a high 
cell concentration. When the constraint was reached, ie., when the 
rate of cell formation was equal to zero, the optimal temperature 
shifted to a lower level, maximizing the rate of penicillin formation 
and minimizing the rate of penicillin destruction. 

Fig. 3. Optimal profiles for temperature, cell mass, and penicillin titre-Model 1F. 
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Fig. 4. Optimal profiles of adjoint variables-Model 1F. 

The final penicillin potency indicated (Fig. 3) is 1.663 (on a non- 
dimensionalized basis) or 76.6% higher than that obtained when a 
constant temperature of 25°C-the best constant temperature-was 
used. 

Optimum Temperature Projile for Model Cd 

Model C2 was derived from experimental data for penicillin fer- 
mentations carried out a t  various constant temperatures in 30-liter 
fermentors.' The equations wrhich made up the algorithm of the con- 
tinuous maximum principle for model C2 were identical to the equa- 
tions for model lF,  with the exception that the initial condition for 
the cell concentration in this model was 

~ ' ( 0 )  = 5.0 

The parameter-temperature functions used in the optimization of 
model C2 were those derived from the same experimental data.' 
The inequality constraint for cell concentration (equation 20) was 
also applied to model C2 and this model also incorporated a twenty- 
hour lag in penicillin synthesis. 
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Bidirectional integration with the Fibonacci search technique 
was used in determining the optimum solution for model C2. The 
iterative procedure used for this model did not converge to a single 
profile, but eventually alternated between two almost identical pro- 
files which corresponded to objective function values differing by 
less than 0.05%. This behavior was probably due to the fact that 
the system and adjoint equations were integrated numerically. 

The temperature profile which maximized the objective function is 
shown in Figure 5 and the corresponding optimal cell and penicillin 
profiles in Figure 6. The adjoint variable profiles are given in 
Figure 7. In  this case the optimum temperature remains a t  27.2"C 
for the first 56 hours of the fermentation, then drops linearly to 
18.7"C and remains at this temperature from 84 to 184 hours. For 
the last 24 hours it returns to 27.2"C. 

The ratio 
of the adjoint variables, z1/z2, starts (t  = 0) at a very high value 
and drops to zero at the end ( 1  = T ) .  This means that a t  the be- 
ginning of the process the rate of cell formation is weighted more 

The behavior of the profile can be explained as follows. 

30 
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a z 
I- 2 0  

15 

I I I I I 1 I 1 I I 
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Fig. 5. Optimal temperature profile-Model C2. 
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Fig. 6. Optimal profiles of cell mass and penicillin titre-Model C2. 
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Fig. 7. Optimal profiles of adjoint variables-Model C2. 
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heavily in the total value of the Hamiltonian. The parameters 
bl and b2, which control cell formation, have maximum values a t  
27.2" and 18.7OC, respectively, but a t  the beginning the value of x1 
(cell concentration) is more sensitive to bl than to b,. Therefore, 
the optimum temperature in this early period is a t  27.2"C. 

As time passes, x1 becomes more sensitive to bz and the ratio z1/z2 
also drops, i . e . ,  the rate of penicillin formation has a higher weight 
in the Hamiltonian. The parameter b3, which controls the rate of 
penicillin formation, has its maximum value a t  27.2"C, but param- 
eter b4, which controls the rate of penicillin destruction has its lowest 
value a t  18.7"C. Hence, for 1 2 84 hours, the penicillin titre (x2) is 
more sensitive to b4. Since the sensitivity of the system shifts to- 
ward b2 and b4, and since both of these parameters have values which 
favor penicillin formation a t  18.7"C, the optimum temperature would 
be expected to shift to 18.7"C, which it does. 

While the temperature remains a t  18.7"C cell and penicillin con- 
centrations continue to increase. At t = 188, the cell concentration 
reaches the constraint (equation 20) and the rate of cell formation 
becomes zero. From that time on, only the penicillin synthesis rate 
has weight in the Hamiltonian and x2 is more sensitive to b3. The 
optimum temperature therefore shifts back to 27.2"C for the last 
few hours of the fermentation. 

The final value of penicillin indicated in this case was 11,616 
units/ml. This is 16.0% higher than the highest yield (10,010 
units/ml) obtained with a constant (25°C) temperature. 

Optimum Temperature Proj le  for Model S2 

The methods used to calculate the optimum temperature profile 
for model S2 were similar to those used for model C2. The bidirec- 
tional integration method was combined with the Fibonacci search 
technique to form the iterative procedure for the solution of the 
continuous maximum principle. The equations comprising the 
maximum principle algorithm for model S 2  were identical to those 
of model lF ,  except that the initial vaue of the cell concentration in 
this model was: 

x~(O) = 0.33 

SIodel S2  also included a twenty-hour lag in the penicillin synthesis 
and the state variable inequality constraint, (equation 20), was also 
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applied. The parameter-temperature functions for this model were 
also derived from experimental data.' These functions cover the 
temperature range 20" to 30°C. Since no data were available outside 
this range, the Fibonacci search occurred only within these limits. 

The optimal temperature profile for model S2 is shown on Figure 8 
along with the optimal cell and penicillin profiles. In  this case the 
optimum temperature remained at  30.0"C for the first 5 hours of the 
fermentation and then dropped to 25.0"C where it remained for 35 
hours, before shifting to 2O.O"C. After 85 hours a t  20.0°C, it rose 
again to 25°C where i t  remained for the last 40 hours of the process. 

The explanation for this optimum temperature profile is similar to 
that given for model C2. At the beginning of the process, the rate 
of cell formation has a high weight in the total value of the Hamil- 
tonian because the ratio of the weighting factors, zl/zz, is very high 
(Fig. 9). The rate of cell formation is again more sensitive to the 
value of the parameter bl during the first part of the process. Since 
bl has its maximum value a t  30.0°C, this is the optimum temperature 
a t  the start of the fermentation. 

As the fermentation proceeds, the rate of cell formation becomes 
more sensitive to the value of bz which has its maximum a t  20.0"C. 

I I / / TEMPERATURE v/ PENICILLIN 

30 

25 b 
1 

W 

J 
I 

W 

20 2 
+ 

I5 
0 20 40 60 80 100 120 140 160 I80 200 

TIME - IHOURS) 

Fig. 8. Opt-imal profiles of temperature, cell mass, and penicillin t>itre-Model S2. 
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Fig. 9. Optimal profiles of adjoint variables-Model S2. 

At the same time, the ratio z1/z2 decreases, which means that the 
rate of penicillin formation is more heavily weighted in the Hamil- 
tonian. Parameter b3 has its highest value a t  25.0"C and parameter 
b,  has its lowest value at  20.0"C. This explains the temperature 
shifts to 25.0" and then to 2O.O0C, to maximize penicillin formation 
and minimize penicillin destruction. At t = 140 hours, the cell con- 
centration profile has reached the constraint (equation 20), and the 
influence that b2 had in "pulling" the temperature profile towards 
20.0"C is lost. At this time penicillin formation becomes more 
sensitive to b3, so the temperature shifts to 25.0"C which maximizes 
the value of b3. 

It should be emphasized that the parameter-temperature functions 
for model S2 were constructed from data taken at  only three different 
temperatures, and the values of the parameters a t  intermediate 
temperatures were calculated by linear interpolations. If data were 
available a t  other temperatures, the parameter functions could be 
constructed more accurately and the optimal temperature profile 
would be smoother than the step-like profile obtained here. 
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The indicated value of the penicillin potency in this case was 
4.701, or 14.7% higher than the value obtained experimentally when 
the temperature was kept constant a t  25°C. 

CONCLUSIONS 

The purpose of this work w a s  to apply modern optimization meth- 
ods to the calculation of optimal temperature profiles for batch 
fermentation processes. Temperature was chosen as the control 
variable to be optimized because small changes in temperature 
markedly affect the rates of formation of cell and products, and, 
furthermore, affect them to different degrees. In  addition, tempera- 
ture is a convenient control variable because it is relatively easy to 
manipulate. 

In  this paper u-e have shown how optimization methods can be used 
to  determine the optimal temperature profiles for batch fermentation 
processes. The methods developed for the solution of the general 
models were kept as general as possible so that their use might easily 
be extended to other models of fermentation processes. Several 
degrees of complexity were examined and efficient methods of solu- 
tion were found. It should be possible for others to apply the 
methods of solution developed in this study to their own models, 
models which might include other control variables, pH or nutrient 
concentrations, as well. The optimization methods discussed here 
are, of course, not limited to controlling only the temperature, but 
can be used for multiple control variable cases as well. 

The optimal temperature profiles for models C2 and S2 are very 
similar to each other. Both of these profiles start a t  a high tempera- 
ture, favoring faster growth, and then drop to a lower temperature, 
which favors a high level of cell concentration and a low rate of 
penicillin destruction. At the end of the batch cycle, when the cells 
have reached their maximum concentration, the optimum tempera- 
ture shifts to a level which favors penicillin formation only. 

Our results indicate that substantial improvements in penicillin 
yield, 16.0 and 14.7% for models C2 and 52 respectively, should be 
obtainable if the optimum temperature profiles were followed. 

We realize, of course, that complete optimization of a fermentation 
process will require that all control variables follow optimal profiles. 
This will in turn require the development of models which include all 
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the variables which affect the process and, possibly, the age distri- 
bution of the cells. The development of such detailed models is a 
long and arduous task and can only be accomplished when much 
more complete knowledge of the kinetics and transport mechanisms 
involved in fermentation processes in available. Until then optimi- 
zation will have to be executed by means of semiempirical procedure 
like those used here. 

We wish to acknowledge the support of the New York State Science & Tech- 
nology Foundation through grant SSF(7)-4 under which this work was carried out. 

NOMENCLATURE 
b 

H 
S 
T 
t 

C 

X 

XI 
X2 

I 

e 

Vector of parameter-temperature functions 
Vector of constants 
Hamiltonian function 
Objective function 
Final time 
Time 
Vector of state variables 
Cell mass or concentration 
Penicillin titre 
Vector of adjoint variables 
Control variable or temperature 

Subscripts 
0 Denotes initial condition 
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