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Summary of main observation and conclusion Pd-catalyzed intermolecular dearomative Heck reaction of indoles with aryl iodides is described. The chal-
lenges on both reactivity and regioselectivity are addressed by the judicious regulation of the geometric and electronic properties of the substrates. An 
array of indoline derivatives bearing C2-quaternary center is obtained in good to excellent yields (up to 93%) with exclusive regioselectivity under opera-
tionally simple conditions. The mechanistic proposal is supported by detailed DFT calculations. 

 

Background and Originality Content 
Indolines serve as vital structural cores of numerous natural 

products and pharmaceutically-relevant molecules. Their efficient 
and convenient syntheses have attracted considerable attention 
of the synthetic chemistry community.1 In this regard, dearomati-
zation of indole derivatives has been widely recognized as a 
straightforward approach to access diverse indolines.2,3 Over the 
past decades, transition-metal-catalyzed Heck reactions4,5 have 
been applied in the dearomatization of indoles,6 as exemplified by 
the elegant contributions from the groups of Yao and Wu,7 Jia,8 
Lautens,9 Jing and Liang,10 Zhou,11 and Wu12 (Scheme 1(a)). Nota-
bly, Kitamura and Fukuyama completed the total synthesis of 
(+)-hinckdentine A with the dearomative Heck reaction as a key 
step.13 In all the known examples, an indole-tethered aryl halides 
first underwent oxidative addition to a Pd- or Ni-catalyst. Subse-
quently, the regioselective insertion of the corresponding aryl–Pd 
or aryl–Ni species into the C2=C3 double bond of the indole ring 
afforded the C3–Pd or C3–Ni intermediate which subsequently 
underwent β-hydride elimination or received external nucleophilic 
attack. However, the intramolecular reaction design was crucial to 
guarantee both the reactivity and the regioselectivity via the 
structurally well-organized precursors of the dearomatization step. 
Although intriguing polycyclic scaffolds could be readily assem-
bled in this way, yet additional synthetic elaborations were gener-
ally required. To be noted, the intermolecular C2-arylative 
dearomatization of indoles have been realized via the cross 
coupling reactions under oxidative conditions.14 

Apparently, formidable challenges would be encountered for 
the corresponding intermolecular dearomative Heck reactions. 
The key issues to be addressed include (i) how to enhance the 
reactivity of the indole ring toward the intermolecular Heck reac-
tion, and (ii) how to control the regioselectivity of the insertion 
across the C2=C3 double bond.15 We envisioned that tetrahydro-
cyclopenta[b]indole derivatives might serve as suitable candidates 

for this purpose (Scheme 1(b)). The desired isomerization of the 
olefinic bond in the 5,5-bicyclic ring system might somewhat re-
lease the ring strain, which could probably compensate to some 
extent the energetic uphill required for the dearomatization pro-
cess, and thus facilitate the proposed intermolecular Heck reac-
tion. In addition, an appropriate electron-withdrawing 
N-protecting group might regulate the distribution of the electron 
density of the indole ring, and direct the regioselectivity of the 
Heck reaction. Recently, we successfully executed this design plan 
and realized the first Pd-catalyzed intermolecular dearomative 
Heck reaction of indoles with aryl iodides. Herein, we report the 
results from this study. 
Scheme 1 Pd-Catalyzed dearomatization of indole derivatives via Heck reac-
tion. 
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Reaction Development 
We began our investigation by testing the model reactions of 

N-acyl tetrahydrocyclopenta[b]indole 1a and iodobenzene 2a (1.5 
equiv) (Table 1). With Pd(OAc)2 (10 mol%) as a palladium 
precursor, AgOAc (1.0 equiv) as an additive and Na2HPO4•12H2O 
(2.0 equiv) as a base, the effects of different ligands were initially 
examined in DMF at 80 °C. When monophosphine ligands (Q-Phos, 
PPh3, XPhos) were utilized, the desired product 3aa (confirmed by 
X-ray crystallographic analysis) was obtained in moderate NMR 
yields (45-48%), while 1a could be recovered with good mass 
balance (entries 1-3). However, the reaction with rac-BINAP 
provided 3aa in a lower NMR yield (35%) (entry 4). Notably, when 
the reaction proceeded without phosphine ligand, product 3aa 
could still be afforded in 49% NMR yield (entry 5), comparable 
with that obtained with monophosphine ligands. Subsequently, 
the effect of additives was tested in the absence of phosphine 
ligand (entries 6-10). It was revealed that the reaction tolerated 
various Ag salts (AgSbF6, AgBF4, AgOTf or AgNTf2) as an additive. 
AgNTf2 was identified as the optimal one, which afforded 3aa in 
85% NMR yield and 82% isolated yield (entry 9). Interestingly, the 
desired reaction was prohibited significantly when Ag2CO3 was 
employed (92% of 1a recovered, entry 10). Screening of solvents 
showed a clear connection between the reaction outcomes and 
the polarity of the solvent. When non-polar solvent like toluene 
was employed, the reaction was quite sluggish, and only 17% 
NMR yield of 3aa was observed. Alcoholic solvents including 
MeOH and tBuOH provided 3aa in moderate NMR yields (51-79%). 
To our delight, when DMA was applied, the NMR yield of 3aa was 
further improved to 91% (entry 11). Surprisingly, the judicious 
choice of a base was quite critical to this reaction. Among tested, 
Na2HPO4•12H2O was the optimal one. Other commonly used 
bases including K2CO3, Et3N, K3PO4, and tBuOK were ineffective 
(entries 15-18). Finally, the optimal results (3aa, 97% NMR yield, 
91% isolated yield) were obtained when the loading of AgNTf2 
was increased to 1.2 equiv (entry 19). Of particular note, the 
desired reaction was hampered without Ag salt (entry 20), and 
could not proceed without Pd(OAc)2 (entry 21). 
Table 1 Optimization of the reaction conditions.a 

N
+

N

Pd(OAc)2
(10 mol%)

ligand (10 mol%)

Na2HPO4•12H2O 
Ag salt, solvent 

80 °C, 8 h
1a 2a 3aa

PCy2
iPriPr

iPr

Ph
Ph

Ph

Ph Ph

Q-Phos XPhos rac-BINAP

PPh2
PPh2

Ac

PhI

Ac
Ph

Fe

PtBu2

 

entry ligand Ag salt solvent 1a (%)b 3aa (%)b 

1 Q-Phos AgOAc DMF 45 45 

2 PPh3 AgOAc DMF 42 48 

3 XPhos AgOAc DMF 38 48 

4 rac-BINAP AgOAc DMF 46 35 

5 -- AgOAc DMF 42 49 

6 -- AgSbF6 DMF 17 79 

7 -- AgBF4 DMF 15 81 

8 -- AgOTf DMF 11 82 

9 -- AgNTf2 DMF trace 85 (82c) 

10 -- Ag2CO3 DMF 92 7 

11 -- AgNTf2 DMA trace 91 

12 -- AgNTf2 MeOH 11 79 

13 -- AgNTf2 tBuOH 47 51 

14 -- AgNTf2 toluene 73 17 

15d -- AgNTf2 DMA 94 trace 

16e -- AgNTf2 DMA 82 17 

17f -- AgNTf2 DMA 92 trace 

18g -- AgNTf2 DMA 53 -- 

19h -- AgNTf2 DMA trace 97 (91c) 

20i -- -- DMA 77 18 

21h,j -- AgNTf2 DMA quant. -- 
a Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), Pd(OAc)2 (0.02 mmol), 
ligand (0.02 mmol), Na2HPO4•12H2O (0.4 mmol), Ag salt (0.2 mmol) in 
solvent (1.0 mL) at 80 °C. b Yield determined by 1H NMR using CH2Br2 (0.2 
mmol) as an internal standard. c Isolated yield. d K2CO3 as the base. e Et3N 

as the base. f K3PO4 as the base. g tBuOK as the base. h AgNTf2 (0.24 mmol), 
5 h. i Without Ag salts. j Without Pd(OAc)2. 

With the optimal conditions in hand, various indoles were 
allowed to react with iodobenzene to examine the generality of 
this reaction (Scheme 2(a)). Firstly, the effects of the protecting 
group on the nitrogen atom of indoles were investigated. 
Electron-withdrawing groups like Boc (3ab, 92% yield), CO2Me 
(3ac, 87% yield), and Bz (3ad, 63% yield) were well tolerated, 
while electron-donating ones (Me and Bn) were not (not shown). 
Notably, a large array of electronically and sterically varied 
substituents including alkyl (Me and tBu), alkoxyl (MeO), halogen 
(F, Cl and Br), ketone (Ac), and ester (CO2Me) were 
accommodated at the 4- to 7-positions of the indole ring. The 
corresponding products (3ae-3ap) were generally obtained in 
moderate to high yields (49-84%). In addition, benzo-fused indole 
substrates also underwent the dearomatization reactions 
smoothly, leading to desired products 3aq and 3ar in 88% and 61% 
yields, respectively. The structure of 3aq was also confirmed by 
X-ray crystallographic analysis. The reaction of 1a and 2a could 
proceed with the loading of the Pd-catalyst lowered to 5 mol%, 
affording 3aa in a gram scale (1.20 g). 

Next, the scope of aryl iodides was considered (Scheme 2(b)). 
Aryl iodides bearing substituents at the para- or meta-positions 
could participate the desired dearomatization reactions (3ba-3na, 
41-93% yields). Particularly, the reaction efficiency was 
significantly influenced by the electronic property of 
para-substituted aryl iodides. Electron-rich benzene rings (p-OMe, 
p-tBu, etc.) could be installed with excellent yields, while the 
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reactions with electron-poor aryl iodides (p-NO2, p-CF3, etc.) were 
rather sluggish. This phenomenon provided useful clues for 
further mechanistic studies (vide infra). Probably due to the 
unfavorable steric congestion in the key transition state, 
ortho-substituted aryl iodides were relatively less reactive, leading 
to the corresponding products 3oa (o-Me) and 3pa (o-OMe) in 
moderate yields (51-53%). In addition, 2-iodothiophene was also a 
viable reaction partner. Desired product 3qa could be delivered in 
61% yield. Indeed, the 5,5-bicyclic ring system was crucial for the 
reactivity, In addition, 2-iodothiophene was also a viable reaction 
partner. Desired product 3qa could be delivered in 61% yield. 
Indeed, the 5,5-bicyclic ring system was crucial for the reactivity, 

In addition, several synthetic transformations were performed 
for dearomatized products 3 (Scheme 3). The newly formed 
double bond of 3aa could be hydrogenated to obtain 4 in 94% 
yield with high diastereoselectivity (>20:1 dr). The relative 
configuration of 4 was determined by X-ray crystallographic 
analysis. Besides, the N-Boc group of 3ab could be removed 
smoothly by the treatment of TMSOTf, leading to 5 in 86% yield. 
Moreover, 3am could undergo Suzuki coupling reaction with 
PhB(OH)2 to afford 6 in 96% yield.

This article is protected by copyright. All rights reserved.
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Scheme 2 Substrate scope. 
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Scheme 3 Product transformations. 
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Mechanistic studies 
In order to shed light on the reaction mechanism, detailed 

DFT calculations were performed. Initially, the thermodynamic 
aspect of the reaction was evaluated (Scheme 4(a)). As expected, 
the isomerization of the double bond of cyclic or acyclic 
2,3-disubstituted indoles is generally endergonic. The energetic 
uphill of dihydrocyclobuta[b]indole, tetrahydrocarbazole (n = 4 
and 6), and 2,3-dimethylindole (acyclic) is about 9.4-9.6 kcal/mol. 
However, this value of tetrahydrocyclopenta[b]indole (n = 5) drops 
to 7.9 kcal/mol. We believe that this outlier implies the energy 
compensation gained from the strain release of the 5,5-bicyclic 
system during the dearomatization process. 

Based on the literature reports, a plausible catalytic cycle was 
proposed (Scheme 4(b)). In the presence of AgNTf2, the oxidative 
addition of aryl iodide 2 to the Pd(0) catalyst delivers the aryl–
Pd(II) species I. Subsequently, the coordination and insertion of I 
across the C2=C3 double bond of 1 provide intermediate II. Finally, 
base-assisted β-hydride elimination affords desired product 3. Our 
calculations confirmed that the regioselectivity of the reaction 
was determined in the insertion step (vide infra). The optimized 
structures of the most stable insertion transition states leading to 
3aa (TS-A-5-III) and the unobserved regioisomer (TS-A-5-II) are 
shown in Figure 1. The relative Gibbs free energy of the latter one 
is higher than that of the former one by 3.1 kcal/mol, which is in 
good agreement with the experimental results. Although the 
geometric features around the bond-forming/breaking area in the 
two structures (highlighted in green) are rather similar [B(Pd···C3) 
= 2.08 Å, B(Cipso···C2) = 2.16 Å, and B(Pd···Cipso) = 2.06 Å in 
TS-A-5-III; B(Pd···C2) = 2.10 Å, B(Cipso···C3) = 2.17 Å, and B(Pd···Cipso) 
= 2.05 Å in TS-A-5-II], natural population analysis (NPA) revealed 
that the preference of TS-A-5-III might stem from the electronic 
match of the bond-forming atom pairs [between Pd (0.308) and 
C3 (-0.072), and between Cipso (-0.120) and C2 (0.298)]. On the 
other hand, in TS-A-5-II the connection between two positive-
ly-charged atoms [Pd (0.308) and C2 (0.156)] makes the reversed 
insertion pathway energetically unfavorable. 

Activation strain model (ASM) analysis16 was performed on 
the systems derived from 1a with phenyl iodide (2a), p-OMeC6H4I 
(2d), and p-NO2C6H4I (2k), respectively (Figure 2). As the electron 
density of the aryl group is getting lower (from p-OMe to p-NO2), 
the insertion transition state appeared at a later stage with a 
higher activation energy [ΔE(act)] (Figure 2(a)), which well 
reproduced the experimental results with 2a, 2d, and 2k (Scheme 
2(b)). Notably, a good superposition of the curves of the total 

This article is protected by copyright. All rights reserved.
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distortion energy [ΔE(dist)] was disclosed (Figure 2(b)). It 
suggested that when the aryl–Pd(II) species and 1a approached to 
each other, their respective geometric distortions were rather 
similar in the three systems. However, the interaction energy 
between the bended substrates [ΔE(int)] varied significantly 
(Figure 2(c)). In addition, at any given point along the reaction 
coordinate, the interaction between indole and electron-rich aryl–
Pd(II) species (R = OMe) was stronger compared with the parent 
system (R = H), and that between indole and electron-deficient 
aryl–Pd(II) species (R = NO2) was even weaker. Moreover, the 
calculated NPA charges (Figure 2(d)) corroborated that the 
favorable electronic match between the bond-forming atom pairs 
was reinforced for the case of electron-rich aryl–Pd(II) species 
[between Cipso (-0.157) and C2 (0.316), R = OMe] but attenuated 
for the case of electron-deficient aryl–Pd(II) species [between Cipso 
(-0.083) and C2 (0.279), R = NO2]. In this regard, the influence of 
the electronic property of substrates to the regioselectivity and 
the reactivity could be well understood. 
Scheme 4 (a) Thermodynamics of the dearomatization process and (b) The 
proposed catalytic cycle. 

 

 
Figure 1 Optimized structures and relative Gibbs free energies (ΔG) of 
TS-A-5-III and TS-A-5-II in kcal/mol (relative to the direct precursor 
INT-A-5, see Table 2 for details). Calculated at M06/SDD/6-31+G** level of 
theory. Values in bold are bond distances in angstrom. Values in italic are 
NPA charges of the corresponding atoms. 

 
Figure 2 (a) to (c) Diagrams of activation energy ΔE(act), total distortion 
energy ΔE(dist), and interaction energy ΔE(int) in kcal/mol relative to the 
bond length of forming C2–Cipso bond for the system derived from 1a with 
2a (R = H), 2d (R = p-OMe), and 2k (R = p-NO2), respectively. Calculated 
based on the IRC plots of the insertion transition states obtained at 
M06/SDD/6-31G** level of theory. (d) NPA charges on certain atoms in 
the corresponding insertion transition states. Calculated at 
M06/SDD/6-31+G** level of theory. 

Table 2 Energy profiles for indole substrates with varied ring sizes.a 

N
Ac

Pd

DMA

NTf2

Ph

N
Ac

Ph

Pd NTf2

DMA

N
Ac

Ph

Pd NTf2

H

N
Ac

Ph

Pd NHTf2

H

N
Ac

Pd

DMA

NTf2

Ph

INT-A-n

TS-A-n

TS-B-n

INT-C-nINT-B-n

n

n

n

n
n

∆G

DMA

 

n INT-A-n TS-A-n INT-B-n TS-B-n INT-C-n 

4 0.0 3.1 -26.4 4.9 1.3 

5 0.0 6.1 -15.2 2.6 -0.4 

6 0.0 8.7 -12.6 0.6 -0.4 

acyclic 0.0 8.2 -13.6 -2.5 -3.2 
a Relative Gibbs free energies (ΔG) in kcal/mol are listed. Calculated at 
M06/SDD/6-31+G** level of theory. 

Finally, the influence of ring size of indole substrates to the 
reaction outcomes was investigated (Table 2). The energy profiles 
of the key transition states and intermediates for both insertion 
and β-hydride elimination steps for N-Ac 
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dihydrocyclobuta[b]indole, tetrahydrocyclopenta[b]indole, 
tetrahydrocarbazole (n = 4-6), and 2,3-dimethylindole (acyclic) 
were calculated. In all cases, the insertion of aryl–Pd(II) species 
across the C2=C3 double bond of the indole substrate is an 
irreversible step. Notably, the energy barriers of this step for N-Ac 
tetrahydrocarbazole (TS-A-6, 8.7 kcal/mol) and 2,3-dimethylindole 
(TS-A-acyclic, 8.2 kcal/mol), respectively, are very similar. When 
the fused ring of the indole substrates became smaller, the 
corresponding barrier height decreased (TS-A-5, 6.1 kcal/mol and 
TS-A-4, 3.1 kcal/mol). Accordingly, the stability of the following 
intermediates increased monotonously (INT-B-6, -12.6 kcal/mol; 
INT-B-5, -15.2 kcal/mol and INT-B-4, -26.4 kcal/mol). These trends 
confirmed our initial conjecture about the strain release of the 
small-ring-fused indole substrates which was probably caused by 
the favorable shift of the hybridization scenarios of C2 and C3 
from sp2 to sp3 during the insertion step. However, the extremely 
stable INT-B-4 hampered the subsequent β-hydride elimination 
step (TS-B-4, 31.3 kcal/mol relative to INT-B-4). Whereas this step 
was feasible in all other cases (TS-B-n, 11.1-17.8 kcal/mol relative 
to INT-B-n, n = 5, 6, and acyclic). Based on all these results, the 
uniqueness of tetrahydrocyclopenta[b]indole derivatives in the 
intermolecular dearomative Heck reactions became reasonable. 
The 5,5-bicyclic ring system was not only capable of releasing the 
ring-strain sufficiently for the dearomative intermolecular 
insertion (not available for tetrahydrocarbazole and 
2,3-dimethylindole systems), but also suitable for promoting the 
following β-hydride elimination to furnish the final products (not 
available for dihydrocyclobuta[b]indole system).17 

Conclusions 
In summary, we have developed the first Pd-catalyzed 

intermolecular dearomatization of indoles via Heck reaction. A 
series of indolines bearing a quaternary center could be accessed 
efficiently under mild conditions in good to excellent yields (up to 
93%) with exclusive regioselectivity. Detailed DFT calculations 
revealed that the successful execution of this unprecedented 
reaction design relied on the judicious regulation of the geometric 
and electronic properties of the substrates. The unique 
5,5-bicyclic ring system in tetrahydrocyclopenta[b]indole 
derivatives well balanced the feasibility of both insertion and 
β-hydride elimination steps. On the other hand, the electronic 
match of the bond-forming atom pairs in the insertion step 
guided the regioselectivity of the intermolecular Heck reaction. 
Further exploration on advancing the dearomatization of diverse 
aromatic systems via Heck reactions is currently underway in this 
laboratory. 

Experimental 
General procedure for intermolecular dearomative Heck re-

action. A flame-dried Schlenk tube was cooled to room tempera-
ture under argon. To this tube were added indole derivative (0.2 
mmol), Pd(OAc)2 (4.5 mg, 0.02 mmol), Na2HPO4•12H2O (143.3 mg, 
0.4 mmol), AgNTf2 (93.1 mg, 0.24 mmol), DMA (1.0 mL) and aryl 
iodide (0.3 mmol). The reaction mixture was stirred at 80 °C. After 
completion (monitored by TLC), the reaction mixture was cooled 
to room temperature and diluted with ethyl acetate (3 mL). The 

mixture was filtered through celite, and the filtrate was concen-
trated under reduced pressure. The crude product was purified by 
silica gel column chromatography (PE/EtOAc = 10/1) to afford the 
desired product. 

The full experimental details can be found in the Supporting 
Information. 

Computational methods. All the DFT calculations in this work 
were performed with Gaussian16.18 The density functional theory 
(DFT) method was employed using the M06 functional.19 The SDD 
basis set with the associated effective core potential was used for 
Pd, and the 6-31+G** basis sets for all other atoms unless other-
wise specified. Optimizations were conducted without any 
constraint using implicit solvation model (SMD)20 in DMA (ε = 
37.781). Frequency analyses were carried out to confirm each 
structure being a minimum (no imaginary frequency) or a 
transition state (only one imaginary frequency). The Gibbs free 
energies in DMA (ΔG) were discussed throughout this paper 
unless otherwise specified. The 3D images of the calculated 
structures were prepared using CYLview.21 

The full computational details can be found in the Supporting 
Information. 
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