Regiospecific ring-opening reactions of β -aziridinyl α , β -enoates with acids: application to the stereoselective synthesis of a couple of diastereoisomeric (*E*)-alkene dipeptide isosteres from a single β -aziridinyl α , β -enoate and to the convenient preparation of amino alcohols bearing α , β -unsaturated ester groups

Hirokazu Tamamura,* Masaki Yamashita, Yutaka Nakajima, Kyoko Sakano, Akira Otaka, Hiroaki Ohno, Toshiro Ibuka and Nobutaka Fujii*

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received (in Cambridge) 11th June 1999, Accepted 12 July 1999

Regio- and stereo-selective ring-opening reactions of *N*-(2,4,6-trimethylphenylsulfonyl)- γ , δ -*cis*- or -*trans*- γ , δ -epimino (*E*)- α , β -enoates with acids such as methanesulfonic acid (MSA) or trifluoroacetic acid (TFA) have been found. These ring-opening reactions are useful for the stereoselective synthesis of a couple of diastereomeric (*E*)-alkene dipeptide isosteres from a single substrate of γ , δ -epimino (*E*)- α , β -enoate, and for the convenient preparation of δ -aminated γ -hydroxy α , β -enoates.

Introduction

The potential of (*E*)-alkene dipeptide isosteres as backbone replacements of amide bonds in peptides has been well documented among various dipeptide isosteres in the past few years.¹ We² and others³ have recently reported that peptides containing (*E*)-alkene isosteres can exhibit potent biological activities. In order to facilitate structure-activity relationship studies on such peptide-lead candidates, development of new efficient methodology for the synthesis of (*E*)-alkene isosteres is needed. Since it has been reported that the stereochemistry at the α -position and the (*E*)-configuration are important for biological activity, the stereocontrolled synthesis of both isomers of types **2** and **4** from a single substrate of type **1** would be extremely valuable (Scheme 1). One advantage of such a strategy is that three other stereoisomeric enoates 5, 6, and 7 can be convergently transformed into the enoate 1 by exposure to a palladium(0)-catalyst (Scheme 1).⁴ We and others reported previously the two synthetic methods for diastereomerically pure (*E*)-alkene isosteres 2 and 8 by employing organocoppermediated *anti*-S_N2' reactions of β -aziridinyl α , β -enoate 1⁵ and δ -aminated γ -mesyloxy α , β -enoate 9,⁶ respectively.

As part of our investigations of peptide scaffold designs related to structure-activity relationship studies, we are particularly interested in ring-opening reactions of enoates of type 1 for the preparation of key intermediates 3 for the synthesis of dipeptide surrogates 4. In this paper, we detail the regio- and stereo-specific ring-opening reactions of β -aziridinyl α , β -

Scheme 1 R^1 , R^2 = alkyl; Ar = 4-methylphenyl or 2,4,6-trimethylphenyl, Ms = methanesulfonyl.

J. Chem. Soc., Perkin Trans. 1, 1999, 2983–2996 2983

This journal is © The Royal Society of Chemistry 1999

Scheme 2 Reagents: i, CH₃SO₃H; ii, CF₃CO₂H; iii, 2,2-dimethoxypropane, pyridinium toluene-*p*-sulfonate; Mts = 2,4,6-trimethylphenylsulfonyl.

enoates by methanesulfonic acid (MSA) and the stereoselective synthesis of (*E*)-alkene dipeptide isosteres by treatment of the ring-opened products with organocopper reagents.⁷ In addition, we also report our finding of similar ring-opening reactions by trifluoroacetic acid (TFA) and the application of such reactions to a convenient synthesis of homochiral δ -aminated γ -hydroxy α , β -enoates, such as a versatile building block for sphingosine synthesis.

The focus of this paper deals with regiospecific ringopening reactions of β -aziridinyl α , β -enoates and their applications.

Results and discussion

Ring-opening reactions of N-(2,4,6-trimethylphenylsulfonyl) (Mts)- γ , δ -epimino α , β -enoates with MSA or TFA

Although there exist ample precedents demonstrating that various nucleophiles,⁸ containing acids such as acetic acid,⁹ TFA ¹⁰ and toluene-*p*-sulfonic acid in aqueous acetone,¹¹ attack simple *N*-activated or inactivated aziridines¹² at either of two carbon atoms, yielding the corresponding ring-opened products, the practically useful reactions involving γ , δ -epimino α , β -enoates of type **1** with MSA or TFA have not been reported heretofore. We initially examined ring-opening reactions by MSA treatment of *N*-(2,4,6-trimethylphenylsulfonyl) (Mts)-protected (and activated) aziridines bearing α , β -unsaturated esters^{4,5} (Scheme 2). Exposure of the *N*-Mts- γ , δ -*cis*- γ , δ -epimino (*E*)- α , β -enoate **10**, which was previously synthesized from L-valine,⁴ to MSA (10 equiv.) in CHCl₃ at rt for 20 min afforded exclusively δ -aminated γ -mesyloxy α , β -enoate **11** in essentially quantitative yield, presumably *via* the regioselective

 S_N2 ring-opening reaction at the γ -carbon position. Furthermore, we investigated the feasibility of the ring-opening reactions by TFA treatment. The cis-(E)-enoate 10 was exposed to TFA at rt for 15 h to afford exclusively the δ -aminated γ -trifluoroacetoxy α,β -enoate 12. Hydrolysis of 12 and silica gel flash chromatographic purification yielded the δ -aminated γ -hydroxy α , β -enoate 13 in 93% yield based on 10 (Scheme 2). It was found that the MSA-mediated ring-opening reaction proceeded much faster than the reaction involving TFA. In both cases, ring-opened products generated by nucleophilic attack at the α - or δ -carbon position could not be detected. Regiochemical assignments for the mesyl ester 11 and the trifluoroacetate 12 were readily made by ¹H-NMR (¹H-¹H COSY). The γ,δ -syn stereochemistry of the ring-opened product 13 was confirmed by transformation of 13 into the original substrate 10 using the Mitsunobu conditions.¹³ Since the mesvl compound 11 was prone to regenerate the original substrate 10 during silica gel flash chromatographic purification, it could not be isolated in an analytically pure form.

Next, ring-opening of three other stereoisomeric enoates 14, 18 and 19, which were previously synthesized from L-valine,⁴ was investigated. Regiospecific ring-opening was successfully carried out on the *trans*-(*E*)-isomer of the aziridine enoate 14 with MSA or TFA treatment in a similar manner, yielding 15 or 17, respectively (the isolated yield of 17 based on 14: 91%). In both cases, ring-opened products generated by nucleophilic attack at the α - or δ -carbon position could not be detected. Regiochemical assignments for the mesyl ester 15 and the trifluoroacetate 16 were readily made by ¹H–¹H COSY. The γ , δ *anti* stereochemistry of the ring-opened product 17 was confirmed by transformation of 17 into the original substrate 14 using the Mitsunobu conditions.¹³ Furthermore, stereo-

Scheme 3 (a) *Reagents*: i, DIBAL; ii, oxalyl dichloride, DMSO, DIPEA; iii, vinylMgCl; iv, TFA; v, Mts-Cl, Et₃N; vi, Ph₃P, DEAD; vii, O₃, dimethyl sulfide; viii, Ph₃P=CHCO₂Me; ix, Pd(PPh₃)₄; (b) *Reagents*: i, TFA; ii, Mts-Cl, Et₃N; iii, Ph₃P, DEAD; vio, O₃, dimethyl sulfide; v, Ph₃P=CHCO₂Bn; vi, Pd(PPh₃)₄; (c) *Reagents*: i, Mts-Cl, Et₃N; iii, HOBt, WSCD, *N*, *O*-dimethylhydroxylamine hydrochloride; iii, DIBAL; iv, vinylMgCl; v, Ph₃P, DEAD; vi, O₃, dimethyl sulfide; viii, Ph₃P=CHCO₂Bn; viii, Pd(PPh₃)₄; (d) *Reagents*: i, vinylMgCl; ii, TFA, H₂O; iii, Mts-Cl, DIPEA; iv, BnBr, NaH; v, Ph₃P, DEAD; vi, O₃, dimethyl sulfide; viii, (EtO)₂P(O)CH₂CONHMe, DIPEA; viii, Pd(PPh₃)₄; ix, Ph₃P=CHCO₂Me.

chemical assignments for diastereomers 13 and 17 were also easily established by conversion to the acetonide derivatives 20 and 21, respectively. The NOE data by NMR analyses of 20 and 21 are in good agreement with their stereochemistry. On the other hand, attempted treatment of the *cis*-(*Z*)-enoate 18 and the *trans*-(*Z*)-enoate 19 with MSA or TFA failed to afford the desired ring-opened products and, instead, gave complex mixtures containing the γ -butenolactones, 22 and 23, respectively. This clearly demonstrates that a slight difference in the structure of the substituents can significantly change the reaction route. Since the enoates 18 and 19 can be converted into the enoate **10** via Pd(0)-catalyzed reactions,⁴ this ringopening reaction incurs no significant problems in terms of its practical use for the preparation of (*E*)-alkene isosteres, although our methodology is not applicable to the synthesis of (*Z*)-alkene isosteres.

Synthesis of the other requisite *N*-Mts- γ , δ -*cis*- γ , δ -epimino (*E*)- α , β -enoates (enamides)

As shown in Scheme 3, the diastereomerically pure *N*-Mts- γ , δ -*cis-\gamma*, δ -epimino (*E*)- α , β -enoates (enamides) **31**, **36**, **44**, **54** and

J. Chem. Soc., Perkin Trans. 1, 1999, 2983–2996 2985

55, which were required for the synthesis of (E)-alkene dipeptide isosteres (amino alcohols), were readily prepared according to the known methods.^{4,5} Boc-D-Phe-OMe 24 was treated successively with diisobutylaluminium hydride (DIBAL), oxalyl dichloride- dimethyl sulfoxide (DMSO)-N,Ndiisopropylethylamine (DIPEA) and vinylmagnesium chloride to give a separable 6:1 mixture of allyl alcohols 27 and 28. Exposure of 27 to TFA followed by successive treatments with Mts-Cl in the presence of triethylamine (Et₃N), triphenylphosphine-diethyl azodicarboxylate (DEAD), ozone, dimethyl sulfide and [(methoxycarbonyl)methylene]triphenylphosphorane afforded a mixture of the (2E)- and (2Z)-enoate 31 and 32. By a palladium(0)-catalyzed reaction,⁴ a mixture of 31 and 32 was converted into the cis-(E)-enoate 31 (for details, see Experimental section). Likewise, the allyl alcohol 33, which was previously synthesized,⁴ was treated successively with TFA, Mts-Cl-Et₃N, Ph₃P-DEAD, ozone, dimethyl sulfide, [(benzyloxycarbonyl)methylene]triphenylphosphorane and $Pd(PPh_3)_4$ to give the cis(E)-enoate 36. N^{ε} -2-Chlorophenylmethoxycarbonyl (Cl-Z)-protected Lys 37 was also successively treated with Mts-Cl-Et₃N, 1-hydroxybenzotriazole (HOBt)-3-[3-(dimethylamino)propyl]-1-ethylcarbodiimide (WSCD)-N,O-dimethylhydroxylamine hydrochloride, DIBAL, vinylmagnesium chloride, Ph₃P-DEAD, ozone, dimethyl sulfide, [(benzyloxycarbonyl)methylene]triphenylphosphorane and Pd(PPh₃)₄ to yield the cis-(E)-enoate 44. N-Boc-(S)-serinal acetonide 45 was successively treated with vinylmagnesium chloride, TFA-H₂O, Mts-Cl-DIPEA, benzyl bromide-sodium hydride and Ph₃P-DEAD to give a diastereomixture of vinylaziridines 52 and 53. Reaction of the mixture of 52 and 53 with ozone, dimethyl sulfide, N-methyl(diethylphosphono)acetamide-DIPEA and $Pd(PPh_3)_4$ gave the *cis*-(*E*)-enamide 54. Likewise, reaction of the mixture of 52 and 53 with ozone, dimethyl sulfide, [(methoxycarbonyl)methylene]triphenylphosphorane and Pd- $(PPh_3)_4$ gave the *cis*-(*E*)-enoate 55. The configuration of the γ - and δ -carbon centers and the (E)-stereochemistry for the double bonds in the above N-Mts- γ , δ -epimino α , β -enoates (enamide) were assigned on the basis of the NOE data and the coupling constants by NMR analyses.⁵

Synthesis of (E)-alkene dipeptide isosteres using the ring-opening reaction with MSA

We examined the feasibility of the stereoselective synthesis of (E)-alkene dipeptide isosteres by treatment of the ring-opened products with organocopper reagents. Treatment of the above mesyl compound 11, which was prepared from the cis(E)enoate 10 by the MSA-mediated ring-opening reaction, with BnCu(CN)MgCl·BF₃ (4 equiv.) in THF at -78 °C for 30 min yielded the protected (L-amino acid, D-amino acid)-type (2S,5S) dipeptide isostere, Mts-L-Val- ψ [(E)-CH=CH]-D-Phe-OMe, 56 in 94% yield based on 10 (diastereoselection > 99:1) from NMR analysis). This reaction occurred by an *anti*- $S_N 2'$ mechanism as shown in Scheme 4. In contrast, an anti-S_N2' reaction of the cis-(E)-enoate 10 with BnCu(CN)MgCl·2LiCl (4 equiv.) in THF at -78 °C for 30 min afforded the L,L-type (2R,5S) isostere, Mts-L-Val- $\psi[(E)$ -CH=CH]-L-Phe-OMe, 57 in 75% yield as shown in Scheme 4. The most important factor of the MSA-mediated ring-opening reactions is the inversion of configuration at the C- γ carbon via an S_N2 mechanism. Thus, cis(E) enoates lead to syn(E)-mesul esters, which are converted into L,D-type isosteres upon treatment with organocopper reagents. On the other hand, cis(E)-enoates themselves produce L,L-type isosteres with organocopper reagents. In a comparative experiment, the trans-(E)-enoate 14 was treated with MSA to afford the anti-(E)-mesyl compound 15, which was converted into the L,L-type isostere 57 with the organocopper reagent in 89% yield based on 14. In contrast, treatment of the trans-(E)-enoate 14 with the organocopper reagent afforded the L,D-type isostere 56 in 77% yield. Taken together, two types of

isosteres were stereoselectively synthesized from either the *cis*or *trans-(E)*-enoate.

We evaluated the applicability of this synthetic methodology to diverse aziridine cis(E)-enoates, such as D-amino acidderived aziridines and aziridines bearing other functional groups. In the same manner as described above, the cis-(E)enoate 31, which was derived from D-Phe, afforded the corresponding D,L-type isostere, Mts-D-Phe- ψ [(E)-CH=CH]-L-Leu-OMe, 59 or the D,D-type isostere, Mts-D-Phe- $\psi[(E)$ -CH=CH]-D-Leu-OMe, 60 by treatment with MSA and BuⁱCu(CN)MgCl·BF₃ or BuⁱCu(CN)MgCl·2LiCl, respectively. The benzyl ester-bearing aziridine 36 gave the corresponding L,D-type isostere, Mts-L-Leu- $\psi[(E)$ -CH=CH]-D-Phe-OBn, 62 or the L,L-type isostere, Mts-L-Leu- ψ [(*E*)-CH=CH]-L-Phe-OBn, 63 in a similar manner using MSA and BnCu(CN)MgCl·BF₃ or BnCu(CN)MgCl·2LiCl, respectively. The cis-(E)-enoate 44 derived from L-lysine, which possesses the N^ε-(Cl-Z)-protected amino group and the benzyl ester group, was also converted into the isostere, Mts-L-Lys(Cl-Z)- ψ [(E)-CH=CH]-D-Ala-OBn, 65 or Mts-L-Lys(Cl-Z)- ψ [(E)-CH=CH]-L-Ala-OBn, 66 by treatment with MSA and MeCu(CN)Li+LiBr+BF3 or MeCu(CN)Li+ LiBr·2LiCl, respectively. The cis-(E)-enamide 54 derived from L-serine, which possesses the benzyl ether group and the Nmethyl amide group, afforded the corresponding amide-type isostere, Mts-L-Ser(O-Bn)- ψ [(E)-CH=CH]-D-Ala-NHMe, 68 or Mts-L-Ser(O-Bn)- ψ [(E)-CH=CH]-L-Ala-NHMe, 69 by treatment with MSA and MeCu(CN)Li+LiBr+BF3 or MeCu(CN)Li+ LiBr·2LiCl, respectively. These results suggest that this synthetic method is widely applicable to various aziridinyl cis-(E)enoates and enamides. The (E)-geometry of the double bond in the obtained isosteres 56, 57, 59, 60, 62, 63, 65, 66, 68 and 69 was assigned on the basis of the coupling constant of the two olefinic protons by ¹H-NMR analyses. The absolute configuration of the α -alkylated carbon centers in the above isosteres was well characterized by circular dichroism (CD) measurements.5,6

Synthesis of a key intermediate compound for the preparation of sphingosines using the ring-opening reaction with TFA

The sphingosines are important constituents of cell membranes, which participate in cell recognition phenomena such as growth, differentiation and immune responses. The sphingosines **72** and **73** are long-chain amino alcohols, and there have been many

reports on their syntheses.^{10b,14} One important factor in the asymmetric synthesis of D-erythro- and L-threo-sphingosine 72 and 73 is the stereocontrol in the preparation of the 1,2-amino alcohol. We investigated the feasibility of the stereocontrolled preparation of a key intermediate compound for the sphingosine synthesis using the TFA-mediated ring-opening reaction of a β -aziridinyl α , β -enoate. Exposure of the enoate 55 to TFA at rt for 15 h afforded δ -aminated γ -trifluoroacetoxy α,β -enoate 70 by the regiospecific $S_N 2$ ring-opening reaction. The following hydrolysis of 70 yielded the δ -aminated γ -hydroxy α , β -enoate 71 in 71% yield based on 55 (Scheme 5). The amino alcohol 71 is a key intermediate compound for the L-threo-sphingosine 73 synthesis, and can be also converted into D-erythro-sphingosine 72 by suitable replacement of the N^{α} -protecting group and inversion of stereochemistry of the γ -hydroxy group using the Mitsunobu reaction.¹³ This result suggests that the TFA-mediated ring-opening reaction is useful for the convenient synthesis of the diastereometically pure δ -aminated

Scheme 5 Reagents and conditions: i, TFA; ii, hydrolysis.

 γ -hydroxy α , β -enoates as the key intermediates for several bioactive compounds.

In conclusion, regio- and stereo-specific ring-opening reactions of *N*-Mts-protected aziridines bearing α , β -unsaturated esters [*cis-(E)-* and *trans-(E)-*isomers] by MSA or TFA have been found. The MSA-mediated ring-opening reactions provide a useful approach to the stereoselective synthesis of both L,L-type (or D,D-type) and L,D-type (or D,L-type) (*E*)-alkene dipeptide isosteres from a single substrate of either a γ , δ -cis- or -*trans*- γ , δ -epimino (*E*)- α , β -unsaturated ester. L,D-Type and D,Ltype (E)-alkene dipeptide isosteres are also of comparable use to L,L-type and D,D-type isosteres in the field of medicinal chemistry. γ , δ -Epimino α , β -unsaturated esters can be easily prepared as a mixture of the cis(E)-, cis(Z)-, trans(E)- and trans-(Z)-isomers from the corresponding chiral amino aldehydes. Pd(0)-catalyzed equilibration reactions of various stereomers of γ , δ -epimino α , β -enoates could afford predominantly cis-(E)-isomers in high yields.⁴ Upon treatment with organocopper reagents, these would exclusively provide L,L-type (or D,D-type) (E)-alkene isosteres. Based on the above results, brief MSA treatment of cis-(E)- γ , δ -epimino α , β -unsaturated esters, gives γ, δ -syn- δ -aminated γ -mesyloxy (E)- α, β -enoates, which can be converted into L,D-type (or D,L-type) (E)-alkene isosteres via organocopper-BF3-mediated anti-SN2' reactions. Taken together, the completely stereocontrolled synthetic process for L,L-type, L,D-type, D,D-type and D,L-type (E)-alkene dipeptide isosteres starting from L-amino acid or D-amino acid has been established. Furthermore, the TFA-mediated ringopening reactions of cis-(E)-enoates have provided a useful methodology for the stereoselective synthesis of δ -aminated γ -hydroxy α,β -enoates such as a key intermediate compound for the sphingosine synthesis. Many of the existing methodologies for the synthesis of sphingosines are accompanied by difficulties in 1,2-amino alcohol stereocontrol.^{106,14} However, our procedure lacks such stereocontrol problems, since TFA-mediated stereoselective ring-opening reactions of β -aziridinyl α , β -enoates are unequivocally related to the stereochemistry of 1,2-amino alcohol construction.

Experimental

General

¹H NMR spectra were recorded using a JEOL EX-270 or a Bruker AC 300 spectrometer at 270 or 300 MHz ¹H frequency for samples in CDCl₃. Chemical shifts are reported in parts per million downfield from internal tetramethylsilane. Nominal (LRMS) and exact mass (HRMS) spectra were recorded on a JEOL JMS-01SG-2 or JMS-HX/HX 110A mass spectrometer. Optical rotations were measured in CHCl₃ with a JASCO DIP-360 digital polarimeter. CD spectra were measured in isooctane (2,2,4-trimethylpentane) at 24 °C with a JASCO J-720 spectropolarimeter. IR spectra were obtained on a Shimadzu Model IR-400 spectrometer. Mps were measured by a hot stage melting point apparatus and are uncorrected. For flash chromatography, silica gel 60 H (silica gel for thin-layer chromatography, Merck) and Wakogel C-200 (silica gel for column chromatography) were employed.

Reaction of methyl (2*E*,4*R*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 10 with MSA in CHCl₃

To a stirred solution of the *cis*-(*E*)-enoate **10** (151 mg, 0.430 mmol) in CHCl₃ (4.3 cm³) was added dropwise MSA (0.279 cm³, 4.30 mmol) at rt with stirring, and the stirring was continued for 20 min. The mixture was extracted with EtOAc and the extract was washed successively with 5% citric acid, water, 5% NaHCO₃ and water, and dried over MgSO₄. Concentration under reduced pressure gave the crude mesyl compound **11**, as a colourless oil (crude), $\delta_{\rm H}(270 \text{ MHz}; \text{CDCl}_3) 0.85$ (3 H, d, *J* 6.6, CMe), 0.89 (3 H, d, *J* 6.6, CMe), 1.88 (1 H, m, 6-H), 2.29 (3 H, s, CMe), 2.66 (6 H, s, CMe), 3.02 (3 H, s, SMe), 3.40 (1 H, m, 5-H), 3.71 (3 H, s, OMe), 4.83 (1 H, d, *J* 9.6, NH), 5.27 (1 H, m, 4-H), 6.03 (1 H, dd, *J* 15.5 and 1.3, CH=), 6.72 (1 H, dd, *J* 15.5 and 6.0, CH=) and 6.93 (2 H, s, ArH); *m/z* (FAB-LRMS) 448 (MH⁺), 446, 352, 254, 183, 167, 119 and 91 (base peak).

Reaction of methyl (2*E*,4*R*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 10 with TFA

The *cis*-(*E*)-enoate **10** (108 mg, 0.306 mmol) was dissolved in TFA (1 cm³) at rt and the solution was stirred for 15 h. Concentration under reduced pressure gave a crude product **12** as an oil. Hydrolysis, and purification by flash chromatography over silica gel with *n*-hexane–EtOAc (4:1) afforded the hydrolysate **13** (106 mg, 0.236 mmol, 71% yield based on **10**) as a crystalline mass.

Compound **12**, colourless oil (crude), $\delta_{\rm H}(270 \text{ MHz}; \text{CDCl}_3)$ 0.89 (3 H, d, *J* 6.9, CMe), 0.96 (3 H, d, *J* 6.9, CMe), 1.83 (1 H, m, 6-H), 2.29 (3 H, s, CMe), 2.63 (6 H, s, CMe), 3.49 (1 H, m, 5-H), 3.68 (3 H, s, OMe), 4.80 (1 H, d, *J* 8.9, NH), 5.64 (1 H, m, 4-H), 5.77 (1 H, dd, *J* 15.8 and 1.7, CH=), 6.57 (1 H, dd, *J* 15.8 and 5.3, CH=) and 6.91 (2 H, s, ArH); *m/z* (FAB-LRMS) 488 (MNa⁺), 466 (MH⁺), 352, 254, 183, 167, 119 and 91 (base peak).

Compound **13**, colourless crystals, mp 157–158 °C [from *n*-hexane–Et₂O (3:1)] (Found: C, 58.51; H, 7.31; N, 3.73. C₁₈H₂₇NO₅S requires C, 58.51; H, 7.37; N, 3.79%); $[a]_{D}^{27}$ –42.1 (*c* 0.569 in CHCl₃); $\delta_{\rm H}(270$ MHz; CDCl₃) 0.76 (3 H, d, *J* 6.6, CMe), 0.89 (3 H, d, *J* 6.9, CMe), 1.88 (1 H, m, 6-H), 2.28 (3 H, s, CMe), 2.62 (6 H, s, CMe), 2.69 (1 H, m, OH), 3.12 (1 H, m, 5-H), 3.69 (3 H, s, OMe), 4.33 (1 H, m, 4-H), 5.04 (1 H, m, NH), 5.94 (1 H, dd, *J* 15.5 and 1.7, CH=), 6.68 (1 H, dd, *J* 15.5 and

5.0, CH=) and 6.90 (2 H, s, ArH); m/z (FAB-LRMS) 392 (MNa⁺), 370 (MH⁺), 254, 183, 167, 119, 91 (base peak) and 72.

Methyl (2*E*,4*R*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 10 from 13 (confirmation of the γ , δ -*threo* stereochemistry of 13)

Ph₃P (13.4 mg, 0.0512 mmol) and DEAD (0.0202 cm³ of a 40% solution in toluene, 0.0512 mmol) were added to a stirred solution of the alcohol 13 (17.2 mg, 0.0466 mmol) in 0.2 cm³ of THF at 0 °C, and the mixture was stirred at this temperature for 30 min. The mixture was concentrated under reduced pressure to give an oil, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield 11.5 mg (0.0327 mmol, 70%) of compound 10, colourless crystals, mp 76-78 °C [from *n*-hexane–Et₂O (3:1)] (Found: C, 61.26; H, 7.18; N, 3.91. $C_{18}H_{25}NO_4S$ requires C, 61.51; H, 7.17; N, 3.99%); $[a]_D^{18} - 78.0$ (c 0.407 in CHCl₃); δ_H(270 MHz; CDCl₃) 0.79 (3 H, d, J 6.6, CMe), 0.87 (3 H, d, J 6.9, CMe), 1.42 (1 H, m, 6-H), 2.31 (3 H, s, CMe), 2.66 (1 H, dd, J 10.2 and 7.3, 5-H), 2.70 (6 H, s, CMe), 3.48 (1 H, t, J 7.1, 4-H), 3.74 (3 H, s, OMe), 6.09 (1 H, dd, J 15.5 and 1.0, CH=), 6.72 (1 H, dd, J 15.5 and 6.6, CH=) and 6.96 (2 H, s, ArH).

Reaction of methyl (2*E*,4*S*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 14 with MSA in CHCl₃

By use of a procedure similar to that described for the preparation of **11** from **10**, the *trans-*(*E*)-enoate **14** (120 mg, 0.342 mmol) was converted into the γ -mesyloxy- α , β -enoate **15** (colourless oil) by treatment with MSA in CHCl₃.

Compound **15**, colourless oil (crude), $\delta_{\rm H}(270 \text{ MHz; CDCl}_3)$ 0.79 (3 H, d, *J* 6.9, CMe), 0.93 (3 H, d, *J* 6.9, CMe), 1.85 (1 H, m, 6-H), 2.30 (3 H, s, CMe), 2.64 (6 H, s, CMe), 2.92 (3 H, s, SMe), 3.40 (1 H, m, 5-H), 3.76 (3 H, s, OMe), 4.80 (1 H, d, *J* 9.6, NH), 5.35 (1 H, m, 4-H), 6.07 (1 H, dd, *J* 15.8 and 1.7, CH=), 6.80 (1 H, dd, *J* 15.8 and 5.6, CH=) and 6.96 (2 H, s, ArH); *m/z* (FAB-LRMS) 448 (MH⁺), 446, 352, 254, 183 (base peak) and 119.

Reaction of methyl (2*E*,4*S*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 14 with TFA

By use of a procedure similar to that described for the preparation of **12** from **10**, the *trans-(E)*-enoate **14** (139 mg, 0.396 mmol) was converted into the γ -trifluoroacetoxy- α , β -enoate **16** (colourless oil) by treatment with TFA. Hydrolysis, and purification by flash chromatography gave the hydrolysate **17** (133.3 mg, 0.361 mmol, 91% yield) as a colourless oil.

Compound **16**, colourless oil (crude), $\delta_{\rm H}(270 \text{ MHz; CDCl}_3)$ 0.83 (3 H, d, *J* 6.6, CMe), 0.87 (3 H, d, *J* 7.0, CMe), 1.85 (1 H, m, 6-H), 2.30 (3 H, s, CMe), 2.59 (6 H, s, CMe), 3.51 (1 H, m, 5-H), 3.77 (3 H, s, OMe), 4.97 (1 H, d, *J* 9.5, NH), 5.53 (1 H, m, 4-H), 5.98 (1 H, dd, *J* 15.5 and 1.3, CH=), 6.78 (1 H, dd, *J* 15.8 and 5.6, CH=) and 6.94 (2 H, s, ArH); *m/z* (FAB-LRMS) 466 (MH⁺), 352, 290, 254, 183, 167, 119, 91 (base peak) and 72.

Compound 17, colourless oil [Found (FAB): $(M + H)^+$, 370.1693. $C_{18}H_{27}NO_5S$ requires M + H, 370.1688]; $[a]_D^{25} - 58.9$ (*c* 1.0 in CHCl₃); $\delta_H(270 \text{ MHz}; \text{CDCl}_3)$ 0.73 (3 H, d, J 6.6, CMe), 0.78 (3 H, d, J 7.0, CMe), 1.70 (1 H, m, 6-H), 2.30 (3 H, s, CMe), 2.64 (6 H, s, CMe), 3.06 (1 H, m, OH), 3.15 (1 H, m, 5-H), 3.75 (3 H, s, OMe), 4.51 (1 H, m, 4-H), 4.97 (1 H, m, NH), 6.16 (1 H, dd, J 15.5 and 1.7, CH=), 6.91 (1 H, dd, J 15.5 and 4.0, CH=) and 6.96 (2 H, s, ArH); *m*/*z* (FAB-LRMS) 392 (MNa⁺), 370 (MH⁺), 352, 254, 183, 167, 119, 91 (base peak) and 72.

Methyl (2*E*,4*S*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 14 from 17 (confirmation of the γ , δ -*erythro* stereochemistry of 17)

By use of a procedure similar to that described for the prepar-

ation of **10** from **13**, the alcohol **17** (32.0 mg, 0.0866 mmol) was converted into the *trans*-(*E*)-enoate **14** (20.8 mg, 0.0592 mmol, 68%) colourless crystals, mp 107–108 °C (from *n*-hexane) [Found (FAB): $(M + H)^+$, 352.1588. C₁₈H₂₅NO₄S requires M + H, 352.1582]; $[a]_{D}^{26}$ –11.0 (*c* 1.09 in CHCl₃); $\delta_{H}(270 \text{ MHz}; \text{CDCl}_3)$ 0.76 (3 H, d, *J* 6.9, CMe), 0.89 (3 H, d, *J* 6.6, CMe), 1.56 (1 H, m, 6-H), 2.30 (3 H, s, CMe), 2.69 (6 H, s, CMe), 2.90 (1 H, dd, *J* 7.6 and 4.0, 5-H), 3.14 (1 H, dd, *J* 10.2 and 4.0, 4-H), 3.75 (3 H, s, OMe), 6.13 (1 H, d, *J* 15.5, CH=), 6.94 (2 H, s, ArH) and 7.16 (1 H, dd, *J* 15.5 and 10.2, CH=); *m/z* (FAB-LRMS) 374 (MNa⁺), 352 (MH⁺), 320, 296 (base peak), 183, 168, 137 and 119.

Methyl (2*E*)-3-[(4*S*,5*S*)-2,2-dimethyl-4-methylethyl-*N*-(2,4,6-trimethylphenylsulfonyl)oxazolidin-5-yl]prop-2-enoate 20

To a stirred solution of 149 mg (0.402 mmol) of 13 in a mixture of 3 cm³ of toluene and 0.148 cm³ (1.21 mmol) of 2,2dimethoxypropane at rt was added 1.52 mg (6.03 µmol) of pyridinium toluene-p-sulfonate, and the mixture was gently refluxed for 3 h. The mixture was made alkaline with saturated NaHCO₃ solution and extracted with Et₂O. The extract was washed with water and dried over MgSO4. Concentration under reduced pressure gave a crystalline residue, which was flash chromatographed over silica gel with n-hexane-EtOAc (3:1) to yield 139 mg (0.339 mmol, 84%) of compound 20 as colourless crystals, mp 128-129 °C [from n-hexane-Et₂O (3:1)] (Found: C, 61.48; H, 7.46; N, 3.39. C₂₁H₃₁NO₅S requires C, 61.59; H, 7.63; N, 3.42%); $[a]_{D}^{28} - 115.6 (c \ 1.33 \text{ in CHCl}_3); \delta_{H}(300 \text{ MHz}; \text{CDCl}_3)$ 0.63 (3 H, d, J 6.6, CMe), 0.68 (3 H, d, J 6.9, CMe), 0.93 (1 H, m, 5-H), 1.81 (3 H, s, CMe), 1.84 (3 H, s, CMe), 2.36 (3 H, s, CMe), 2.69 (6 H, s, CMe), 3.78 (1 H, t, J 3.8, 4-H), 3.81 (3 H, s, OMe), 4.59 (1 H, m, 3-H), 6.07 (1 H, dd, J 15.7 and 1.7, CH=), 7.00 (2 H, s, ArH) and 7.08 (1 H, dd, J 15.7 and 4.8, CH=).

Methyl (2*E*)-3-[(4*S*,5*R*)-2,2-dimethyl-4-methylethyl-*N*-(2,4,6-trimethylphenylsulfonyl)oxazolidin-5-yl]prop-2-enoate 21

By use of a procedure similar to that described for the preparation of **20** from **13**, the alcohol **17** (120 mg, 0.326 mmol) was converted into the oxazolidinyl derivative **21** (86.2 mg, 0.211 mmol, 65%) as a colourless oil [Found (FAB): $(M + H)^+$, 410.1994. C₂₁H₃₁NO₅S requires M + H, 410.2001]; $[a]_D^{28} - 46.8$ (*c* 1.24 in CHCl₃); $\delta_H(300 \text{ MHz}; \text{CDCl}_3) 0.60$ (3 H, d, *J* 7.1, CMe), 0.65 (3 H, d, *J* 6.9, CMe), 0.89 (1 H, m, 5-H), 1.83 (3 H, s, CMe), 1.91 (3 H, s, CMe), 2.34 (3 H, s, CMe), 2.70 (6 H, s, CMe), 3.68 (1 H, dd, *J* 5.7 and 3.8, 4-H), 3.78 (3 H, s, OMe), 4.92 (1 H, m, 3-H), 6.21 (1 H, dd, *J* 15.6 and 1.8, CH=), 6.99 (2 H, s, ArH) and 7.08 (1 H, dd, *J* 15.7 and 4.5, CH=); *m/z* (FAB-LRMS) 410 (MH⁺), 366, 240, 183, 119 and 112 (base peak).

Reaction of methyl (2*Z*,4*R*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 18 with MSA in CHCl₃ and production of (4*S*,5*S*)-6-methyl-5-(2,4,6-trimethylphenyl-sulfonylamino)hept-2-en-4-olide 22

By use of a procedure similar to that described for the reaction of **10** with MSA in CHCl₃, the *cis*-(*Z*)-enoate **18** (238 mg, 0.675 mmol) was treated with MSA (6.08 mmol) in CHCl₃ to yield complex mixtures containing the γ -lactone ring-cyclized product **22** (59 mg, 0.175 mmol, 26%), which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (4:1).

Compound **22**, colourless crystals, mp 217–218 °C [from *n*-hexane–EtOAc (5:1)] (Found: C, 60.26; H, 6.66; N, 4.11. C₁₇H₂₃NO₄S requires C, 60.53; H, 6.82; N, 4.15%); [a]¹⁹ –181.4 (*c* 2.69 in CHCl₃); IR (CHCl₃) 3410, 3240, 2960, 1752, 1600, 1455, 1408, 1327, 1158, 1100, 1071, 1057, 1028, 910, 850, 815, 650 cm⁻¹; δ _H(270 MHz; CDCl₃) 0.87 (3 H, d, *J* 6.6, CMe), 0.97 (3 H, d, *J* 6.9, CMe), 1.93 (1 H, m, 6-H), 2.30 (3 H, s, CMe), 2.64 (6 H, s, CMe), 3.43 (1 H, m, 5-H), 4.64 (1 H, d, *J* 9.6, NH),

5.15 (1 H, m, 4-H), 5.86 (1 H, dd, *J* 5.6 and 2.0, CH=), 6.94 (2 H, s, ArH) and 7.11 (1 H, dd, *J* 5.6 and 1.3, CH=); *m*/*z* (FAB-LRMS) 338 (MH⁺), 254, 183 (base peak), 154, 137 and 119.

Reaction of methyl (2*Z*,4*R*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 18 with TFA

By use of a procedure similar to that described for the reaction of **10** with TFA, the *cis*-(Z)-enoate **18** (146 mg, 0.415 mmol) was treated with TFA to afford an inseparable complex mixture.

Reaction of methyl (2*Z*,4*S*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 19 with MSA in CHCl₃ and production of (4*R*,5*S*)-6-methyl-5-(2,4,6-trimethylphenyl-sulfonylamino)hept-2-en-4-olide 23

By use of a procedure similar to that described for the reaction of **10** with MSA in CHCl₃, the *trans-*(*Z*)-enoate **19** (256 mg, 0.727 mmol) was treated with MSA (6.55 mmol) in CHCl₃ to yield complex mixtures containing the γ -lactone ring-cyclized product **23** (142 mg, 0.419 mmol, 58%), which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (4:1).

Compound **23**, colourless oil [Found (FAB): $(M - H)^-$, 336.1279. $C_{17}H_{23}NO_4S$ requires M - H, 336.1269]; $[a]_D^{24} + 72.6$ (*c* 0.36 in CHCl₃); IR (CHCl₃) 3290, 2980, 2360, 1720, 1594, 1499, 1412, 1368, 1328, 1199, 1150, 1108, 1074, 1037, 918, 870, 846, 715, 660 cm⁻¹; $\partial_H(270 \text{ MHz}; \text{CDCl}_3)$ 0.76 (3 H, d, *J* 6.9, CMe), 0.94 (3 H, d, *J* 6.9, CMe), 1.90 (1 H, m, 6-H), 2.33 (3 H, s, CMe), 2.65 (6 H, s, CMe), 4.00 (1 H, m, 5-H), 4.03 (1 H, m, 4-H), 4.83 (1 H, d, *J* 9.6, NH), 5.99 (1 H, dd, *J* 9.6 and 1.7, CH=), 6.60 (1 H, ddd, *J* 9.6, 3.3 and 0.7, CH=) and 7.00 (2 H, s, ArH); *m/z* (FAB-LRMS) 338 (MH⁺), 254, 183 (base peak), 149, 119 and 115.

Reaction of methyl (2*Z*,4*S*,5*S*)-6-methyl-4,5-[*N*-(2,4,6-trimethylphenylsulfonyl)epimino]hept-2-enoate 19 with TFA and production of (4*R*,5*S*)-6-methyl-5-(2,4,6-trimethylphenylsulfonylamino)hept-2-en-4-olide 23

By use of a procedure similar to that described for the reaction of **10** with TFA, the *trans-*(*Z*)-enoate **19** (130 mg, 0.370 mmol) was treated with TFA (1 cm³) to yield complex mixtures containing the γ -lactone ring-cyclized product **23** (14.4 mg, 0.0427 mmol, 12%), which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (4:1).

Compound **23**, colourless oil [Found (FAB): $(M - H)^-$, 336.1268. $C_{17}H_{23}NO_4S$ requires M - H, 336.1270]; $[a]_D^{24} + 69.4$ (*c* 0.42 in CHCl₃); IR (CHCl₃) 3350, 2990, 2370, 1720, 1595, 1500, 1414, 1366, 1335, 1202, 1148, 1108, 1074, 1038, 920, 870, 842, 715, 664 cm⁻¹; δ_H (300 MHz; CDCl₃) 0.76 (3 H, d, *J* 6.8, CMe), 0.94 (3 H, d, *J* 6.9, CMe), 1.90 (1 H, m, 6-H), 2.33 (3 H, s, CMe), 2.64 (6 H, s, CMe), 3.97 (1 H, m, 5-H), 3.99 (1 H, m, 4-H), 4.98 (1 H, dd, *J* 9.4, NH), 5.98 (1 H, dd, *J* 9.8 and 1.7, CH=), 6.59 (1 H, ddd, *J* 9.8, 3.2 and 0.7, CH=) and 7.00 (2 H, s, ArH); *m/z* (FAB-LRMS) 336 [(M - H)⁻], 198 (base peak), 183, 153 and 151.

(R)-N-(tert-Butoxycarbonyl)phenylalaninol 25

DIBAL in *n*-hexane (73.8 cm³, 68.6 mmol; 0.93 mol dm⁻³ solution) was added dropwise to a stirred solution of the ester **24** (5 g, 17.9 mmol) in 20 cm³ of CH₂Cl₂ at -78 °C under argon. The mixture was allowed to warm to rt and stirring was continued for 3 h. The mixture was recooled to -78 °C, and saturated aq. NH₄Cl (10 cm³) was added dropwise with vigorous stirring. The inorganic salts were removed by filtration through Celite. The filtrate was extracted with EtOAc, and the extract was washed with water and dried over MgSO₄. The usual work-up and flash chromatography over silica gel with *n*-hexane–EtOAc (2:1) gave a crystalline mass. Recrystallization from *n*-hexane–EtOAc (3:1) gave 3.27 g (13.0 mmol,

(3*R*,4*R*)-4-[(*tert*-Butoxycarbonylamino)-5-phenylpent-1-en-3-ol 27 and (3*S*,4*R*)-4-(*tert*-butoxycarbonylamino)-5-phenylpent-1en-3-ol 28

To a stirred solution of oxalyl dichloride (6.54 cm³, 75 mmol) in dry CH₂Cl₂ (70 cm³) at -78 °C under argon was added dropwise a solution of DMSO (11.7 cm³, 165 mmol) in CH₂Cl₂ (20 cm³). After 20 min, a solution of the alcohol 25 (12.6 g, 50 mmol) in CH₂Cl₂ (20 cm³) was added to the above reagent at -78 °C, and the mixture was stirred for 1 h. DIPEA (52.3 cm³, 300 mmol) was added dropwise to the above mixture at -78 °C, and the mixture was stirred for 2 h with warming to 0 °C. The reaction was quenched with 20 cm³ of saturated aq. NH₄Cl at -78 °C with vigorous stirring. The mixture was extracted with Et₂O and the extract was washed successively with 5% citric acid, water, 5% NaHCO3 and water, and dried over MgSO₄. Concentration under reduced pressure gave the crude aldehyde 26 as a colourless oil. To a stirred solution of ZnCl₂ (27.3 g, 200 mmol) and LiCl (17.0 g, 400 mmol) in 200 cm³ of Et₂O at -78 °C was added via syringe 97.6 cm³ (200 mmol) of 2.05 mol dm⁻³ vinylmagnesium chloride in THF. After being stirred at this temperature for 10 min, a solution of the above crude aldehyde 26 in THF (50 cm³) was added dropwise to the mixture, and the mixture was allowed to warm to -40 °C and stirred at this temperature for 4 h, followed by quenching with 100 cm³ of aq. 0.05 mol dm⁻³ HCl. The mixture was concentrated under reduced pressure and extracted with EtOAc. Usual work-up led to a mixture of products as a colourless oil, which was separated by flash chromatography over silica gel eluting with n-hexane-EtOAc (5:1), yielding, in order of elution, 27 (6.31 g, 22.8 mmol, 46%) and 28 (1.05 g, 3.79 mmol, 8%).

Compound **27**, colourless crystals, mp 93–96 °C [from *n*-hexane–Et₂O (3:1)] (Found: C, 69.12; H, 8.46; N, 5.04. C₁₆H₂₃NO₃ requires C, 69.30; H, 8.36; N, 5.05%); $[a]_D^{20}$ +52.6 (*c* 0.966 in CHCl₃); $\delta_H(270 \text{ MHz}; \text{CDCl}_3)$ 1.38 (9 H, s, CMe), 2.30 (1 H, m, OH), 2.92 (2 H, m, CH₂), 3.80 (1 H, m, 4-H), 4.11 (1 H, m, 3-H), 4.77 (1 H, m, NH), 5.19 (1 H, ddd, *J* 10.2, 1.3 and 1.3, CHH=), 5.28 (1 H, ddd, *J* 17.2, 1.3 and 1.3, CHH=), 5.90 (1 H, ddd, *J* 17.2, 10.6 and 5.6, CH=) and 7.18–7.34 (5 H, m, Ph).

Compound **28**, colourless crystals, mp 120–122 °C [from *n*–hexane–Et₂O (3:1)] (Found: C, 69.26; H, 8.56; N, 5.02. $C_{16}H_{23}NO_3$ requires C, 69.30; H, 8.36; N, 5.05%); $[a]_D^{20} + 25.5$ (*c* 0.964 in CHCl₃); $\delta_H(270 \text{ MHz}; \text{CDCl}_3)$ 1.36 (9 H, s, CMe), 2.73 (1 H, dd, *J* 13.9 and 8.9, C*H*H), 2.85 (1 H, dd, *J* 14.2 and 5.3, CH*H*), 2.96 (1 H, m, OH), 3.97 (1 H, m, 4-H), 4.24 (1 H, m, 3-H), 4.56 (1 H, m, NH), 5.29 (1 H, ddd, *J* 10.6, 1.3 and 1.3, C*H*H=), 5.37 (1 H, ddd, *J* 17.2, 1.3 and 1.3, C*H*H=), 5.94 (1 H, ddd, *J* 17.2, 10.6 and 5.6, CH=) and 7.18–7.42 (5 H, m, Ph).

(3*R*,4*R*)-5-Phenyl-4-(2,4,6-trimethylphenylsulfonylamino)pent-1-en-3-ol 29

TFA (5 cm³) and anisole (0.969 cm³, 8.97 mmol) were added to 2.49 g (8.97 mmol) of the alcohol **27** at 0 °C, and the mixture was stirred for 2 h. The mixture was concentrated under reduced pressure to give an oily residue, which was washed with *n*-hexane. To the oil in 5 cm³ of CHCl₃ were added at 0 °C successively 3.7 cm³ (26.9 mmol) of Et₃N and 2.35 g (10.8 mmol) of Mts-Cl. After being stirred for 15 h, the mixture was made acidic with saturated aq. citric acid and extracted with EtOAc, and the extract was washed with water and dried over

MgSO₄. Purification by flash chromatography over silica gel with *n*-hexane–EtOAc (3:1) gave 2.12 g (5.91 mmol, 66%) of the *title compound* **29** as colourless crystals, mp 95–97 °C [from *n*-hexane–Et₂O (3:1)] (Found: C, 66.65; H, 6.97; N, 3.82. C₂₀H₂₅NO₃S requires C, 66.82; H, 7.01; N, 3.90%); $[a]_D^{27}$ +42.4 (*c* 0.932 in CHCl₃); δ_H (270 MHz; CDCl₃) 1.99 (1 H, d, *J* 3.6, OH), 2.28 (3 H, s, CMe), 2.56 (6 H, s, CMe), 2.67 (1 H, dd, *J* 13.5 and 6.3, CHH), 2.94 (1 H, dd, *J* 13.5 and 8.3, CHH), 3.44 (1 H, m, 4-H), 4.11 (1 H, m, 3-H), 4.96 (1 H, d, *J* 8.6, NH), 5.09 (1 H, m, CHH=), 5.61 (1 H, ddd, *J* 17.2, 10.6 and 5.9, CH=), 6.87 (2 H, s, ArH) and 7.00–7.18 (5 H, m, Ph).

(2*R*,3*S*)-2-Benzyl-*N*-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 30

Ph₃P (0.950 g, 3.62 mmol) and DEAD (0.570 cm³ of a 40%solution in toluene, 3.62 mmol) were added to a stirred solution of the alcohol 29 (1.18 g, 3.29 mmol) in 3 cm³ of THF at 0 °C, and the mixture was stirred at this temperature for 30 min. The mixture was concentrated under reduced pressure to give an oil, which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (3:1) to yield 1.11 g (3.26 mmol, 99%)of compound 30 as colourless crystals, mp 72-73 °C [from n-hexane-Et₂O (3:1)] (Found: C, 70.20; H, 6.82; N, 3.96. $C_{20}H_{23}NO_2S$ requires C, 70.35; H, 6.79; N, 4.10%); $[a]_D^{27} + 26.2$ (c 0.910 in CHCl₃); $\delta_{\rm H}$ (270 MHz; CDCl₃) 2.28 (3 H, s, CMe), 2.58 (6 H, s, CMe), 2.64 (1 H, dd, J 14.5 and 7.6, CHH), 2.75 (1 H, dd, J 14.5 and 5.6, CHH), 3.09 (1 H, ddd, J 7.6, 7.6 and 5.6, 2-H), 3.47 (1 H, m, 3-H), 5.37 (1 H, m, CHH=), 5.50 (1 H, m, CHH=), 5.78 (1 H, ddd, J 16.8, 10.6 and 6.6, CH=), 6.84 (2 H, s, ArH) and 6.94-7.14 (5 H, m, Ph).

Methyl (2*E*,4*S*,5*R*)-6-phenyl-4,5-[*N*-(2,4,6-trimethylphenyl-sulfonyl)epimino]hex-2-enoate 31

 O_3 was bubbled through a solution of the vinylaziridine **30** (1.02) g, 2.98 mmol) in 15 cm³ of MeOH–CHCl₃ (3:1) at -78 °C until a blue colour persisted. Nitrogen was bubbled through the solution with stirring for 30 min during which time it was allowed to warm to 0 °C. To the solution at 0 °C was added dimethyl sulfide (0.240 cm³, 3.28 mmol), and the mixture was stirred for 30 min. Concentration under reduced pressure left an oily residue, which was dissolved in CHCl₃ (10 cm³). To the mixture at 0 °C was added [(methoxycarbonyl)methylene]triphenylphosphorane (1.99 g, 5.96 mmol), and the mixture was stirred for 2 h. The mixture was concentrated under reduced pressure to leave a semisolid, which was extracted with EtOAc and the extract was washed successively with 1 mol dm⁻³ HCl, water, saturated aq. NaHCO3 and water, and dried over MgSO₄. Concentration under reduced pressure gave a residue, which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (5:1) to give a mixture of the enoates **31** and 32, which was dissolved in 10 cm³ of dry THF, and to the mixture at 0 °C under argon was added by syringe with stirring a solution of $Pd(PPh_3)_4$ (147 mg, 0.128 mmol, 5 mol%) in 5 cm³ of dry THF. After 4 h, the mixture was allowed to warm to rt, and the stirring was continued for a further 15 h. Purification by flash chromatography over silica gel with n-hexane-EtOAc (5:1) and recrystallization from *n*-hexane gave 577 mg (1.44 mmol, 57% yield based on 30) of the cis-(E)-enoate 31 as colourless crystals, mp 54-55 °C (from n-hexane) (Found: C, 65.99; H, 6.24; N, 3.49. C₂₂H₂₅NO₄S requires C, 66.14; H, 6.31; N, 3.51%); $[a]_{D}^{19}$ +64.9 (c 0.575 in CHCl₃); δ_{H} (270 MHz; CDCl₃) 2.30 (3 H, s, CMe), 2.57 (6 H, s, CMe), 2.64 (1 H, dd, J 14.6 and 8.4, CHH), 2.76 (1 H, dd, J 14.6 and 5.1, CHH), 3.19 (1 H, m, 5-H), 3.56 (1 H, m, 4-H), 3.77 (3 H, s, OMe), 6.20 (1 H, dd, J 15.8 and 1.0, CH=), 6.85 (1 H, dd, J 15.8 and 6.6, CH=), 6.86 (2 H, s, ArH) and 6.92-7.12 (5 H, m, Ph); m/z (FAB-LRMS) 400 (MH⁺), 216, 183 (base peak), 119 and 91.

(3S,4S)-6-Methyl-4-(2,4,6-trimethylphenylsulfonylamino)hept-1-en-3-ol 34

By use of a procedure identical with that described for the preparation of 29 from 27, the known alcohol 33 (3.63 g, 14.9 mmol) was converted into 3.99 g (12.3 mmol, 82%) of the title compound 34, as colourless crystals, mp 137-138 °C [from n-hexane-Et₂O (3:1)] (Found: C, 62.77; H, 8.45; N, 4.27. $C_{17}H_{27}NO_3S$ requires C, 62.74; H, 8.36; N, 4.30%); $[a]_D^{25} - 14.1$ (c 0.951 in CHCl₃); $\delta_{\rm H}$ (270 MHz; CDCl₃) 0.69 (3 H, d, J 6.3, CMe), 0.78 (3 H, d, J 6.6, CMe), 1.23 (1 H, m, CHH), 1.40 (1 H, m, CHH), 1.44 (1 H, m, 6-H), 2.07 (1 H, d, J 4.0, OH), 2.30 (3 H, s, CMe), 2.63 (6 H, s, CMe), 3.29 (1 H, m, 4-H), 4.05 (1 H, m, 3-H), 4.75 (1 H, d, J 9.2, NH), 5.07 (1 H, m, CHH=), 5.20 (1 H, m, CHH=), 5.68 (1 H, ddd, J 17.2, 10.6 and 6.6, CH=) and 6.94 (2 H, s, ArH).

(2S,3R)-2-(2-Methylpropyl)-N-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 35

By use of a procedure identical with that described for the preparation of **30** from **29**, the alcohol **34** (1.04 g, 3.18 mmol) was converted into 0.963 g (3.13 mmol, 98%) of the title compound 35, as a colourless oil [Found (FAB): $(M + H)^+$, 308.1678. C₁₇H₂₅NO₂S requires M + H, 308.1684]; $[a]_{D}^{25} - 3.12$ (c 0.915 in CHCl₃); δ_H(270 MHz; CDCl₃) 0.85 (3 H, d, J 5.3, CMe), 0.87 (3 H, d, J 5.3, CMe), 1.30 (1 H, m, CHH), 1.38 (1 H, m, CHH), 1.56 (1 H, m, CH), 2.30 (3 H, s, CMe), 2.69 (6 H, s, CMe), 2.96 (1 H, ddd, J 13.5, 7.3 and 0.5, 2-H), 3.35 (1 H, t, J 7.3, 3-H), 5.25 (1 H, m, CHH), 5.34 (1 H, m, CHH), 5.61 (1 H, ddd, J 17.2, 10.2 and 6.9, CH=) and 6.94 (2 H, s, ArH); m/z (FAB-LRMS) 308 (MH⁺), 306, 183 (base peak), 124 and 119.

Benzyl (2E,4R,5S)-7-methyl-4,5-[N-(2,4,6-trimethylphenylsulfonyl)epimino]oct-2-enoate 36

By use of a procedure similar to that described for the preparation of 31 from 30, the vinylaziridine 35 (0.928 mg, 3.02 mmol) was converted into 886 mg (2.01 mmol, 70% yield based on 35) of the title compound 36 by successive treatments with O_3 in CHCl₃-n-hexane (1:1) at -78 °C for 30 min, dimethyl sulfide (2.21 mmol), [(benzyloxycarbonyl)methylene]triphenylphosphorane (6.04 mmol) in CHCl₃ at 0 °C for 15 h, and Pd(PPh₃)₄ (0.167 mmol) in THF at rt for 17 h.

Compound 36, colourless crystals, mp 81-82 °C (from nhexane) (Found: C, 67.90; H, 7.20; N, 2.88. C25H31NO4S requires C, 68.00; H, 7.08; N, 3.17%); $[a]_{D}^{26} - 2.47$ (c 2.41 in CHCl₃); $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.83 (3 H, d, J 6.7, CMe), 0.86 (3 H, d, J 6.8, CMe), 1.32 (2 H, m, 6-H₂), 1.53 (1 H, m, 7-H), 2.30 (3 H, s, CMe), 2.68 (6 H, s, CMe), 3.05 (1 H, m, 5-H), 3.43 (1 H, m, 4-H), 5.17 (2 H, s, CH₂), 6.08 (1 H, dd, J 15.6 and 0.9, CH=), 6.72 (1 H, dd, J 15.6 and 6.9, CH=), 6.95 (2 H, s, ArH) and 7.32-7.39 (5 H, m, Ph).

(2S)-6-(2-Chlorophenylmethoxycarbonylamino)-N-methoxy-Nmethyl-2-(2,4,6-trimethylphenylsulfonylamino)hexanamide 38

To a stirred solution of N^{ε} -(Cl-Z)-protected (S)-lysine 37 (3 g, 9.53 mmol) and Et₃N (3.31 cm³, 23.8 mmol) in H₂O (10 cm³) at 0 °C was added 2.50 g (11.4 mmol) of Mts-Cl. After being stirred for 15 h, the mixture was made acidic with saturated aq. citric acid and extracted with EtOAc and the extract was washed with water and dried over MgSO₄ to give a crude N^{u} and N^{ε} -protected lysine as a colourless oil. To a stirred solution of the above N^{α} - and N^{ε} -protected lysine in DMF (10 cm³) at 0 °C were added HOBt (1.61 g, 10.5 mmol), WSCD (1.82 cm³, 10.5 mmol) and N,O-dimethylhydroxylamine hydrochloride (1.02 g, 10.5 mmol). After being stirred at rt for 15 h, the solution was concentrated under reduced pressure and extracted with EtOAc. The extract was washed successively with 5% citric acid, water, 5% NaHCO3 and water, and dried over MgSO4.

Usual work-up and flash chromatography over silica gel with n-hexane-EtOAc (3:1) gave 3.78 g (7.00 mmol, 74%) of the title compound 38 as a colourless crystalline mass, mp 111-113 °C [from *n*-hexane-Et₂O (5:1)] (Found: C, 55.64; H, 6.51; N, 7.58. C₂₅H₃₄ClN₃O₆S requires C, 55.66; H, 6.35; N, 7.78%); $[a]_{D}^{21}$ +14.7 (c 1.39 in CHCl₃); $\delta_{H}(270 \text{ MHz}; \text{ CDCl}_{3})$ 1.30 (4 H, m, CH₂), 1.57 (2 H, m, CH₂), 2.27 (3 H, s, CMe), 2.65 (6 H, s, CMe), 2.98 (3 H, s, NMe), 3.13 (2 H, m, CH₂), 3.51 (3 H, s, OMe), 4.16 (1 H, m, 2-H), 4.85 (1 H, m, NH), 5.21 (2 H, s, CH₂), 5.59 (1 H, d, J 9.6, NH), 6.92 (2 H, s, ArH) and 7.24-7.45 (4 H, m, ArH); m/z (FAB-LRMS) 540 (MH⁺), 496, 398, 353 (base peak), 309, 252, 208, 183, 127, 125, 119, 91 and 84.

(3S,4S)-8-(2-Chlorophenylmethoxycarbonylamino)-4-(2,4,6-trimethylphenylsulfonylamino)oct-1-en-3-ol 40 and (3R,4S)-8-(2chlorophenylmethoxycarbonylamino)-4-(2,4,6-trimethylphenylsulfonylamino)oct-1-en-3-ol 41

To a stirred solution of the amide 38 (3 g, 5.56 mmol) in dry THF (10 cm³) under argon at -78 °C with stirring was added via syringe 22 cm³ (22.2 mmol) of a 1.01 mol dm⁻³ solution of DIBAL in toluene, and the stirring was continued for 1.5 h. EtOAc (2 cm³) and MeOH (2 cm³) were added successively to the above mixture at -78 °C, and the stirring was continued at -78 °C for 30 min followed by addition with 1 mol dm⁻³ aq. HCl (20 cm³). After being stirred at 0 °C for 20 min, the mixture was extracted with EtOAc and the extract was washed with water and dried over MgSO₄. Usual work-up gave the crude aldehyde 39 (colourless oil). By use of a procedure similar to that described for the preparation of 27 and 28 from 26, the above crude aldehyde 39 was converted into allyl alcohols 40 and 41 (diastereomixture 2.71 g, 5.31 mmol, 96%) as a colourless oil by treatment with ZnCl₂ (22.2 mmol), LiCl (22.2 mmol), and 1.47 mol dm⁻³ vinylmagnesium chloride (22.2 mmol) in THF at 0 °C for 4 h.

Compounds 40 and 41, colourless oil (diastereomixture), [Found (FAB): $(M + H)^+$, 509.1866. $C_{25}H_{33}ClN_2O_5S$ requires *M* + H, 509.1877]; *m*/*z* (FAB-LRMS) 509 (MH⁺), 465, 367, 349 (base peak), 252, 208, 183, 167, 125 and 119.

(2S,3R)-2-[4-(2-Chlorophenylmethoxycarbonylamino)butyl]-N-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 42 and (2S,3S)-2-[4-(2-chlorophenylmethoxycarbonylamino)butyl]-N-(2,4,6trimethylphenylsulfonyl)-3-vinylaziridine 43

By use of a procedure similar to that described for the preparation of 30 from 29, the diastereomixtures 40 and 41 (2.34 g, 4.60 mmol) were converted into vinylaziridines 42 and 43 (diastereomixture 1.96 g, 3.98 mmol, 87%) as a colourless oil [Found (FAB): $(M + H)^+$, 491.1775. $C_{25}H_{31}CIN_2O_4S$ requires *M* + H, 491.1772]; *m*/*z* (FAB-LRMS) 491 (MH⁺), 349, 308, 252 (base peak), 208, 183, 167, 125, 119 and 91.

Benzyl (2E,4R,5S)-9-(2-chlorophenylmethoxycarbonylamino)-4,5-[(2,4,6-trimethylphenylsulfonyl)epimino]non-2-enoate 44

By use of a procedure similar to that described for the preparation of 36 from 35, the diastereomixtures 42 and 43 (1.91 g, 3.90 mmol) were converted into the cis(E)-enoate 44 [951] mg, 1.52 mmol, 39% (3 steps)] as a colourless oil, [Found (FAB): $(M + H)^+$, 625.2133. $C_{33}H_{37}ClN_2O_6S$ requires M + H, 625.2139]; $[a]_{D}^{24}$ -43.5 (c 1.51 in CHCl₃); $\delta_{H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.24 (2 H, m, CH₂), 1.40 (2 H, m, CH₂), 1.50 (2 H, m, CH₂), 2.28 (3 H, s, CMe), 2.67 (6 H, s, CMe), 2.95 (1 H, m, 5-H), 3.06 (2 H, dd, J 12.9 and 6.4, CH₂), 3.46 (1 H, m, 4-H), 4.73 (1 H, m, NH), 5.16 (2 H, s, CH₂), 5.20 (2 H, s, CH₂), 6.09 (1 H, dd, J 15.6 and 1.0, CH=), 6.71 (1 H, dd, J 15.6 and 6.7, CH=), 6.94 (2 H, s, ArH) and 7.21–7.43 (9 H, m, ArH); m/z (FAB-LRMS) 625 (MH⁺), 441, 252 (base peak), 208, 154, 136, 125, 119 and 91.

By use of a procedure similar to that described for the preparation of **27** and **28** from **26**, the aldehyde **45** (3.95 g, 17.2 mmol) was converted into allyl alcohols **46** and **47** (diastereomixture 2.91 g, 11.3 mmol, 59%) as a colourless oil by treatment with ZnCl₂ (51.6 mmol), LiCl (51.6 mmol), and 1.60 mol dm⁻³ vinylmagnesium chloride (51.6 mmol) in THF at 0 °C for 4 h.

Compounds **46** and **47**, colourless oil (diastereomixture) [Found (FAB): $(M + H)^+$, 258.1710. $C_{13}H_{23}NO_4$ requires M + H, 258.1705]; m/z (FAB-LRMS) 258 (MH⁺), 202, 200, 189, 184 (base peak), 144, 131, 100 and 57.

(2S,3S)-2-(2,4,6-Trimethylphenylsulfonylamino)pent-4-ene-1,3-diol 48 and (2S,3R)-2-(2,4,6-trimethylphenylsulfonylamino)pent-4-ene-1,3-diol 49

TFA (15 cm³) and H₂O (2.11 cm³, 117 mmol) were added to 3.02 g (11.7 mmol) of the allyl alcohols **46** and **47** (diastereomixture) at 0 °C, and the mixture was stirred for 1 h. The mixture was concentrated under reduced pressure to give an oily residue, which was washed with *n*-hexane. To the oil in 10 cm³ of CHCl₃ were added at 0 °C successively 3.99 cm³ (23.5 mmol) of DIPEA and 4.62 g (21.1 mmol) of Mts-Cl. After being stirred for 15 h, the mixture was made acidic with saturated aq. citric acid and extracted with EtOAc and the extract was washed with water and dried over MgSO₄. Purification by flash chromatography over silica gel with *n*-hexane–EtOAc (2:3) gave 1.86 g (6.21 mmol, 53%) of the diastereomixture of **48** and **49** as a colourless oil [Found (FAB): (M + H)⁺, 300.1263. C₁₄H₂₁NO₄S requires *M* + H, 300.1269]; *m/z* (FAB-LRMS) 300 (MH⁺), 282, 252 (base peak), 242, 183 and 119.

(3*S*,4*S*)-5-Benzyloxy-3-hydroxy-4-(2,4,6-trimethylphenylsulfonylamino)pent-1-ene 50 and (3*R*,4*S*)-5-benzyloxy-3-hydroxy-4-(2,4,6-trimethylphenylsulfonylamino)pent-1-ene 51

Sodium hydride (198 mg of 60% dispersion in mineral oil, 4.94 mmol) was added to a stirred solution of the diastereomixture of **48** and **49** (672 mg, 2.42 mmol) in 3 cm³ of THF at -40 °C, and the mixture was stirred for 30 min with warming to 0 °C. To the above mixture at 0 °C was added dropwise benzyl bromide (0.294 cm³, 2.47 mmol), and the mixture was stirred for 2 h. The reaction was quenched with 5 cm³ of saturated NaHCO₃ at 0 °C. The mixture was extracted with EtOAc and the extract was washed successively with water, 1 mol dm⁻³ HCl, water, 5% NaHCO₃ and water, and dried over MgSO₄. Concentration under reduced pressure gave a residue, which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (2:1) to give 483 mg (1.24 mmol, 55%) of the diastereomixture of the alcohols **50** and **51**.

Compounds **50** and **51**, colourless oil (diastereomixture) [Found (FAB): $(M + H)^+$, 390.1747. $C_{21}H_{27}NO_4S$ requires M + H, 390.1739]; m/z (FAB-LRMS) 390 (MH⁺), 242 (base peak), 183, 149, 119 and 91.

(2*R*,3*R*)-2-(Benzyloxymethyl)-*N*-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 52 and (2*R*,3*S*)-2-(benzyloxymethyl)-*N*-(2,4,6-trimethylphenylsulfonyl)-3-vinylaziridine 53

By use of a procedure identical with that described for the preparation of **30** from **29**, the mixture of the alcohols **50** and **51** (760 mg, 1.95 mmol) was converted into 640 mg (1.72 mmol, 88%) of the diastereomixture of the vinylaziridines **52** and **53** as a colourless oil [Found (FAB): $(M + H)^+$, 372.1626. C₂₁H₂₅NO₃S requires M + H, 372.1634]; m/z(FAB-LRMS) 372 (MH⁺), 302, 264 (base peak), 188, 183, 119 and 91.

(2*E*,4*R*,5*R*)-6-Benzyloxy-*N*-methyl-4,5-[(2,4,6-trimethylphenyl-sulfonyl)epimino]hex-2-enamide 54

By use of a procedure identical with that described for the preparation of the corresponding aldehyde from 30, the mixture of the vinylaziridines 52 and 53 (580 mg, 1.56 mmol) was converted into the crude diastereomixture of the corresponding aldehydes. To a stirred solution of LiCl (159 mg, 3.75 mmol) in 2 cm³ of CH₃CN at 0 °C was added via syringe DIPEA (0.652 cm³, 3.75 mmol) and a CH₃CN solution (5 cm³) of diethoxphosphoryl-N-methylacetamide (791 mg, 3.75 mmol), which was prepared by treatment of ethyl diethyloxyphosphorylacetate with methylamine (5 equiv.) in MeOH, and the mixture was stirred at this temperature for 30 min. To the mixture at 0 °C was added dropwise a solution of the above crude aldehydes in CH₃CN (3 cm³), and the stirring was continued at rt for 12 h. The mixture was concentrated under reduced pressure to leave a semisolid, which was extracted with EtOAc and the extract was washed successively with water, 1 mol dm⁻³ HCl, water, saturated aq. NaHCO₃ and water, and dried over MgSO₄. Concentration under reduced pressure gave a residue, which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (5:1) to give a mixture of the enamide 54 and its diastereoisomer. The diastereomixture was treated with Pd(PPh₃)₄ (0.042 mmol, 5 mol%) by use of a procedure identical with that described for the preparation of the cis(E)-enoate 31 from the mixture of 31 and 32 to give 232 mg [0.541 mmol, 35% (3 steps)] of the *cis*-(*E*)-enamide 54 as a colourless oil [Found (FAB): $(M + H)^+$, 429.1841. $C_{23}H_{28}N_2O_4S$ requires M + H, 429.1848]; $[a]_D^{21} - 54.4$ (c 1.06 in CHCl₃); $\delta_{\rm H}$ (300 MHz; CDCl₃) 2.29 (3 H, s, CMe), 2.68 (6 H, s, CMe), 2.86 (3 H, d, J 4.9, NMe), 3.22 (1 H, m, 5-H), 3.45 (1 H, dd, J 11.1 and 6.5, CHH), 3.52 (1 H, m, 4-H), 3.53 (1 H, dd, J 11.1 and 5.5, CHH), 4.36 (2 H, s, CH₂), 5.52 (1 H, d, J 4.7, NH), 6.04 (1 H, dd, J 15.2 and 0.9, CH=), 6.57 (1 H, dd, J 15.2 and 6.9, CH=), 6.94 (2 H, s, ArH) and 7.10-7.33 (5 H, m, Ph); *m*/*z* (FAB-LRMS) 429 (MH⁺), 154 (base peak), 119 and 91.

Methyl (2*E*,4*R*,5*R*)-6-benzyloxy-4,5-[(2,4,6-trimethylphenyl-sulfonyl)epimino]hex-2-enoate 55

By use of a procedure identical with that described for the preparation of **31** from **30**, the mixture of the vinylaziridines **52** and **53** (1.27 g, 3.42 mmol) was converted into the *cis*-(*E*)-enoate **55** [(526 mg, 1.23 mmol, 36% (3 steps)] as a colourless oil [Found (FAB): $(M + H)^+$, 430.1691. $C_{23}H_{27}NO_5S$ requires M + H, 430.1688]; $[a]_D^{24} - 66.9 (c \ 0.352 \text{ in CHCl}_3); \delta_H(300 \text{ MHz}; \text{CDCl}_3) 2.29 (3 H, s, CMe), 2.68 (6 H, s, CMe), 3.27 (1 H, m, 5-H), 3.49 (2 H, m, CH_2), 3.51 (1 H, m, 4-H), 3.73 (3 H, s, OMe), 4.36 (1 H, d,$ *J*12.0,*CHH*), 4.41 (1 H, d,*J*12.0,*CHH*), 6.08 (1 H, dd,*J*15.6 and 0.9, CH=), 6.67 (1 H, dd,*J*15.6 and 6.8, CH=), 6.95 (2 H, s, ArH) and 7.13–7.33 (5 H, m, Ph);*m/z*(FAB-LRMS) 430 (MH⁺), 400, 246, 217, 183, 167 (base peak), 119 and 91.

Mts-L-Val- ψ [(*E*)-CH=CH]-D-Phe-OMe 56 prepared from 10

To a stirred slurry of CuCN (154 mg, 1.72 mmol) in 3 cm³ of dry THF under argon at -78 °C was added by syringe 1.37 cm³ (1.72 mmol) of 1.25 mol dm⁻³ BnMgCl in THF, and the mixture was allowed to warm to 0 °C and was stirred at this temperature for 15 min. BF₃·Et₂O (0.211 cm³, 1.72 mmol) was added to the above mixture at -78 °C and the mixture was stirred for 5 min. A solution in dry THF (1 cm³) of the crude mesyl compound **11**, which was prepared from the *cis*-(*E*)enoate **10** (151 mg, 0.430 mmol) by the MSA treatment, was added dropwise to the above reagent at -78 °C with stirring, and the stirring was continued for 30 min followed by quenching with 2 cm³ of a 1:1 saturated aq. NH₄Cl-28% NH₄OH solution. The mixture was extracted with Et₂O and the extract was washed with water and dried over MgSO₄. Concentration under reduced pressure gave a colourless oil, which was purified by flash chromatography over silica gel with *n*-hexane–EtOAc (3:1) to yield 179 mg (0.404 mmol, 94% yield based on **10**) of **56** as a colourless oil [Found (FAB): $(M - H)^-$, 442.2056. C₂₅H₃₃NO₄S requires M - H, 442.2052]; [a]²⁷₂₇ +14.3 (*c* 1.0 in CHCl₃); $\Delta \epsilon$ +2.95 (217 nm, isooctane); $\delta_{H}(270 \text{ MHz; CDCl}_{3})$ 0.69 (3 H, d, *J* 7.3, CMe), 0.72 (3 H, d, *J* 7.3, CMe), 1.66 (1 H, m, 6-H), 2.28 (3 H, s, CMe), 2.53 (1 H, dd, *J* 13.5 and 7.6, CHH), 2.59 (6 H, s, CMe), 2.90 (1 H, dd, *J* 13.5 and 7.6, CHH), 3.05 (1 H, dd, *J* 15.2 and 7.6, 2-H), 3.48 (1 H, m, 5-H), 3.60 (3 H, s, OMe), 4.49 (1 H, d, *J* 7.6, NH), 5.06 (1 H, ddd, *J* 15.5, 7.6 and 1.5, CH=), 5.35 (1 H, ddd, *J* 15.5, 8.3 and 1.1, CH=), 6.91 (2 H, s, ArH) and 7.01–7.38 (5 H, m, Ph); *m/z* (FAB-LRMS) 442 [(M – H)⁻], 308 (base peak), 198, 183, 153 and 151.

Mts-L-Val- ψ [(*E*)-CH=CH]-L-Phe-OMe 57 prepared from 10

To a stirred solution of CuCN (358 mg, 4 mmol) and LiCl (339 mg, 8 mmol) in dry THF (8 cm³) under argon at -78 °C was added via syringe 7.27 cm³ (4 mmol) of 0.55 mol dm⁻³ BnMgCl in THF, and the mixture was allowed to warm to 0 °C and was stirred at this temperature for 15 min. A solution of the cis-(E)enoate 10 (351 mg, 1 mmol) in dry THF (2 cm3) was added dropwise to the above reagent at -78 °C with stirring, and the stirring was continued for 30 min followed by quenching with 5 cm³ of a 1:1 saturated aq. NH₄Cl-28% NH₄OH solution. The mixture was extracted with Et₂O and the extract was washed with water and dried over MgSO4. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield 333 mg (0.75 mmol, 75%) of 57 as colourless crystals, mp 85–87 °C (from Et₂O) (Found: C, 67.65; H, 7.53; N, 3.08. C₂₅H₃₃NO₄S requires C, 67.69; H, 7.50; N, 3.16%); [a]_D²⁶ -69.2 (c 0.697 in CHCl₃); Δε -11.09 (219 nm, isooctane); $\delta_{\rm H}(270 \text{ MHz}; \text{CDCl}_3) 0.74 (3 \text{ H}, \text{d}, J 6.6, \text{CMe}), 0.79 (3 \text{ H}, \text{d}, \text{d})$ J 6.9, CMe), 1.69 (1 H, m, 6-H), 2.27 (3 H, s, CMe), 2.52 (1 H, dd, J 13.5 and 6.3, CHH), 2.62 (6 H, s, CMe), 2.87 (1 H, dd, J 13.5 and 8.6, CHH), 3.07 (1 H, m, 2-H), 3.51 (1 H, m, 5-H), 3.55 (3 H, s, OMe), 4.43 (1 H, d, J 7.9, NH), 5.19 (1 H, ddd, J 15.5, 7.3 and 1.0, CH=), 5.36 (1 H, ddd, J 15.5, 7.6 and 1.0, CH=), 6.93 (2 H, s, ArH) and 7.04-7.29 (5 H, m, Ph); m/z (FAB-LRMS) 442 $[(M - H)^{-}]$, 308 (base peak), 198, 183 and 153.

Mts-L-Val- ψ [(*E*)-CH=CH]-L-Phe-OMe 57 prepared from 14

By use of a procedure similar to that described for the preparation of **56** from **11**, the crude mesyl derivative **15**, which was prepared from the *trans*-(*E*)-enoate **14** (120 mg, 0.342 mmol) by MSA treatment, was converted into Mts-L-Val- $\psi[(E)$ -CH=CH]-L-Phe-OMe **57** (135 mg, 0.305 mmol, 89% yield based on **14**) by treatment with BnCu(CN)MgCl·BF₃ (1.37 mmol) in THF at -78 °C for 30 min.

Compound **57**, colourless crystals, mp 82 °C [from *n*-hexane–Et₂O (5:1)] (Found: C, 67.77; H, 7.73; N, 3.07. $C_{25}H_{33}NO_4S$ requires C, 67.69; H, 7.50; N, 3.16%); $[a]_{19}^{19}$ –64.8 (*c* 0.603 in CHCl₃); $\Delta \varepsilon$ –7.16 (221 nm, isooctane); $\delta_{\rm H}(270$ MHz; CDCl₃) 0.73 (3 H, d, *J* 6.9, CMe), 0.79 (3 H, d, *J* 6.9, CMe), 1.69 (1 H, m, 6-H), 2.27 (3 H, s, CMe), 2.52 (1 H, dd, *J* 13.5 and 6.3, CHH), 2.62 (6 H, s, CMe), 2.86 (1 H, dd, *J* 13.5 and 8.6, CHH), 3.07 (1 H, m, 2-H), 3.51 (1 H, m, 5-H), 3.55 (3 H, s, OMe), 4.45 (1 H, d, *J* 7.9, NH), 5.19 (1 H, ddd, *J* 15.5, 7.6 and 1.0, CH=), 5.35 (1 H, ddd, *J* 15.5, 7.9 and 1.0, CH=), 6.93 (2 H, s, ArH) and 7.04–7.29 (5 H, m, Ph).

Mts-L-Val-ψ[(E)-CH=CH]-D-Phe-OMe 56 prepared from 14

By use of a procedure similar to that described for the preparation of **57** from **10**, the *trans-(E)*-enoate **14** (56.2 mg, 0.160 mmol) was converted into Mts-L-Val- ψ [(*E*)-CH=CH]-D-Phe-OMe **56** (54.4 mg, 0.123 mmol, 77%) as a colourless oil by treatment with BnCu(CN)MgCl·2LiCl (0.640 mmol) in THF at -78 °C for 30 min.

Compound **56**, colourless oil [Found (FAB): $(M - H)^-$, 442.2050. $C_{25}H_{33}NO_4S$ requires M - H, 442.2052]; $[a]_D^{24} + 16.8$ (*c* 2.22 in CHCl₃); $\Delta\epsilon$ +4.21 (214 nm, isooctane); $\delta_H(270 \text{ MHz}; \text{CDCl}_3)$ 0.69 (3 H, d, J 7.3, CMe), 0.72 (3 H, d, J 7.3, CMe), 1.64 (1 H, m, 6-H), 2.28 (3 H, s, CMe), 2.53 (1 H, dd, J 13.5 and 7.6, CHH), 2.59 (6 H, s, CMe), 2.90 (1 H, dd, J 13.5 and 7.6, CHH), 3.05 (1 H, dd, J 15.2 and 7.6, 2-H), 3.47 (1 H, m, 5-H), 3.60 (3 H, s, OMe), 4.51 (1 H, d, J 6.9, NH), 5.06 (1 H, ddd, J 15.5, 7.6 and 0.5, CH=), 5.35 (1 H, ddd, J 15.5, 8.3 and 0.8, CH=), 6.91 (2 H, s, ArH) and 7.01–7.38 (5 H, m, Ph); m/z (FAB-LRMS) 442 [(M – H)⁻], 308, 198, 183, 153 and 151 (base peak).

Methyl (2*E*,4*R*,5*R*)-4-(methylsulfonyloxy)-6-phenyl-5-(2,4,6-trimethylphenylsulfonylamino)hex-2-enoate 58

By use of a procedure similar to that described for the preparation of **11** from **10**, the *cis*-(*E*)-enoate **31** (42.3 mg, 0.106 mmol) was converted into the γ -mesyloxy- α , β -enoate **58** by treatment with MSA in CHCl₃.

Compound **58**, colourless oil (crude), $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 2.27 (3 H, s, CMe), 2.43 (6 H, s, CMe), 2.54 (1 H, dd, *J* 14.1 and 8.8, CHH), 3.03 (1 H, dd, *J* 14.1 and 6.2, CHH), 3.07 (3 H, s, SMe), 3.69 (1 H, m, 5-H), 3.76 (3 H, s, OMe), 4.88 (1 H, d, *J* 7.3, NH), 5.47 (1 H, m, 4-H), 6.09 (1 H, dd, *J* 15.8 and 1.5, CH=), 6.80 (2 H, s, Ph), 6.91 (1 H, dd, *J* 15.8 and 5.8, CH=) and 6.94– 7.18 (5 H, m, Ph); *m/z* (FAB-LRMS) 496 (MH⁺), 400, 302,183, 149 (base peak), 119 and 91.

Mts-D-Phe- ψ [(*E*)-CH=CH]-L-Leu-OMe 59

By use of a procedure similar to that described for the preparation of **56** from **11**, the crude mesyl derivative **58**, which was prepared from the *cis*-(*E*)-enoate **31** (42.3 mg, 0.106 mmol), was converted into Mts-D-Phe- ψ [(*E*)-CH=CH]-L-Leu-OMe **59** (41.7 mg, 0.091 mmol, 86% yield based on **31**) by treatment with BuⁱCu(CN)MgCl·BF₃ (0.424 mmol) in THF at -78 °C for 30 min.

Compound **59**, colourless crystals, mp 74–75 °C [from *n*-hexane–Et₂O (5:1)] (Found: C, 67.95; H, 7.63; N, 2.86. $C_{26}H_{35}NO_4S$ requires C, 68.24; H, 7.71; N, 3.06%); $[a]_D^{18}$ –11.2 (*c* 0.624 in CHCl₃); $\Delta \epsilon$ –5.97 (221 nm, isooctane); δ_{H} [270 MHz; CDCl₃ containing tris-{3-[heptafluoropropyl(hydroxy)methyl-ene]-*d*-camphorato}europium(III)] 0.77 (3 H, d, *J* 6.6, CMe), 0.81 (3 H, d, *J* 6.3, CMe), 1.18 (1 H, m, CHH), 1.29 (1 H, m, CHH), 1.48 (1 H, m, CH), 2.29 (3 H, s, CMe), 2.54 (6 H, s, CMe), 2.77 (1 H, dd, *J* 13.5 and 7.3, CHH), 2.85 (1 H, dd, *J* 13.5 and 6.3, CHH), 2.99 (1 H, dd, *J* 15.2 and 7.6, 2-H), 3.72 (3 H, s, OMe), 3.98 (1 H, m, 5-H), 4.56 (1 H, d, *J* 15.7 and 7.8, CH=), 6.90 (2 H, s, ArH) and 7.02–7.27 (5 H, m, Ph); *m/z* (FAB-LRMS) 480 (MNa⁺), 458 (MH⁺), 456 (MH⁻), 398 (base peak), 366, 259, 227, 199, 183, 129, 119 and 91.

Mts-D-Phe- ψ [(*E*)-CH=CH]-D-Leu-OMe 60

By use of a procedure similar to that described for the preparation of 57 from 10, the *cis*-(*E*)-enoate 31 (53.3 mg, 0.133 mmol) was converted into Mts-D-Phe- ψ [(*E*)-CH=CH]-D-Leu-OMe 60 (56.0 mg, 0.122 mmol, 92%) by treatment with Bu^{*i*}Cu(CN)MgCl·2LiCl (0.534 mmol) in THF at -78 °C for 30 min.

Compound **60**, colourless crystals, mp 109–110 °C [from *n*-hexane–Et₂O (5:1)] (Found: C, 67.97; H, 7.70; N, 3.06. $C_{26}H_{35}NO_4S$ requires C, 68.24; H, 7.71; N, 3.06%); $[a]_D^{18} + 56.0$ (*c* 0.603 in CHCl₃); $\Delta \varepsilon + 5.64$ (216 nm, isooctane); δ_H (270 MHz; CDCl₃) 0.81 (3 H, d, *J* 6.3, CMe), 0.83 (3 H, d, *J* 6.3, CMe), 1.14 (1 H, m, CHH), 1.36 (1 H, m, CHH), 1.46 (1 H, m, CH), 2.28 (3 H, s, CMe), 2.50 (6 H, s, CMe), 2.80 (2 H, d, *J* 6.6, 6-H₂),

2.89 (1 H, dd, J 15.2 and 7.6, 2-H), 3.60 (3 H, s, OMe), 3.90 (1 H, m, 5-H), 4.46 (1 H, d, J 6.6, NH), 5.27 (1 H, dd, J 15.5 and 7.6, CH=), 5.35 (1 H, dd, J 15.2 and 6.6, CH=), 6.88 (2 H, s, ArH) and 7.00–7.27 (5 H, m, Ph); m/z (FAB-LRMS) 480 (MNa⁺), 458 (MH⁺), 456 (MH⁻), 398 (base peak), 366, 259, 227, 199, 183, 129, 119 and 91.

Benzyl (2*E*,4*S*,5*S*)-7-methyl-4-(methylsulfonyloxy)-5-(2,4,6-trimethylphenylsulfonylamino)oct-2-enoate 61

By use of a procedure similar to that described for the preparation of **11** from **10**, the *cis*-(*E*)-enoate **36** (94.9 mg, 0.215 mmol) was converted into the γ -mesyloxy- α , β -enoate **61** by treatment with MSA in CHCl₃.

Compound **61**, colourless oil (crude), $\delta_{\rm H}(270 \text{ MHz}; \text{CDCl}_3)$ 0.64 (3 H, d, *J* 5.9, CMe), 0.82 (3 H, d, *J* 5.9, CMe), 1.24 (2 H, m, 6-H₂), 1.43 (1 H, m, 7-H), 2.28 (3 H, s, CMe), 2.62 (6 H, s, CMe), 3.01 (3 H, s, SMe), 3.59 (1 H, m, 5-H), 4.56 (1 H, d, *J* 8.6, NH), 5.18 (2 H, s, CH₂), 5.24 (1 H, m, 4-H), 6.05 (1 H, dd, *J* 15.8 and 1.7, CH=), 6.82 (1 H, dd, *J* 15.8 and 5.9, CH=), 6.93 (2 H, s, ArH) and 7.39 (5 H, m, Ph); *m/z* (FAB-LRMS) 538 (MH⁺), 536 (MH⁻), 442, 352 (base peak), 268, 183, 152, 119 and 91.

Mts-L-Leu- ψ [(E)-CH=CH]-D-Phe-OBn 62

By use of a procedure similar to that described for the preparation of **56** from **11**, the crude mesyl derivative **61**, which was prepared from the *cis*-(*E*)-enoate **36** (94.9 mg, 0.215 mmol), was converted into Mts-L-Leu- $\psi[(E)$ -CH=CH]-D-Phe-OBn **62** (103 mg, 0.192 mmol, 89% yield based on **36**) by treatment with BnCu(CN)MgCl·BF₃ (0.860 mmol) in THF at -78 °C for 30 min.

Compound **62**, colourless crystals, mp 81 °C [from *n*-hexane–Et₂O (3:1)] (Found: C, 71.97; H, 7.43; N, 2.38. $C_{32}H_{39}NO_4S$ requires C, 72.01; H, 7.36; N, 2.62%); $[a]_{D}^{28}$ 0 (*c* 2.682 in CHCl₃); $\Delta\epsilon$ +2.74 (210 nm, isooctane); δ_H (270 MHz; CDCl₃) 0.74 (3 H, d, *J* 6.3, CMe), 0.76 (3 H, d, *J* 6.3, CMe), 1.20 (2 H, m, 6-H₂), 1.35 (1 H, m, 7-H), 2.25 (3 H, s, CMe), 2.52 (1 H, dd, *J* 13.5 and 7.3, CHH), 2.57 (6 H, s, CMe), 2.88 (1 H, dd, *J* 13.5 and 8.3, CHH), 3.10 (1 H, dd, *J* 15.5 and 7.6, 2-H), 3.68 (1 H, m, 5-H), 4.29 (1 H, m, NH), 5.03 (2 H, s, CH₂), 5.05 (1 H, dd, *J* 15.5 and 7.3, CH=), 5.42 (1 H, dd, *J* 15.5 and 8.2, CH=), 6.89 (2 H, s, ArH) and 6.99–7.35 (10 H, m, Ph).

Mts-L-Leu- ψ [(*E*)-CH=CH]-L-Phe-OBn 63

By use of a procedure similar to that described for the preparation of 57 from 10, the *cis*-(*E*)-enoate 36 (71.3 mg, 0.161 mmol) was converted into Mts-L-Leu- ψ [(*E*)-CH=CH]-L-Phe-OBn 63 (78.6 mg, 0.147 mmol, 91%) by treatment with BnCu(CN)MgCl·2LiCl (0.646 mmol) in THF at -78 °C for 30 min.

Compound **63**, colourless crystals, mp 102–104 °C [from EtOAc–Et₂O (1:5)] (Found: C, 71.71; H, 7.32; N, 2.41. $C_{32}H_{39}NO_4S$ requires C, 72.01; H, 7.36; N, 2.62%); $[a]_D^{29}$ –0.392 (*c* 2.04 in CHCl₃); $\Delta \varepsilon$ – 1.11 (214 nm, isooctane); $\delta_H(300 \text{ MHz}; \text{CDCl}_3)$ 0.76 (3 H, d, *J* 1.8, CMe), 0.78 (3 H, d, *J* 1.8, CMe), 1.24 (2 H, m, 6-H₂), 1.47 (1 H, m, 7-H), 2.99 (3 H, s, CMe), 2.53 (1 H, dd, *J* 13.6 and 6.1, CHH), 2.60 (6 H, s, CMe), 2.87 (1 H, dd, *J* 13.6 and 9.1, CHH), 3.09 (1 H, m, 2-H), 3.71 (1 H, m, 5-H), 4.28 (1 H, d, *J* 7.5, NH), 4.98 (2 H, s, CH₂), 5.15 (1 H, ddd, *J* 15.5, 7.6 and 0.7, CH=), 5.41 (1 H, ddd, *J* 15.5, 8.2 and 0.7, CH=), 6.91 (2 H, s, ArH) and 7.01–7.33 (10 H, m, Ph).

Benzyl (2*E*,4*S*,5*S*)-9-[(2-chlorophenyl)methoxycarbonylamino]-4-(methylsulfonyloxy)-5-(2,4,6-trimethylphenylsulfonylamino)non-2-enoate 64

By use of a procedure similar to that described for the preparation of 11 from 10, the cis-(E)-enoate 44 (678 mg, 1.08 mmol) was converted into the γ -mesyloxy- α , β -enoate **64** by treatment with MSA in CHCl₃.

Compound **64**, colourless oil (crude), $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 1.09 (2 H, m, CH₂), 1.32 (2 H, m, CH₂), 1.44 (1 H, m, CHH), 1.60 (1 H, m, CHH), 2.25 (3 H, s, CMe), 2.60 (6 H, s, CMe), 3.00 (3 H, s, SMe), 3.04 (2 H, m, CH₂), 3.51 (1 H, m, 5-H), 4.88 (1 H, t, J 5.9, NH), 5.15 (2 H, s, CH₂), 5.17 (1 H, m, 4-H), 5.20 (2 H, s, CH₂), 5.56 (1 H, d, J 8.2, NH), 6.02 (1 H, dd, J 15.7 and 1.4, CH=), 6.83 (1 H, dd, J 15.7 and 5.5, CH=), 6.90 (2 H, s, ArH) and 7.24–7.44 (9 H, m, ArH); *m/z* (FAB-LRMS) 721 (MH⁺), 625 (base peak), 307, 289, 252, 208, 119 and 91.

Mts-L-Lys(Cl-Z)- ψ [(E)-CH=CH]-D-Ala-OBn 65

To a stirred slurry of CuCN (390 mg, 4.34 mmol) in 12 cm³ of dry THF under argon at -78 °C was added by syringe 2.89 cm³ (4.34 mmol) of 1.5 mol dm⁻³ MeLi·LiBr in Et₂O, and the mixture was allowed to warm to 0 °C and was stirred at this temperature for 15 min. BF₃·Et₂O (0.533 cm³, 4.34 mmol) was added to the above mixture at -78 °C and the mixture was stirred for 5 min. A solution in dry THF (3 cm³) of the crude mesyl compound 64, which was prepared from the cis(E)-enoate 44 (678) mg, 1.08 mmol), was added dropwise to the above reagent at -78 °C with stirring, and the stirring was continued for 30 min followed by quenching with 6 cm³ of a 1:1 saturated aq. NH₄Cl-28% NH₄OH solution. The mixture was extracted with Et2O and the extract was washed with water and dried over MgSO₄. Concentration under reduced pressure gave a colourless oil, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield 502 mg (0.782 mmol, 72% yield based on 44) of compound 65 as a colourless oil, [Found (FAB): (M – H)⁻, 639.2300. C₃₄H₄₁ClN₂O₆S requires M - H, 639.2295]; $[a]_{D}^{19} - 5.64$ (c 2.20 in CHCl₃); $\Delta \varepsilon + 2.83$ (223 nm, isooctane); δ_H(270 MHz; CDCl₃) 1.01 (3 H, d, J 5.3, CMe), 1.26 (2 H, m, CH₂), 1.41 (4 H, m, CH₂), 2.25 (3 H, s, CMe), 2.58 (6 H, s, CMe), 2.89 (1 H, m, 2-H), 3.11 (2 H, m, CH₂), 3.69 (1 H, m, 5-H), 4.78 (1 H, d, J 7.3, NH), 4.88 (1 H, m, NH), 5.07 (2 H, s, CH₂), 5.12 (1 H, ddd, J 15.5, 7.3 and 1.5, CH=), 5.21 (2 H, s, CH₂), 5.45 (1 H, dd, J 15.5 and 6.9, CH=), 6.88 (2 H, s, ArH) and 7.22-7.44 (9 H, m, ArH); m/z (FAB-LRMS) 639 $[(M - H)^{-}]$, 497, 471, 305, 198, 183, 168, 153, 151 and 122 (base peak).

Mts-L-Lys(Cl-Z)- ψ [(E)-CH=CH]-L-Ala-OBn 66

To a stirred solution of CuCN (32.3 mg, 0.359 mmol) and LiCl (30.4 mg, 0.718 mmol) in dry THF (1 cm³) under argon at -78 °C was added via syringe 0.240 cm3 (0.359 mmol) of 1.5 mol dm⁻³ MeLi·LiBr in THF, and the mixture was allowed to warm to 0 °C and was stirred at this temperature for 15 min. A solution of the cis-(E)-enoate 44 (56.1 mg, 0.0897 mmol) in dry THF (1 cm³) was added dropwise to the above reagent at -78 °C with stirring, and the stirring was continued for 30 min followed by quenching with 1 cm3 of a 1:1 saturated aq. NH₄Cl-28% NH₄OH solution. The mixture was extracted with Et₂O and the extract was washed with water and dried over MgSO₄. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to yield 55.8 mg (0.0870 mmol, 97%) of compound 66 as a colourless oil, [Found (FAB): $(M - H)^{-}$, 639.2292. $C_{34}H_{41}CIN_2O_6S$ requires M - H, 639.2296]; $[a]_{D}^{21}$ -14.1 (c 1.34 in CHCl₃); $\Delta \varepsilon$ -6.00 (216 nm, isooctane); δ_H(270 MHz; CDCl₃) 1.01 (3 H, d, J 6.9, CMe), 1.26 (2 H, m, CH₂), 1.41 (4 H, m, CH₂), 2.25 (3 H, s, CMe), 2.59 (6 H, s, CMe), 2.89 (1 H, m, 2-H), 3.11 (2 H, m, CH₂), 3.66 (1 H, m, 5-H), 4.67 (1 H, d, J 7.3, NH), 4.82 (1 H, m, NH), 5.05 (2 H, s, CH₂), 5.13 (1 H, dd, J 15.5 and 7.6, CH=), 5.22 (2 H, s, CH₂), 5.36 (1 H, dd, J 15.5 and 7.6, CH=), 6.89 (2 H, s, ArH) and 7.23–7.45 (9 H, m, ArH); *m*/*z* (FAB-LRMS) 639 [(M – H)⁻], 497, 471, 310, 305 (base peak), 198, 183, 168, 153 and 122.

By use of a procedure similar to that described for the preparation of **11** from **10**, the *cis*-(*E*)-enamide **54** (85 mg, 0.198 mmol) was converted into the crude γ -mesyloxy- α , β -enamide **67** (colourless oil) by treatment with MSA in CHCl₃.

Compound **67**, colourless oil (crude), $\delta_{\rm H}(300 \text{ MHz}; \text{CDCl}_3)$ 2.29 (3 H, s, CMe), 2.58 (6 H, s, CMe), 2.85 (3 H, d, J 4.9, NMe), 3.00 (3 H, s, SMe), 3.26 (1 H, dd, J 9.7 and 5.2, CHH), 3.46 (1 H, dd, J 9.7 and 4.0, CHH), 3.52 (1 H, m, 5-H), 4.20 (1 H, m, 4-H), 4.35 (2 H, s, CH₂), 5.32 (1 H, d, J 8.9, NH), 5.76 (1 H, m, CONH), 6.07 (1 H, dd, J 15.4 and 1.2, CH=), 6.62 (1 H, dd, J 15.4 and 6.5, CH=), 6.91 (2 H, s, ArH) and 7.19–7.36 (5 H, m, Ph); *m*/*z* (FAB-LRMS) 525 (MH⁺), 475 (base peak), 429, 391, 279, 167, 149, 119 and 91.

Mts-L-Ser(O-Bn)-ψ[(E)-CH=CH]-D-Ala-NHMe 68

By use of a procedure identical with that described for the preparation of **65** from **64**, the above crude mesyl compound **67**, which was prepared from the *cis*-(*E*)-enamide **54** (85 mg, 0.198 mmol), was converted into Mts-L-Ser(*O*-Bn)- ψ [(*E*)-CH=CH]-D-Ala-NHMe **68** (79 mg, 0.178 mmol, 90% based on **54**) by treatment with MeCu(CN)Li·LiBr·BF₃ (0.792 mmol) in THF at -78 °C for 30 min.

Compound **68**, colourless oil [Found (FAB): $(M + H)^+$, 445.2156. $C_{24}H_{32}N_2O_4S$ requires M + H, 445.2161]; $[a]_D^{21} - 29.7$ (*c* 1.04 in CHCl₃); $\Delta \epsilon + 0.945$ (221 nm, isooctane); δ_H (300 MHz; CDCl₃) 1.18 (3 H, d, *J* 7.1, CMe), 2.32 (3 H, s, CMe), 2.57 (6 H, s, CMe), 2.74 (3 H, d, *J* 4.7, NMe), 2.89 (1 H, m, 2-H), 3.39 (2 H, d, *J* 5.9, CH₂), 3.69 (1 H, m, 5-H), 4.41 (2 H, s, CH₂), 5.20 (1 H, d, *J* 4.2, NH), 5.50 (1 H, dd, *J* 15.5 and 7.0, CH=), 5.58 (1 H, dd, *J* 15.5 and 7.6, CH=), 6.35 (1 H, m, CONH), 6.93 (2 H, s, ArH) and 7.19–7.36 (5 H, m, Ph); *m*/*z* (FAB-LRMS) 445 (MH⁺), 246, 167 (base peak), 149, 119 and 91.

Mts-L-Ser(O-Bn)- ψ [(E)-CH=CH]-L-Ala-NHMe 69

By use of a procedure identical with that described for the preparation of **66** from **44**, the *cis*-(*E*)-enamide **54** (39 mg, 0.091 mmol) was converted into Mts-L-Ser(*O*-Bn)- ψ [(*E*)-CH=CH]-L-Ala-NHMe **69** (35 mg, 0.079 mmol, 87%) by treatment with MeCu(CN)Li·LiBr·BF₃ (0.364 mmol) in THF at -78 °C for 30 min.

Compound **69**, colourless oil [Found (FAB): $(M + H)^+$, 445.2165. $C_{24}H_{32}N_2O_4S$ requires M + H, 445.2161]; $[a]_D^{21} - 35.1$ (*c* 2.71 in CHCl₃); $\Delta \varepsilon - 6.96$ (208 nm, isooctane); $\delta_H(300 \text{ MHz};$ CDCl₃) 1.21 (3 H, d, *J* 7.1, CMe), 2.30 (3 H, s, CMe), 2.57 (6 H, s, CMe), 2.71 (3 H, d, *J* 4.8, NMe), 2.88 (1 H, m, 2-H), 3.37 (1 H, d, *J* 1.3, CHH), 3.39 (1 H, s, CHH), 3.72 (1 H, m, 5-H), 4.40 (2 H, s, CH₂), 5.24 (1 H, d, *J* 4.7, NH), 5.47 (1 H, ddd, *J* 15.6, 7.2 and 1.0, CH=), 5.75 (1 H, ddd, *J* 15.6, 7.5 and 0.9, CH=), 6.20 (1 H, m, CONH), 6.93 (2 H, s, ArH) and 7.18–7.38 (5 H, m, Ph); *m/z* (FAB-LRMS) 445 (MH⁺), 246, 167 (base peak), 156, 149, 119 and 91.

Methyl (2*E*,4*S*,5*S*)-6-benzyloxy-4-trifluoroacetoxy-5-(2,4,6-trimethylphenylsulfonylamino)hex-2-enoate 70

By use of a procedure identical with that described for the preparation of **12** from **10**, the *cis*-(*E*)-enoate **55** (143 mg, 0.332 mmol) was converted into the crude trifluoroacetate **70** as a colourless oil, (crude), $\delta_{\rm H}(270 \text{ MHz}; \text{CDCl}_3) 2.30 (3 \text{ H}, \text{ s}, \text{CMe})$, 2.57 (6 H, s, CMe), 3.34 (1 H, m, 5-H), 3.73 (3 H, s, OMe), 3.79 (2 H, m, CH₂), 4.38 (2 H, s, CH₂), 5.32 (1 H, m, NH), 5.75 (1 H, m, 4-H), 5.96 (1 H, dd, *J* 15.8 and 0.9, CH=), 6.65 (1 H, dd, *J* 15.8 and 5.9, CH=), 6.91 (2 H, s, ArH) and 7.03–7.41 (5 H, m, Ph); *m/z* (FAB-LRMS) 566 (MNa⁺), 544 (MH⁺), 470, 452, 448, 430, 398, 332, 242 (base peak), 183, 157, 129, 119 and 91.

Methyl (2*E*,4*S*,5*S*)-6-benzyloxy-4-hydroxy-5-(2,4,6-trimethylphenylsulfonylamino)hex-2-enoate 71

Purification of the above crude trifluoroacetate **70** by flash chromatography over silica gel with *n*-hexane–EtOAc (4:1) afforded the hydrolysate **71** (106 mg, 0.236 mmol, 71% yield based on **55**) as a colourless oil, [Found (FAB): (M + H)⁺, 446.1653. C₂₃H₂₉NO₆S requires M + H, 446.1638]; $[a]_D^{28}$ - 36.4 (*c* 0.0714 in CHCl₃); δ_H (300 MHz; CDCl₃) 2.31 (3 H, s, CMe), 2.53 (6 H, s, CMe), 3.55 (1 H, m, 5-H), 3.74 (3 H, s, OMe), 3.80 (2 H, m, CH₂), 3.97 (1 H, d, *J* 8.8, 4-H), 4.56 (1 H, d, *J* 10.2, NH), 4.58 (1 H, d, *J* 13.8, CHH), 4.68 (1 H, d, *J* 13.8, CHH), 5.84 (1 H, dd, *J* 15.8 and 0.6, CH=), 6.95 (2 H, s, ArH), 7.12 (1 H, dd, *J* 15.8 and 8.7, CH=) and 7.01–7.29 (5 H, m, Ph); *m/z* (FAB-LRMS) 446 (MH⁻), 428, 306, 239 (base peak), 199, 183, 168, 153 and 122.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (B) and (C) from the Ministry of Education, Science, Sports and Culture, Japan and the Japan Health Science Foundation. We are grateful to Dr Terrence R. Burke, Jr., NCI, NIH, for helpful discussions during the preparation of this manuscript.

References

- J. S. Kaltenbronn, J. P. Hudspeth, E. A. Lunney, B. M. Michniewicz, E. D. Nicolaides, J. T. Repine, W. H. Roark, M. A. Steir, F. J. Tinney, P. K. W. Woo and A. D. Essenburg, J. Med. Chem., 1990, 33, 838; D. Tourwe, J. Couder, M. Ceusters, D. Meert, T. F. Burks, T. H. Kramer, P. Davis, R. Knapp, H. I. Yamamura, J. E. Leysen and G. van Binst, Int. J. Pept. Protein Res., 1992, 39, 131; for a review of syntheses of (E)-alkene dipeptide isosteres up to May 1992, see: T. Ibuka, J. Synth. Org. Chem. Jpn., 1992, 50, 953; R. B. Gardner, G.-B. Liang and S. H. Gellman, J. Am. Chem. Soc., 1995, 117, 3280; U. Schopfer, M. Stahl, T. Brandl and R. W. Hoffmann, Angew. Chem., Int. Ed. Engl., 1997, 36, 1745; P. Wipf, T. C. Henninger and S. J. Geib, J. Org. Chem., 1998, 63, 6088.
- 2 M. Wada, R. Doi, R. Hosotani, T. Ibuka, H. Habashita, K. Nakai, N. Fujii and M. Imamura, *Pancreas*, 1995, **10**, 31; K. Fujimoto, R. Doi, R. Hosotani, M. Wada, J.-U. Lee, T. Koshiba, T. Ibuka, H. Habashita, K. Nakai, N. Fujii and M. Imamura, *Life Sci.*, 1997, **60**, 29; K. Miyasaka, S. Kanai, M. Masuda, T. Ibuka, K. Nakai, N. Fujii and A. Funakoshi, *J. Auton. Nerv. Syst.*, 1997, **63**, 179.
- 3 T. E. Christos, A. Arvanitis, G. A. Cain, A. L. Johnson, R. S. Pottorf, S. W. Tam and W. K. Schmidt, *Bioorg. Med. Chem. Lett.*, 1993, **3**, 1035; B. Beresis and J. S. Panek, *Bioorg. Med. Chem. Lett.*, 1993, **3**, 1609; J. S. Wai, D. L. Smith, J. B. Gibbs, S. D. Mosser, A. I. Oliff, D. L. Pompliano, E. Rands and N. E. Kohl, *Bioorg. Med. Chem.*, 1994, **2**, 939; P. A. Bartlett and A. Otake, *J. Org. Chem.*, 1995, **60**, 3107.
- 4 T. Ibuka, N. Mimura, H. Aoyama, M. Akaji, H. Ohno, Y. Miwa, T. Taga, K. Nakai, H. Tamamura, N. Fujii and Y. Yamamoto, *J. Org. Chem.*, 1997, **62**, 999; T. Ibuka, N. Mimura, H. Ohno, K. Nakai, M. Akaji, H. Habashita, H. Tamamura, Y. Miwa, T. Taga, N. Fujii and Y. Yamamoto, *J. Org. Chem.*, 1997, **62**, 2982.
- T. Ibuka, K. Nakai, H. Habashita, Y. Hotta, N. Fujii, N. Mimura, Y. Miwa, T. Taga and Y. Yamamoto, *Angew. Chem., Int. Ed. Engl.*, 1994, 33, 652; P. Wipf and P. C. Fritch, *J. Org. Chem.*, 1994, 59, 4875; N. Fujii, K. Nakai, H. Tamamura, A. Otaka, N. Mimura, Y. Miwa, T. Taga, Y. Yamamoto and T. Ibuka, *J. Chem. Soc., Perkin Trans. 1*, 1995, 1359; P. Wipf and T. Henninger, *J. Org. Chem.*, 1997, 62, 1586.
- 1995, 1359; P. Wipf and T. Henninger, J. Org. Chem., 1997, 62, 1586.
 6 T. Ibuka, H. Habashita, S. Funakoshi, N. Fujii, K. Baba, M. Kozawa, Y. Oguchi, T. Uyehara and Y. Yamamoto, *Tetrahedron: Asymmetry*, 1990, 1, 389; T. Ibuka, H. Habashita, A. Otaka, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1991, 56, 4370; T. Ibuka, T. Taga, H. Habashita, K. Nakai, H. Tamamura, N. Fujii, Y. Chounan, H. Nemoto and Y. Yamamoto, J. Org. Chem., 1993, 58, 1207; M. J. Daly, R. A. Ward, D. F. Thompson and G. Procter, *Tetrahedron Lett.*, 1995, 36, 7545.
- 7 A preliminary communication of this work has appeared: H. Tamamura, M. Yamashita, H. Muramatsu, H. Ohno, T. Ibuka, A. Otaka and N. Fujii, *Chem. Commun.*, 1997, 2327.
- M. E. Duggan and D. S. Karanewsky, *Tetrahedron Lett.*, 1983, 24, 2935;
 S. Itsuno, K. Tanaka and K. Ito, *Chem. Lett.*, 1986, 1133;
 D. Tanner and P. Somfai, *Tetrahedron Lett.*, 1987, 28, 1211;

J. Chem. Soc., Perkin Trans. 1, 1999, 2983–2996 2995

Matsubara, T. Kodama and K. Utimoto, *Tetrahedron Lett.*, 1990, 31, 6379; J. Legters, J. G. H. Willems, L. Thijs and B. Zwanenburg, *Recl. Trav. Chim. Pays-Bas*, 1992, 111, 59; D. Tanner, H. M. He and P. Somfai, *Tetrahedron*, 1992, 48, 6069; T. Kawabata, Y. Kiryu, Y. Sugiura and K. Fuji, *Tetrahedron Lett.*, 1993, 34, 5127; N. J. Church and D. W. Young, *Tetrahedron Lett.*, 1995, 36, 151 and references cited; B. G. M. Burgaud, D. C. Horwell, A. Padova and M. C. Pritchard, *Tetrahedron*, 1996, 52, 13035; C. M. Rayner, *Synlett*, 1997, 11; H. Ohno, N. Mimura, A. Otaka, H. Tamamura, N. Fujii, T. Ibuka, I. Shimizu, A. Satake and Y. Yamamoto, *Tetrahedron*, 1997, 53, 12933; A. A. Cantrill, H. M. I. Osborn and J. Sweeney, *Tetrahedron*, 1998, 54, 2181; I. Fleming, J. Frackenpohl and H. Ila, *J. Chem. Soc., Perkin Trans. 1*, 1998, 1229.

- 9 A. Bongini, G. Cardillo, M. Orena, S. Sandri and C. Tomasini, J. Chem. Soc., Perkin Trans. 1, 1986, 1339, 1345.
- 10 (a) D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Anderson and D. M. Barnes, J. Am. Chem. Soc., 1993, 115, 5328; I. Coldham, A. J. Collis, R. J. Mould and R. E. Rathmell, J. Chem. Soc., Perkin Trans.

1, 1995, 2739; (b) F. A. Davis and G. V. Reddy, *Tetrahedron Lett.*, 1996, **37**, 4349.

- 11 F. A. Davis and P. Zhou, Tetrahedron Lett., 1994, 35, 7525.
- 12 G. E. Ham, J. Org. Chem., 1964, 29, 3052.
- 13 O. Mitsunobu, Synthesis, 1981, 1.
- 14 P. Herold, Helv. Chim. Acta, 1988, 71, 354; T. Hudlicky, T. Nugent and W. Griffith, J. Org. Chem., 1994, 59, 7944; H. Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh and M. Shibasaki, J. Org. Chem., 1995, 60, 7388; A. Dondoni, D. Perrone and E. Turturici, J. Chem. Soc., Perkin Trans. 1, 1997, 2389; P. Spanu, G. Rassu, L. Pinna, L. Battistini and G. Casiraghi, Tetrahedron: Asymmetry, 1997, 8, 3237; A. Tarnowski, T. Bar and R. R. Schmidt, Bioorg. Med. Chem. Lett., 1997, 7, 573; S. Kobayashi, T. Furuta, T. Hayashi, M. Nishijima and K. Hanada, J. Am. Chem. Soc., 1998, 120, 908; R. V. Hoffman and J. Tao, J. Org. Chem., 1998, 63, 3979.

Paper 9/04671B