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The stereoselective synthesis of tetracyclic intermediate, the indoline spiroaminal 3 for neoxaline (1) and oxaline (2), has been accomplished.

The key step of the stereoselective synthesis of 3 was the Lewis acid mediated transcyclization of 4 to the diaminal 18, and the tungstate-
catalyzed oxidation of 18 to obtain the nitrone 19, which easily cyclizes to the indoline spiroaminal framework 3.

During the course of our chemical screening of microbial
metabolites, neoxalinel* was isolated from the culture
broth of Aspergillus japonicus=g-551, together with the 7 7
structurally related known compound oxalir®?( Neoxaline OH OMe
(1) and oxaline 2) (Figure 1) are members of a novel class
of biologically active indole alkaloids, (including meleagdkin NN NN
and glandicoling characterized by a unique indoline spiroam- MeO N
inal framework and substitution of a 1,1-dimethylallyl O Uy O Uy
(“reverse-prenyl”) group at the benzylic ring junction. The
relative stereochemistry @has been previously established
by X-ray analysi$.Hence, the structure dfwas determined  Figure 1. Structures of neoxalinel) and oxaline 2).
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cells® Compoundsl and 2 bind to tublin at, or near, the
colchicine binding site, which results in inhibition of tubulin
polymerizatior® The highly complex indoline spiroaminal

framework of the neoxalines was recognized as an attractive

target for total synthesis. In conjunction with our continuing
structural and synthetic studies of important bioregulatory
products, we report herein the concise stereoselective
synthesis of the indoline spiroaminal framew®&kf 1 and
2.

Retrosynthetic analysis of the indoline spiroaminal frame-
work 3 is shown in Scheme 1.
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We anticipated that the spiroaminal framewdlcould
be prepared from furoindoliné via oxidative transcycliza-
tion. Compound4 would be obtained via condensation of
glycine amide withb, generated from the chiral indole lactic
acid derivatives, according to the procedure of Marsden et
al® Compound6 would be prepared via alkylation of
commercially available indol& with chiral epoxide8. The
first step of the synthesis, regioselective alkylatiofindole
7 with chiral epoxide8'® was examined. Initially SnGlwas
used, however in low yield(52%). Using a Sc(OG:Tfave
complex mixture, Cu(OTE)in 21% yield. Yb(OTf} proved
the most efficient and afforded indole lactic acid e€ién
77% yield (Scheme 2). Silylation of the secondary hydroxy
group, followed by Boc protection of tree-amino group and
desilylation, afforded the alcoh®@l

Next, selenylation-induced ring closure wiltphenyl-
selenophthalimideN-PSP}* provided the separable diastereo
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aBoc = tert-butoxycarbonyl, DMAP= 4-dimethylaminopyridi

ne, TBAF = tetrabutylammonium fluoridelN-PSP= N-phenyl-

selenophthalimide, PPTS pyridinium p-toluenesulfonate.

mixture (1:1) of 3-selenylated furoindolinegl0 and 11.12
Treatment of each compound with methyl triflate and
prenyltri(n-butyl)stannan® introduced the reverse prenyl
group to the desired position to give compoud@sand13,
respectively, with either stereochemistryScheme 2).

BOC deprotection (TMSI, CKCN) of 12, reprotection
with Alloc group, methyl ester hydrolysis, and condensation
with glycine amidel4, afforded15. Subsequent deprotection
of the Alloc group gavet in high yield (Scheme 3).
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aTMSI = trimethylsilyl iodide, Alloc= allyloxycarbonyl, DCC
= dicyclohexylcarbodiimide, HOBt 1-hydroxybenzotriazole.

Treatment of amina#t with AlMes in CH,CI, at 0 °C
facilitated transcyclization to afford diamin&8, through the
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iminium intermediatel 7, in 76% yield. Subsequent tungstate-

catalyzed oxidatiott of 18 gave nitronel9, which was then
treated with silica gel (CHGHMeOH—i-Pr,NEt) to afford
spiroaminal20. Methylation of 20 (TMSCHN,, benzene/

(10) Schaus, S. E.; Brandes, D. B.; Larrow, J. F.; Tokunaga, M.; Hansen,
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2002 124, 1307-1315.
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MeOH (5:1)) afforded the desired indoline spiroaminal
framework 3 (Scheme 4). Compoun® is a versatile
intermediate for the synthesis of the neoxaline family of
compounds.

In summary, we describe a concise route to the indoline
spiroaminal framework of neoxaline and oxaline via nitrone
intermediate. Efforts to complete the total syntheses of
neoxaline and oxaline using this synthetic approach are
currently underway.
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