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ABSTRACT: An efficient and convenient synthesis of various
cyclic amidines has been achieved via iridium-catalyzed deoxy-
genative reduction of lactams with a silane followed by a one-pot
cycloaddition reaction with sulfonyl azides. Using the novel tandem
procedure, a large array of cyclic amidines bearing various sized
rings were synthesized in good yields from readily available
lactams. This methodology has been successfully utilized in the late
stage diversification of complex architectures bearing a lactam
moiety.

Owing to the wide prevalence of amide/lactam motifs in
the structures of fine chemicals, synthetic intermediates,

agrochemicals, and pharmaceuticals, reductive transformation
of an amido group into other N-containing functional moieties
is synthetically attractive.1 However, development of mild,
atom-economical, and chemoselective procedures for amide
group transformations remains nontrivial due to their inert
nature.2,3 Over the past decade, iridium-catalyzed deoxygena-
tive reduction of an amide and in situ trapping of the resultant
enamine/iminium ion by another reactant (Scheme 1a) has
evolved as a powerful strategy for the transformation of
amides/lactams.4−9 In this context, we envisioned that the [3 +
2] cycloaddition of thus-generated enamines with sulfonyl
azides10,11 might provide a viable route to amidines, which are
ubiquitous motifs in natural products,12 pharmaceuticals,13

materials, super bases,14 nucleophilic catalysts, and valuable
synthetic precursors (Scheme 1b).15 To date, several
approaches of this strategy for the synthesis of N-
sulfonylformamidine derivatives have been developed, e.g.,
based on the dehydrogenation of a tertiary amine to an
enamine and the subsequent 1,3-dipolar tandem reaction with
a sulfonyl azide (Scheme 1c).16 However, the chemoselectivity
caused by the multi α-H’s of tertiary amine during the
dehydrogenation step and functional-group tolerance of the
procedures can be problematic. Although linear enamine
intermediates have been well studied in this enamine-azide
amidine synthesis, endocyclic enamine has been less explored
for access to important cyclic amidines. Very recently, Joung et
al. reported an efficient synthesis of cyclic amidines by a
borane-catalyzed hydrosilylation of quinolines to the corre-
sponding dearomatized enamine intermediates as the key step,
but the scope of the products is largely limited to benzo-fused
six-membered rings.17 Therefore, the development of efficient
synthetic routes to cyclic amidines18 bearing various ring
systems with good functional-group tolerance starting from a
readily available molecule under mild conditions is still highly
desirable.
The synthesis of amidines from amides has been developed

based on several different methods. For examples, N-
sulfonylformamidines can be generated by direct condensation
of formamides and sulfonamides in the presence of a
stoichiometric amount of acyl chlorides or oxidants.19 To
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Scheme 1. Synthesis of Amidines from Enamine
Intermediates
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avoid the use of hazardous reagents and harsh conditions,
some other strategies for the synthesis of amidines from
amides have been developed. In 2013, Chiba, Hatanaka and
co-workers reported a coupling reaction of the amide-derived
thioamides and sulfonyl azides for the synthesis sulfonyl
amidines, including various cyclic amidines.20 In 2017,
Adolfsson and co-workers developed a reductive functionaliza-
tion of amides into N-sulfonylformamidines, using Mo(CO)6-
catalyzed reduction of amides to enamines as the key step.21

However, only linear amides were reported in this protocol to
give formamidines. In the same year, Odell and co-workers
developed a Pd-catalyzed carbonylation/cycloaddition/decar-
boxylation cascade synthesis of sulfonyl amidines from sulfonyl
azides and amides.22 However, high loadings of Pd catalyst and
Mo(CO)6 were needed. In 2018, Wan and co-workers
achieved the synthesis of N-sulfonylamidines by a Mn-
catalyzed three-component reaction of secondary amide/
lactam, diazoacetate, and sulfonamide under relatively high
catalyst loadings and high reaction temperature.23 Given the
prime importance of the cyclic amidines, the efficient synthesis
of this kind of moiety from widely prevalent lactams by the
strategy of enamine-azide amidine synthesis would be highly
attractive (Scheme 1d). However, to realize this tandem
reaction sequence is synthetically challenging, since the iridium
catalyst and silane used in the first step may result in the
decomposition of the sulfonyl azide, which might result in
byproduct formation and reduce the efficiency.24

Herein, we report an efficient protocol for one-pot
transformation of stable lactams, giving access to a wide
scope of highly functionalized cyclic amidines. The Ir catalyst
can be reduced to as low as 0.1 mol % in gram scale synthesis,
showing this method is generally applicable. It should be
highlighted that various lactams with different ring sizes and
functional groups can be smoothly transferred into the
products bearing corresponding ring systems. Moreover,
modification of complex architectures containing lactam units
was also successfully achieved, showing the robustness and
utility of the developed transformation.
We started the study by verifying the feasibility of the

proposed reaction sequence. Lactam 1a was selected as a
model substrate with 1.0 mol % IrCl(CO)(PPh3)2 (Vaska’s
complex) as the catalyst, 2.2 equiv of 1,1,3,3-tetramethyldisi-
loxane (TMDS) as the reductant, and 1.2 equiv of sulfonyl
azide 2a which was used as the dipole for the cycloaddition
step (Table 1). Gratifyingly, N-sulfonylamidine 3a was

obtained in 80% isolated yield under ambient temperature in
a one-pot procedure, thus confirming that the proposed [3 +
2] cycloaddition of the in situ generated enamine with TsN3 is
compatible with the Ir catalyst and silane (Table 1, entry 1).
(E)-Amidine 3a was formed exclusively in the reaction, and its
solid-state structure was unambiguously established by the X-
ray crystallography. A series of control experiments were then
conducted to probe into the role of each reacting component.
When the amount of TMDS was decreased to 1.0 equiv, the
yield of 3a was reduced to 36%, and a substantial amount
(54%) of substrate 1a was left unchanged (entry 2). Increasing
the Ir catalyst loading to 2.0 mol % did not improve the yield
(entry 3). The solvent was also found to have a significant
effect on the reaction outcome, and dichloromethane turned
out to be superior in terms of the yields (entries 4−6 vs 1).
With the optimized conditions in hand, the generality of this

protocol was explored in the reactions of lactams 1 and TsN3
(Scheme 2). To our delight, lactams 1a−1g bearing either

electron-withdrawing or electron-donating substituents at
different positions of the phenyl ring reacted smoothly with
silane and TsN3 in this one-pot procedure. Bromo, chloro, and
OMe groups were well tolerated, affording the corresponding
products in good yields (3b−3g, 65%−85% yields), suggesting
that the steric hindrance and electronic property of the
benzene ring does not have a notable effect on this reaction. It
should be noted that the pyridyl ring was also tolerated,

Table 1. Optimization of the Reaction Conditions for 3aa

entry changes to standard conditions yield (%)b

1 none 85 (80)c

2 TMDS (1 equiv) 36
3 IrCl(CO)(PPh3)2 (2.0 mol %) 85
4 THF instead of CH2Cl2 59
5 Toluene instead of CH2Cl2 48
6 CH2ClCH2Cl instead of CH2Cl2 47

aReaction conditions: 1a (0.2 mmol), TMDS (0.44 mmol), and
IrCl(CO)(PPh3)2 (1.0 mol %) in CH2Cl2 (1.0 mL) were stirred at rt
under an Ar atmosphere for 30 min. Then 2a (0.24 mmol) was added
and stirred at rt for 3 h. bNMR yields. cIsolated yield.

Scheme 2. Scope of Lactamsa

aThe reaction mixture of the lactam 1 (0.2 mmol), TMDS (0.44
mmol), and IrCl(CO)(PPh3)2 (1.0 mol %) were stirred in CH2Cl2
(1.0 mL) at rt for 30 min under an Ar atmosphere. Then 2a (0.24
mmol) was added and stirred at rt for further 3 h. Isolated yield.
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affording the product 3h in 76% yield. The substrates with
different groups on the nitrogen atom of lactams were next
evaluated in this transformation, and the corresponding cyclic
amidines were obtained in good yields. Changing the ethyl
group on the N atom to benzyl or 4-phenylbutyl group did not
affect the reaction outcome, giving the products 3i and 3j in
84% and 81% yield, respectively. It is worth noting that the
reaction can be applied to the synthesis of amidines containing
useful functional groups such as halogens, esters, acetal, and
ether, which are potentially reducible under the catalytic
conditions (3k−3q). Likewise, reactions of aryl substituted
substrates also resulted in good yields (3r and 3s).
Subsequently, we explored the substrate scope for lactams
with various ring sizes. The reaction using five-membered
amide 1t as the starting material can still afford the product 3t
in 33% yield. For lactams with larger ring sizes (six- to nine-
membered rings), the reactions gave the corresponding
compounds 3u−3y in moderate to good yields, proving the
robustness and practicability of the protocol in the synthesis of
a diversity of cyclic amidines. However, for lactam with a
methyl group at the α-position of the carbonyl group, the
reaction gave the corresponding product 3z in low yield
(30%).
On the basis of these results, we further investigated the

substrate scope with respect to the sulfonyl azides 2 with
various substituent patterns, and the results were summarized
in Scheme 3. Aromatic sulfonyl azides with either electron-

withdrawing or electron-donating groups at the phenyl ring
worked well as the substrates, and the corresponding products
were obtained in good yields (4a-4e). 2-Naphthalenesulfonyl
azide can participate in the coupling substrate as well (84%,
4f). The reaction of sterically bulkier azide also reacted
smoothly to produce the desired product (4g) in 55% yield,
suggesting the reaction can tolerate bulk steric hindrance of the
azides. The reaction of alkyl sulfonyl azide afforded the
product 4h in 52% yield, further showing the wide scope of the
sulfonyl azides.
Lactams are ubiquitous structural motifs found in a wide

range of natural products and pharmaceuticals. Efficient
transfer of lactam units to cyclic amidines represents a unique
way to access new pools of functionalized analogues. To

demonstrate the synthetic utility of the reaction developed
herein, pyroquilone 5a, laurocapram 5b, (+)-matrine 5c, drug-
derived ethyl cilostazol 5d, and ethyl aripiprazole 5e were
applied into the late stage transformation using the present
method (Scheme 4). To our delight, all the reactions worked

smoothly to provide the desired products in good yields (6a−
6e, 65−85%). Furthermore, a 5 mmol scale reaction of 1a was
performed, and 3a was isolated in good yield using reduced Ir
catalyst loading (0.1 mol %), demonstrating the potential
practicability of this cyclic amidine synthesis reaction.
Preliminary mechanistic studies were carried out to

understand the reaction pathways. In the mixture of 1a, Ir
catalyst (1.0 mol %), and TMDS (2.2 equiv) in CD2Cl2,
silylated hemiaminal intermediate A was witnessed as the
major species by 1H NMR during the first 30 min at rt (see the
Supporting Information for details). Enamine intermediate B
can be formed through this silylhemiaminal intermediate A as
reported under the reaction conditions.4b,5a Furthermore, the
addition of styrene together with TsN3 under the standard
conditions had negligible effect on the reaction outcomes and
no aziridine was observed, suggesting that an iridium-nitrene
intermediate is unlikely involved in this relay process. In
accordance with previous studies on Ir-catalyzed reduction of
amides4−9 and enamine-azide chemistry,16 a mechanistic
pathway was proposed in Scheme 5. First the lactam 1a is

partially reduced to silylated hemiaminal intermediate A by the
action of Vaska’s complex and TMDS. Enamine intermediate
B is formed from A under the reaction conditions. Upon the
addition of 2a, enamine B reacts with 2a through a
regioselective [3 + 2] cycloaddition and produces intermediate
C. Subsequently, the product 3a is formed by a hydrogen

Scheme 3. Scope of Azidesa

aThe reaction mixture of the lactam 1a (0.2 mmol), TMDS (0.44
mmol), and IrCl(CO)(PPh3)2 (1.0 mol %) was stirred in CH2Cl2 (1.0
mL) at rt for 30 min under an Ar atmosphere. Then 2 (0.24 mmol)
was added and stirred at rt for a further 3 h. Isolated yield.

Scheme 4. Modification of Complex Architectures and
Gram-Scale Synthesis

Scheme 5. Proposed Reaction Pathway
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migration accompanied by one molecule of nitrogen being
released.
In conclusion, we have developed an efficient synthesis of

cyclic amidines, through a one-pot tandem transformation of
Ir-catalyzed reduction of lactams and the in situ cycloaddition
with sulfonyl azides. The amide reduction is highly chemo-
selective and allows for a wide variety of functional groups
(such as halogen, ester, acetal, and ether) to be tolerated, and
the ensuing cycloaddition with the sulfonyl azide also proceeds
smoothly under very mild conditions to deliver various cyclic
amidines with different ring sizes and functional groups in
good to high overall yields. The present methodology also
showcases synthetic utilities in the late stage diversification of
several complex architectures, and thus will stimulate future
work on the transformations of amides/lactams in organic
synthesis.
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