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Abstract: Selective generation of the 4'-deoxyribonucleoside radical 8 in the presence of Mn(OAc)~ gave acetal 9 in 
91% yield. This reaction models the function of the antibiotic bleomycin under diminished 02 concentrations. In the 
presence of Oz a peroxy radical is formed that leads to completely different products. © 1998 Elsevier Science Ltd. 
All rights reserved. 

4'-DNA radicals are crucial intermediates in the DNA strand cleavage induced by bleomycin/Fe2÷/O2 

complexes.' Depending upon the concentration of 02 either glycolate 2 and base propenal 3 or ketoaldehyde 4 

are produced. For the formation of cleavage products 2 and 3 the 4'-DNA radical is trapped by 02 and the 

resulting hydroperoxide undergoes a Criegee rearrangement with subsequent elimination and hydrolysis steps. 
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According to the mechanism of J. Stubbe et al),  the ketoaldehyde 4 is produced by oxidation of the 4'- 

DNA radical 1 to the 4'-DNA cation 5 that is trapped by H20 (5---~6). Hydrolysis of the cyclic hemiacetal 6 

yields the ketoaldehyde 4. The oxidation step (1--->6) is suggested to be performed by the bleomycin/Fe2÷/O2 

complex after the H-abstraction from DNA. 
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In order to check this mechanism in model experiments, we generated the 4'-nucleoside radical 8 by 

photolysis of selenide 72 in the presence of Mn(OAc)33 as oxidant and MeOH as solvent: Oxygen was excluded 

by freeze-thaw cycles under argon. This photolysis afforded 91% of the cyclic acetal 9 which is a precursor of 

the ketoaldehyde. Under non-photolytical conditions the oxidation reaction did not occur and the starting 

material 7 was recovered: Thus, selenide 7 is stable against Mn(OAc)3 whereas radical 8 is oxidized to the 

nucleoside cation 10. 
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The formation of a hydroperoxide as intermediate could be excluded because the reactions were carried 

out in the absence of 0 2. Furthermore, we have shown recently that a hydroperoxide 11 yields glycolate 13 and 

base propenal 14 by (;rob fragmentation (11~12) and subsequent elimination: 
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In the presence of 02 the first step of the 4'-nucleoside radical is the formation of a peroxy radical. Fig. 1 

shows the ESR spectrum of a radical which was generated by photolysis of selenkle 15 in the presence of 02. 6 

The g-value of 2.0153 is typical for a peroxy radical and the absence of a hyperfine coupling is in accord with 

the peroxy radical 17. ~ 
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Fig. 1: ESR spectrum of radical 17. 

These experiments support the mechanism of J. Stubbe: Oxygen does not oxidizes 4'-nucleoside radicals 
to 4'-nucleoside cations but metal oxides or their derivatives can easily induce this oxidation step (1-->5 or 
8--~10). Trapping of these cations by protic solvents leads to hemiacetals (5--*6) or acetals (10-->9) that can be 

hydrolyzed to the ketoaldehydes. In DNA the ketoaldehyde 4 is not a direct strand cleavage product, but its 

treatment with base induces the strand scission through an elimination reaction (4-~18 + 19). 
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