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Phthalocyanines containing group IV A central elements and non-peripheral para-(tert-butyl)-phenoxy
substituents, i.e. M(OH),PC(a-t-butyl-phenoxy)s (M is Si, Ge, Sn and Pb respectively), were synthesized.
The effects of the central elements on the photosensitizing and photophysical properties (quantum yield
of singlet oxygen formation, quantum yield and lifetime of lowest lying excited triplet- and singlet state)
were investigated by laser flash photolysis, time correlated single photon counting, steady state fluo-
rescence and absorption spectra. The incorporation of large atoms significantly enhances the efficiency of
excited triplet state and singlet oxygen formation. The triplet quantum yield is increased 2.5 times to 0.75
for the lead tetrasubstituted phthalocyanine relative to that of 0.30 determined for the silyl analog, while
the triplet lifetime is longer than 120 ps. Correspondingly, the quantum yield of singlet oxygen formation
is 0.64 for the lead tetrasubstituted phthalocyanine and is 0.26 for the silyl compound. All of the PC
complexes maintain reasonably good fluorescence characteristics with the shortest fluorescence lifetime
measured being 3.14 ns, and the lowest fluorescence quantum yield of 0.18. These properties indicate
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that some of the PC complexes may be good candidates for singlet oxygen photosensitization.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Photodynamic therapy (PDT) of tumors involving certain types
of photosensitizers has been approved in clinic use for the treat-
ment of several diseases [1—4]. A photosensitizer (PS) is a light-
absorbing substance that generates reactive oxygen species
(mainly singlet oxygen) and is not consumed in the reaction.
Developing new PSs is currently an active field to address several
needs in PDT [1—4], including (i) high light absorption within the
optimal window (650—850 nm), (ii) a high quantum yield and long
lifetime for the excited triplet state, (iii) a low tendency to form
aggregates, (iv) amphiphilicity and (v) high selectivity for the target
tissue.

Phthalocyanines (PCs) belong to a class of synthetic aromatic
dyes which are structurally similar to the porphyrins [5—7]. Some
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PCs, especially Al, Zn and SiPC complexes, have been shown to be
effective in PDT [1], the photophysical properties for these PCs have
also been extensively studied [8—42]. Nonetheless, the photody-
namic activity of many metal PC complexes (e.g. germanium PCs,
tin PCs) has not been explored in depth, especially when compared
to Al, Zn and Si PC complexes [1]. The incorporation of central
metals with a high atomic number such as germanium, tin and lead,
which enhance the intersystem crossing (ISC) from S (the lowest
lying excited singlet state) to Ty (the lowest lying excited triplet
state), is of current research interest, since this will increase the
quantum yield of triplet state formation (®1) and improve the
quantum efficiency of singlet oxygen generation (@, ). This method
to improve photosensitizing capability is actually one way to
harness heavy atom effect (HAE) [43—45].

In this report a systematic study was made on group IV A (Si, Ge,
Sn Pb) PC complexes (Fig. 1), which are all substituted at one a-
position of each benzene moiety by a para-(tert-butyl)phenoxy.
Various synthesis strategies were explored. All aspects of photo-
physics related to photosensitizing properties of the complexes
were covered. For the B-substituted Ge and Sn PC complexes, Maree
and Nyokong reported the synthesis and photosensitizing proper-
ties [46].
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Fig. 1. Chemical structure of ML,PCR4 complexes 5 to 9, R is located at 1, 5(8), 9(12),
and 13(16), respectively.

2. Experimental
2.1. Reagents and apparatus

All reagents for synthesis were analytical grade and used as
received. Ethanol and dimethylformide (DMF) were dried and
redistilled before use. UV—visible spectra were recorded on a
StellarNet BLACK Comet C-SR diode array miniature spectropho-
tometer connected to deuterium and halogen lamp by Optical fiber
using 1 cm matched quartz cuvettes. A Shimadzu FTIR-8900 spec-
trometer was used to record IR spectra at room temperature. MS
spectra were recorded either on a Bruker APEX II or Autoflex III
Maldi-TOF spectrometer. The measurement of 'H NMR spectra was
carried out at room temperature on a Bruker DMX 400 MHz NMR
spectrometer.

2.2. Synthesis

2.2.1. Synthesis of 3-(4-tert-butylphenoxy)phthalonitrile (3)

3-Nitrophthalonitrile (1.73 g, 0.01 mol) and 4-tert-butylphenol
(1.50 g, 0.01 mol) were dissolved in DMSO (30 mL), LiOH (0.42 g,
0.01 mol) was then added. The resulted mixture was then stirred at
50 °C for 24 h under N, atmosphere. The product solution was
cooled and then poured into NaCl solution (10% aqueous, 100 mL),
the precipitated solid was filtered, washed with water and dried
under vacuum. White needles were obtained after recrystallization
in toluene. Yield: 51%. m.p. 116—118 °C. IR (KBr), »(cm~!): 3083,
3014, 2232 (C=N), 1695, 1632, 1563, 1506, 1485, 1465, 1429, 1386,
1351, 1275 (C—0—C), 1258, 1222, 1165, 1142, 1015, 938, 917. 'TH NMR
(400 MHZ, CDCl3, ppm): ¢ 1.353 (s, 9H, t-butyl), 6.992 (d, 2H,
J=7Hz, Ar—H), 7.245 (d, 1H, ] = 6 Hz, Ar—H), 7.510 (d, 2H, ] = 7 Hz,
Ar—H), 7.799 (m, 2H, Ar—H), 7.835 (m, 1H, Ar—H). MS, m/z: 298.95
[M + Na]*.

2.2.2. Synthesis of tetra(a—4-tert-butylphenoxy) phthalocyanine,
HoPcRy (5)

3-(4-tert-Butylphenoxy)phthalonitrile (0.276 g, 1 mmol) and
dried N,N-dimethylamino-ethanol (5 mL) were mixed and stirred
at 150 °C for 4 h under argon atmosphere in the presence of two
drops of DBU as catalyst. After cooling down, water (50 mL) was

added and the green precipitate was filtered and washed with
water. The dried crude product was dissolved in dichloromethane
and purified by column chromatography (silica gel) using
dichloromethane as the mobile phase. Yield: 39%. UV—vis (EtOH):
Amax M 334, 691, 717. IR [(KBr) ymax/cm™']: 750, 941, 1256, 1412,
1589, 1697 (PC ring); 1335, 1412, 2953, 2961 (CH3); 1026, 1175 (Ar—
0—C). 'H NMR (CDCl3): é, ppm 7.49—7.89 (12H, m, Pc—H), 7.01—7.47
(16H, m, phenyl—H), 1.21-1.65 (36H, m, CH3). MALDI-TOF-MS m/z:
Calculated 1107.4; found 1107.6 [M + 1]. Calcd. for C7pHggNgO4 C,
78.09: H, 6.01; N, 10.12. Found: C 77.58, H, 6.21; N, 10.27.

2.2.3. Synthesis of tetra(a—4-tert-butylphenoxy) silicon
phthalocyanine, Si(OH)2PcR4 (6)

Compound 3-(4-tert-butylphenoxy)phthalonitrile was con-
verted to 3-(4-tert-butylphenoxy)1,3-diiminoisoindoline in the first
step. To methanol (40 mL) containing CH3ONa (0.070 g, 1.4 mmol),
3-(4-tert-butylphenoxy)phthalonitrile (2.76 g, 10 mmol) was
added. Ammonia was then bubbled through the solution with
stirring for 1 h at room temperature. The temperature was then
raised to 70 °C and the reaction was maintained for 9 more hrs with
stirring and N bubbling. After cooling down, methanol was
removed by distillation. The solid was then washed with water,
filtered, and dried under vacuum.

3-(4-tert-Butylphenoxy)1,3-diiminoisoindoline (0.55 g, 1.86 m
mol) and SiCl4 (0.30 mL, 2.63 mmol) were added into freshly distilled
quinoline (3 mL) and stirred at 200 °C under argon for 1 h. Acetone
(10 mL) was added, the resulted mixture was filtered and washed
with acetone. The filtrate and the solvent were evaporated under
vacuum. The product was purified by column chromatography (silica
gel) by using CH,Cl; as eluent. Yield: 27%. UV—vis (EtOH): Apax nm
346, 699. IR [(KBr) rmax/cm™']: 617, 748, 982, 1252, 1479, 1589 (PC
ring); 1015 (Si—0); 1335, 2868, 2903, 2961 (CH3); 1070,1245 (Ar—0—
C)."HNMR (CDCl3): 6, ppm 7.57—7.95 (12H, m, Pc—H), 7.03—7.62 (16H,
m, phenyl-H), 1.21-1.69 (36H, m, CH3). MALDI-TOF-MS m/z: Calcu-
lated 1166.5; found 1149.5 [M — OH]". Calcd. for C73HggNgOgSi C,
74.07; H, 5.70; N, 9.60. Found: C, 73.66; H, 5.51; N, 9.39.

2.2.4. Synthesis of tetra(a—4-tert-butylphenoxy) germanium
phthalocyanine, Ge(OH)>PcR4 (7)

Tetra(o.—4-tert-butylphenoxy) phthalocyanine (0.31 g, 0.28 m
mol) and freshly distilled quinoline (5 mL) were added into 25 mL
three-necked flask. After bubbling argon for 10 min, GeCly (0.5 mL,
4.4 mmol) was added quickly. The solution was stirred for 2 h at
240 °C. After cooling down, acetone (10 mL) was added, the
resulting mixture was filtered and washed with acetone. The
filtrate and the solvent were evaporated under vacuum. The
product was purified by column chromatography (silica gel) by
using CH,Cl, as eluent. Yield: 33%. UV—vis (EtOH): Apax nm 342,
714. IR [(KBr) rmax/cm™']: 640, 743, 972, 1259, 1483, 1589 (PC ring);
1015 (Ge—0); 1340, 2866, 2963 (CH3); 1080, 1213 (Ar—0—C). 'H
NMR (CDCls): 4, ppm 7.60—8.01 (12H, m, Pc—H), 7.06—7.59 (16H, m,
phenyl—H), 1.17—1.75 (36H, m, CH3). MALDI-TOF-MS m/z: Calcu-
lated 1212.4; found 1195.5 [M-OH]". Calcd. for C72HgsGeNgOg C,
71.35; H, 5.49; N, 9.25. Found: C, 70.79; H, 5.09; N, 9.47.

2.2.5. Synthesis of tetra(a—4-tert-butylphenoxy) tin
phthalocyanine, Sn(OH)>PcR4 (8)
3-(4-tert-Butylphenoxy)phthalonitrile (0.276 g, 1 mmol) and
dried N,N-dimethylaminoethanol (5 mL) were mixed and stirred at
150 °C for 4 h under argon atmosphere in the presence of two drops
of DBU as catalyst. SnCl, (0.19 g, 1 mmol) was then added at 170 °C,
the reaction was maintained for 1 h. After cooling, water (50 mL)
was added and the green precipitate was collected by filtration and
washed with water. The dried crude product was dissolved in
dichloromethane and purified by column chromatography (silica
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gel) using dichloromethane as the mobile phase. Yield: 43%. UV—vis
(EtOH): Amax nm 331, 624, 691. IR [(KBr) vmax/cm™]: 608, 827, 972,
1259, 1477, 1593, 1651 (PC ring); 1047 (Sn—0); 1339, 1364, 1396,
2868, 2963 (CH3); 1090, 1211 (Ar—0—C). 'H NMR (CDCl3): 6, ppm
9.20—9.42 (4H, m, Pc-H), 8.91-9.12 (4H, m, Pc-H), 8.00—8.23 (4H,
m, Pc-H), 7.55—7.80 (16H, m, phenyl-H), 1.30—1.62 (36H, m, t-butyl).
MALDI-TOF-MS m/z: Calculated 1258.4; found 1241.5 [M — OH]".
Calcd. for C7pHggNgOgSn C, 68.74; H, 5.29; N, 8.91. Found: C, 68.29;
H, 5.58; N, 8.46.

2.2.6. Synthesis of tetra(a—4-tert-butylphenoxy) lead
phthalocyanine, PbPcR4 (9)

To a DMF solution of tetra(a.—4-tert-butylphenoxy) phthalocy-
anine (59 mg, 0.05 mmol), lead diacetate (11.9 mg, 0.05 mmol) was
added. The resulted solution was stirred under argon atmosphere at
200 °C for 1.5 h. After cooling, water (50 mL) was added and the
green precipitate was collected by filtration and washed with wa-
ter. The dried crude product was dissolved in dichloromethane and
purified by column chromatography (silica gel) using dichloro-
methane as the mobile phase. Yield: 57%. UV—vis (EtOH): Apax/nm
331, 624, 691. IR [(KBr) ymax/cm ™ ']: 644, 748, 974, 1250, 1477, 1508,
1597 (PC ring); 1015 (Pb—0); 1331, 1364, 2866, 2959 (CHs3); 1065,
1213 (Ar—0—C). 'TH NMR (DMSO): é, ppm 8.39—9.04 (12H, m, Pc—
H), 7.71-8.01 (16H, m, phenyl—H), 1.29—-1.34 (36H, m, CH3). MALDI-
TOF-MS m/z: Calculated 1312.5; found 1313.3 [M + H]*. Calcd. for
C72HeaNgO4Pb C, 65.89; H, 4.91; N, 8.54. Found: C, 66.49; H, 4.52; N,
8.37.

2.3. Photophysical measurements

2.3.1. Fluorescence

Fluorescence spectra and lifetimes were acquired on a FLS 920 of
Edinburgh Instruments using 1 cm quartz cuvettes. All fluorescence
spectra were corrected for the sensitivity of the photo-multiplier
tube. The absorption, fluorescence and excited triplet state prop-
erties were investigated at room temperature (22 °C). All ethanol
solutions were air saturated for absorption, fluorescence spectra
and fluorescence quantum yield (®f) measurements.

&r was computed by Eq. (1)

(1)

in which A is the absorbance at excitation wavelength, F is the in-
tegrated fluorescence intensity, n is the refractive index of the

@*@
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solvent, the subscript 0 stands for a reference compound and s
represents samples. ZnPc was used as the reference (@? = 0.18)in
DMSO [47]. The excitation wavelength is 610 nm, which is corre-
sponding to the vibronic band of Sy to S; transitions. The absor-
bance of a sample and the reference solutions was adjusted so that
they both have roughly the same absorbance (A; is about 0.050) at
the excitation wavelength.

Time-correlated single photon counting method was used to
measure fluorescence lifetime (7f) with excitation at 672 nm by a
diode laser (70 ps FWHM), the emission was monitored at the
wavelength of a band maximum. ¢ was obtained by a convolution
procedure that fits the summation of IRF and I(0)e(—t/zf) + B to the
measure I(t), in which IRF is the measured instrument response, I(t)
is the fluorescence intensity at time t after laser excitation, B is a
constant (fluorescence background). The software is a product of
the instrument supplier.

2.3.2. Laser flash photolysis

An Edinburgh LP920 laser flash photolysis system was used to
obtain transient absorption spectra in DMF. The concentrations of
the target compounds were typically 15 uM providing A3s5 = 0.30
in 10 mm cuvettes. The solutions were either air-saturated or
deoxygenated by bubbling with argon for 20 min in a capped
quartz cuvettes. The optical path length was 1 cm. The excitation
source was A Nd:YAG laser (Brio, 355 nm and 4 ns FWHM). The
analyzing light was from a pulsed xenon lamp, perpendicular to
the excitation laser. The signal was recorded on a R928B detector
and displayed by a Tektronix TDS 3012B oscilloscope. The laser
energy incident at the sample was attenuated to ca. 10 mJ per
pulse. Time profiles at a series of wavelengths were recorded
with the aid of a computer controlled kinetic absorption spec-
trometer, from which point by-point spectra were sliced and
assembled by the L900 software provided by the instrument
supplier.

The triplet quantum yield (1) was computed by Eq. (2) by using
ZnPc (@1 = 0.65 in 1-propanol) as a reference [48],

AgZnPe Ap
_ ZnPc T T
Or = o1 AAZnPc AgT 2

in which AAr is the absorbance of the triplet—triplet absorption
spectrum at the selected wavelength, and Aer is the triplet
state molar absorption coefficient. Aer of the samples were ob-
tained by using the singlet depletion method according to Eq.

(3) [48].
HN NH
Ay
(@]

4

(i)

NH;
CHgOH

N

i,
@_S.m
.

0

Fig. 2. The synthetic route for SiPcR4.
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Fig. 3. The synthetic route for GePCR4, SnPcR4 and PbPcR,.

Aer = sl 3)
¢s is the molar absorption coefficient at the UV—vis absorption band
maximum for the ground-state. AAs and AAr in Eq. (3) are the
absorbance change at the minimum of the bleaching band and the
maximum of the positive band, respectively. Both AAs and AAt were
obtained from the triplet transient difference absorption spectra.

2.3.3. Singlet oxygen generation

Singlet oxygen quantum yields (®5) were determined by the
chemical trapping method, since one molecule of singlet oxygen can
react with one molecule of diphenylisobenzofuran (DPBF) which

R
CN
CN MC14
DBU
-pentanol | ’/
¢} 150 °C C'
3 M = Si, Ge, Sn, Pb
- R
R= O—<: :)—é
R
R .
e MCl \, NT NN
4 I ¢ \
quinoline ' 4 |
NH —_— | 7 N—M—N 8 |
200°C | e,
NH R NS
R M = Sn, Pb _
4 R= 04 )~ "

Fig. 4. The synthetic routes that did not lead to the desired product.

causes DPBF bleaching [49]. Typically, a 3 mL portion of the
respective 5 pM PS solution that contained 30 uM DPBF was irra-
diated by a LED lamp (660 nm) from StellarNet corp. in air saturated
DMEF. @, value was calculated by Eq. (4) using ZnPc as the reference
(Eq. (4)):

ref k I ref

¢A kref ]

(4)

where @ff is the singlet oxygen quantum yield for the standard (0.56
for ZnPc in DMF) [50], k and k™' is the DPBF photo-bleaching rate
constant for the sample and ZnPc, respectively; I and Igef is the rate of
light absorption at the irradiation wavelength of 660 nm by the sample
and standard, respectively. Their ratio can be obtained by Eq. (5).

_Atef

Ieef o

I

_1-10"
T 1—-10"4m’
DPBF degradation was monitored by UV—vis absorption spec-

trum. The error in the determination of ®, was ~ 10% (determined
from several @, values).

(5)

3. Results and discussion
3.1. Synthesis

The synthetic routes to the desired products are shown in Figs. 2
and 3. K»COs, a base that is often effective in the reaction of a
phenol with nitro substituted phthalonitrile at room temperature,
did not work well in reaction (i) that generates compound 3.
Instead, a strong base LiOH and a higher temperature were needed
to effect reaction (i). Initial attempts to prepare the PCs 6,7, 8, 9 by
the very common procedure (Fig. 4) by using the condensation of
compound 3 with PbCl4 (or Pb(CH3COO);) or SnCl4 were not suc-
cessful, although the common method (Fig. 4 top) worked well for
MPCR4 (M = Zn, Cu, InCl, Gadl, TiO) [51-54].
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Table 1
The photophysical properties of compounds ML,PCR, in ethanol.?
Aabs, NM Aex» NM Aem, NM D, Tf, NS [ Tr, US Ar,NM [N kg, 109571
Si(OH),PcR4 699 698 718 0.66 5.29 0.30 267 593 0.26 0.13
Ge(OH),PcRy 711 714 725 0.52 423 0.34 129 565 0.30 0.12
Sn(OH),PcR4 691 690 706 0.45 3.14 043 125 553 0.36 0.14
PbPcR4 691 691 707 0.18 3.21 0.75 121 578 0.64 0.055

3 )abs: absorption maximum. Aex: excitation maximum. Aep,: emission maximum. &y: fluorescence quantum yield. 7 fluorescence lifetime. x2: chi square values for t fitting
is within 1.00—1.03. 7q: triplet lifetime. @: quantum yield for triplet state. Ar_1: T;—T, absorption maximum. @: quantum yield for singlet oxygen. k: the rate constant of

emission process, calculated by k¢ = ®/ty.

0.8

0.6

0.4

Absorbance

0.2+

0.0 T T
300 400 500 600

Wavelength (nm)

T
700

Fig. 5. Normalized UV—vis absorption spectra of MPcR4 in ethanol.

Two different pathways are required to obtain the four phtha-
locyanines in this study. For Si(OH),PcRy, reaction (iii) in Fig. 2 was
employed in which compound 4 was the starting material. This
procedure, however, did not work for Sn(OH),PcR4 and PbPcRg.
Reaction (v) in Fig. 3 proved to be successful in which Ge was
inserted into the isolated metal-free phthalocyanine 5 in quinoline.
Reaction (vi) and (vii) are necessary to prepare Sn(OH),;PcR4 and
PbPcRy4, but 5 was not isolated during the one-pot two-step reac-
tion, in which the first step was to allow 5 to form. The reaction did
not lead to 8 (or 9) when 3 and SnCl; (or PbAc;) were heated under
reflux in n-pentanol in the presence of DBU.

3.2. Photophysics

Table 1 summarizes the photophysical properties of compounds
6, 7, 8, 9. Both the fluorescence and triplet excited state properties

(A)

(4
Lk

Normalized Intensity
o
=

o
L

0.0

Wavelength (nm)

650 700 750 800 850

are affected significantly by the change of the central element. The
increase of atom size remarkably enhances the efficiency of triplet
state and singlet oxygen formation whilst good fluorescence char-
acteristics were retained. The details of these properties are
described in the following section.

3.2.1. Ground state UV—vis absorption spectra

The UV—vis absorption spectra of the phthalocyanines in
ethanol or DMF all showed similar spectral behavior, and the
spectra shown in Fig. 5 are typical. It can be seen that the Q band
of Si(OH),PcR4 shows a vibronic shoulder with an intense narrow
peak at 699 nm, while the B band is located at 331 nm.
Ge(OH);PcR4 Q band showed a red-shifted maximum (711 nm)
relative to that of Si(OH);PcR4. Sn(OH),PcR4, PbPcR4, however,
exhibited blue-shifted Q band maxima (both are 691 nm) relative
to that of SiPcR4. The absorption maxima (4;ps) are included in
Table 1.

The blue shift is a reflection of the planarity of the m-system.
With the increase of the atomic size from Si to Pb, Pb and Sn
cannot be inserted into the cavity of PC but are located
outside PC m-ring. The mutual interaction leads to the deviation
of PbPC ring from planarity to a shuttlecock shaped structure
[55—57].

The Beer—Lambert law plots for all of the compounds in ethanol
showed good linearity in the range of concentrations investigated
(0.50—20 uM), indicating no aggregation in the ground state.

3.2.2. Fluorescence properties

The fluorescence emission spectra of ML,PcR4 are compared in
Fig. 6. Their spectral shape are all similar and typical of that for PCs,
although the maximal wavelengths of the emission peaks
are influenced by the central elements. Table 1 includes the exci-
tation and emission maxima (Aex and Aem). The effect of the central
elements on Aex Or Aem is the same as their influence on Aps
(Table 1).

10] (B)

o
@
3

0.6

Normalized Intensity
o
'

(=]
N
2

600 650 700 750 800
Wavelength (nm)

Fig. 6. (A) The normalized fluorescence emission spectra of MPcR4 (M = Si, Ge, Sn) in EtOH with excitation at 610 nm (absorbance 0.050). (B) The normalized excitation (emission at

730 nm) and emission spectra of PbPcR4 in EtOH (with excitation at 610 nm).
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Fig. 7. Fluorescence decay of MPCR4 (M = Si, Ge, Sn) in EtOH with excitation at 672 nm
diode laser (70 ps), the emission was monitored at emission maximum, the concen-
tration of dyes is ca. 2.0 uM. Bottom: fitting residues for SiPCR4.

The symmetry between the excitation and emission spectra
holds for all ML,PCR4 compounds. The stokes shift were about
17(£3) nm, the small values indicate only a slight change of the
molecular geometry upon photoexcitation.

The fluorescence decays in Fig. 7 are satisfactorily described
by monoexponential functions. In all cases, the weighted re-
siduals (Fig. 7 bottom) are small, and the reduced chi-squared
values (x2 in Table 1) are 1.02 % 0.02, indicating a good agree-
ment of the monoexponential fits. The decay lifetimes (tf) are
given in Table 1.

¢ is monotonically lowered with the increase of atomic size
(Table 1). So is the case for 11. This lowering of @ and ¢ is generally
due to the enhancement of the spin-orbit coupling between d-or-
bitals of the metal ion and PC =-ring electrons. The angular
movement of the electron through the magnetic field created by

the atomic nucleus can impart an electromagnetic force on the
electron causing it to change its spin. This can only occur if the
electron is alone in an orbital and thus free from the influences of
another electron (the case in S; state). The Hamiltonian for spin-
orbit interaction (Hs—o) is strongly proportional to the nuclear
charge as shown in Eq. (6), which is intractably proportional to the
size of the atom [58].

2 Ls. (6)

Heo—-—2% 1.
570 T Bregme2c2

In which e is the elementary charge of an electron, ¢ is the
permittivity of the vacuum, m, is the mass of an electron, c is the
speed of light, and z is the atomic number of the acting nucleus. The
vector portion is the dot product of the electron’s angular mo-
mentum, L, and spin, S. The magnitude of spin-orbit coupling is
thus greatly affected by the size of the nucleus.

The stronger spin-orbit coupling results in the faster ISC from S4
to Ty, i.e. a larger kjsc arises, which leads to a smaller @rand 1y, since
1p = (ki + kic + kisc) 1, and @ = k/(ks + kic + kisc). kf can be obtained
by kg = ®/ts, the values are also included in Table 1. k¢ values for the
three ML,PCRy (M = Si, Ge, Sn) are about the same, ca.
0.13 x 10% s~, but reduced remarkably to 0.55 x 108 s~! for PbPCRy.
The decrease of kfin PbPCR4 is due to the significant bending of the
PbPC -system, so that a strain force exists and favors the internal
conversion by heat release.

3.3. Triplet excited state properties

The transient absorption spectra for the PC complexes are dis-
played in Fig. 8. Laser flash photolysis (LFP) was carried out with
laser excitation (4 ns) pulse at 355 nm. The samples for the spectra
were dissolved in DMF and purged with argon for 20 min before the
measurement. The transient spectra show common features: 1) the
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Fig. 8. The transient absorption spectra in argon saturated DMF with laser excitation (4 ns) at 355 nm (absorbance was adjusted to ~0.3).
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Fig. 9. Triplet decays and ground state recovery of MPCRy in argon saturated DMF (left and middle). Triplet decays in air saturated DMF with laser excitation (4 ns) at 355 nm (right).

negative absorption in the Q-band region showed peaks matching
the corresponding ground state absorption; 2) the broad shape of
the positive absorption is similar to the T{—T, transient spectra
found previously for other similar PCs [33,59—61]; 3) the positive
bands are separated from the ground state bleaching with well
defined isosbestic points; 4) the decrease of the positive band is
accompanied by the increase of the negative band; 5) the bleaching
recovery kinetics is synchronous with the absorption decay kinetics
(shown in Fig. 9). The concurrent behavior indicates that as the
positive absorbing transient decays, the ground state is repopu-
lated. In summary, the positive absorptions are due to T1—Tj,

1.0
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Fig. 10. Top: The variation of the absorption spectra in Sn(OH),PcR4 (6 pM) photo-
sensitized system containing 32 uM DPBF in DMF, with irradiation at 660 nm. Bottom:
The plot of DPBF absorbance at 410 nm against time, and the linear fitting.

absorption decay while the negative bands are attributed to the
recovery of Sg—Sq absorptions; the spectral changes with time
reflect a two state transformation: Ty — So.

The T1—T, absorption maximum (Ar_t in Table 1) is a function of
the central elements. At decreases with the atomic size, but
PbPCR4 showed slightly different behavior (Table 1).

Typical transient decay curves are given in Fig. 5. The synchro-
nous ground state recovery is also shown. These curves can all be
fitted by the monoexponential function. The triplet lifetimes are
collected in Table 1. The 1 values are all larger than 120 ps, the PC
complex with a heavy central metal exhibits shorter 77 values than
that of Si(OH),PCR4. The lifetimes are comparable to those of other
PCs [48], and are sufficiently long for photosensitizing the pro-
duction of singlet oxygen.

In air saturated DMF the triplet species decayed at a much faster
rate (Fig. 9 right), the 77 values are 0.45, 0.54, 0.38 and 0.39 us for
ML,PCR4 (M = Si, Ge, Sn, Pb), respectively. This is due to a very
efficient molecular oxygen quenching. The rate constants by oxy-
gen quenching (ke) range from 092 x 10° M~' s7! to
1.31 x 10° M~ s~ 1. The values are close to one-ninth of the diffusion
rate of O, in the solvent.

This effective oxygen quenching also indicates that the positive
absorptions are due to T;—T, triplet absorptions. The ke¢ values
obtained above are comparable to the rate constants obtained for
0, quenching of the triplet excited states of a variety of porphyrins
and phthalocyanines [62].

&1 for each of the four compounds in DMF is given in Table 1. In
contrast to @¢ change, & becomes larger with increasing the atomic
size, as shown in Table 1. The incorporation of large atoms signifi-
cantly enhances the efficiency of triplet state formation. @7 is
increased 2.5 times to 0.75 for PbPCR4 from 0.30 for Si(OH),PCRy,
indicating an effective heavy atom effect. The summation of @rand s
in all cases is less than 1, suggesting the presence of internal
conversion.

3.4. Singlet oxygen formation by DPBF chemical trapping

The quantum yields for singlet oxygen formation (®5) were
measured in air saturated DMF by using the chemical trapping
method with irradiation at 660 nm. Photosensitized DPBF degra-
dation was monitored by UV—vis spectroscopy. Fig. 10 displays the
variation of DPBF absorbance upon irradiation, for which the
pseudo zero-order kinetics could be applied (Fig. 10).

@, is also collected in Table 1. The coordination of large atoms
remarkably enhances the efficiency of singlet oxygen formation.

The value of @, for each PC is close to its ¢, suggesting a good
efficiency of energy transfer, considering the two competing
processes:
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Ty (PS) + 30, ki‘»So(PS) +10,, T; energy transfer to form
singlet oxygen

kd

T (PS)=Se(PS), T; natural decay

since ke[O2] values are 1.84—2.56 x 108 s~!, which is 300 times
larger than that of the competing decay rate of Ty itself (kq = 1/71),
kq values are 0.38—0.82 x 10% s 1).

4. Conclusions

We have synthesized ML,PCR4 compounds in which M is Si,
Ge, Sn, and Pb respectively, which includes all possible group IV
elements in the periodic table. The preparation is not trivial since
the common procedures reported in literature by using the
condensation of compound 3 failed. The ML,PCR4 compounds
harness the heavy atom effect to enhance triplet and singlet
oxygen formation.

The photophysical and photochemical processes related to PDT
were revealed by comparing the steady state and transient spectra
of Sp, Sy, and T; of these compounds. The insertion of large atoms
into PC complexes significantly enhances the efficiency of triplet
state and singlet oxygen formation. The triplet quantum yield is
increased 2.5 times to 0.75 for PbPCR4 from 0.30 for Si(OH),PCRg,
while the triplet lifetime is longer than 120 ps. Correspondingly, the
quantum yield of singlet oxygen formation is promoted to 0.64 for
PbPCR4 from 0.26 for Si(OH),PCR4. In the mean time, these PC
complexes still maintain reasonably good fluorescence character-
istics. These properties indicate that some of the PC complexes are
good candidates for singlet oxygen photosensitizers but the toxicity
of lead compounds to the human body must be noted.
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