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ABSTRACT

A concise synthesis of the AB rings of samaderine C (12 steps, 8 isolation steps, 7.8% overall yield), a quassinoid with antifeedant and insecticidal
activity, is described. The development of the first general approach to the trans-1,2-diol A-ring motif in samaderine C and other quassinoids is a
key feature. The trans-1,2-diol is crafted via stereoselectiveR-hydroxylation (of a silyl enol ether) and reduction, a strategy that hasmuch potential
for quassinoid synthesis.

Samaderine C (Scheme 1) is a highly oxygenated, poly-
cyclic quassinoid isolated from the bark and seedkernels of

the samadera indica plant found primarily in Madagascar

and southeast Asia.1,2 One of eight isolated samaderines,

our interest in samaderine C was initiated by its re-

ported antifeedant and insecticidal properties.3 To date,

there have been rather limited synthetic efforts on the

samaderines, with only two reported total syntheses. In

1994, Grieco et al. disclosed a racemic total synthesis

(>30 steps) of samaderine B.4 More, recently, Shing and

co-workers reported a 21-step synthesis of (�)-samaderine

Y starting from (þ)-carvone.5

As there have been no previous synthetic studies on
samaderine C, and to explore possible agrochemical struc-
ture�activity relationships, we focused on the synthesis of
analogues of the AB rings of samaderine C. In particular,

we sought a general strategy for constructing the trans-1,2-
diol A-ring motif present in samaderine C and other
quassinoids. Indeed, we could find no previous syntheses
of such trans-1,2-diols in the quassinoid literature. Diol 1
was chosen as a suitableABring analogue of samaderineC,
and herein we describe a concise, stereocontrolled synthesis
starting from the known6 bicyclic enone 2 (Scheme 1).
Our retrosynthetic analysis of diol 1 is summarized in

Scheme 2. Our long-term plan had protected enone 3
serving as an advanced intermediate from which the CDE
rings of samaderine Cwould be elaborated. Enone 3would

Scheme 1. Samaderine C and 1, an AB Ring Analogue
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in turn be prepared from diol 1 by diol protection, ketal
deprotection, 1,3-carbonyl transposition, enone formation,

and enoneR-functionalization. Itwasour intention that the
bridgehead axial methyl group would control the config-

uration of the diol functionality in 1: reduction of hydroxy

ketone 4 (f 1) and R-hydroxylation of silyl enol ether

5 (f 4) should both occur on the face opposite to the

axial methyl group to deliver the requisite trans-1,2-diol

motif. Silyl enol ether 5 would be derived from enone 6

(by γ-enolization), itself obtained from enone 7 via a 1,3-

carbonyl transposition (Wharton rearrangement of an

epoxy ketone7 was envisaged). Previously, Grieco had

developed an approach for the R-hydroxylation of enones

such as 6,8 and the preparation of enone 7 from bicyclic

enone 2 has been described.9

Multigram quantities of racemic enone 7 were prepared
as outlined in Scheme 3. First, 2-methyl-1,3-cyclohexa-

dione and ethyl vinyl ketone were reacted in a DABCO-

mediated Robinson annelation6 to give, after elimination,

bicyclic enone 2 in 78% yield. Ketal formation to give 8

(81% yield) was accomplished using ethylene glycol and

catalytic p-TsOH under Dean�Stark conditions. Next,

stereoselective reduction of enone 8 using lithium in

ammonia (in the presence of 1 equiv of H2O) gave ketone

9 in 61% yield. Over-reduction to the secondary alcohol

was a complicating factor although the alcohol could be

isolated and oxidized to give additional quantities of 9.

Finally, the enone in 7 was constructed using a stoichio-

metric Pd(OAc)2-mediated oxidation10 of an intermediate

silyl enol ether (formed by regioselective deprotona-

tion of ketone 9 using LDA), as developed by Saegusa.9

This delivered a single diastereomer of enone 7 in 82%yield.

Using the Larock modification11 of the Saegusa oxidation

(catalytic Pd(OAc)2/oxygen), none of 7 was formed and a

Nicolaou-style12 IBX-mediated oxidation of ketone 9 gave

only a 14% yield of enone 7.

Next, we needed to carry out a 1,3-carbonyl transposi-
tion on enone 7 to place the ketone adjacent to the bridge-
head methyl group (as in 6). For this, a nucleophilic
epoxidation of enone 7 and a Wharton rearrangement�
oxidation were planned. However, all attempts at directly
epoxidizing 7 (e.g., H2O2 and NaOH or Triton B) met
with failure, presumably due to steric hindrance from the
neighboring methyl and ketal groups. Instead, we resorted
to a three-step reduction, m-CPBA epoxidation, and oxi-
dationwhich, although it involvedmore steps,was efficient
and was ultimately telescoped successfully.
Initially, the steps were separately explored (Scheme 4).

Luche reduction (NaBH4/CeCl3 3 7H2O) of enone 7 gave
a 94:6 mixture of diastereomeric alcohols from which an
89% yield of alcohol 1013 was isolated. Then, m-CPBA
epoxidation of allylic alcohol 10 gave an inseparable 88:12
mixture of epoxides 11 in 79% yield. The relative stereo-
chemistry of epoxides 11 is of no consequence (vide infra)
and remains unassigned.14 Oxidation with Dess-Martin
periodinane (DMP) delivered an 88:12 mixture of epoxy-
ketones 12 (70% yield). A more efficient synthesis of 12
was achieved by telescoping these three reactions. By
working-up the first two reactions and carrying the crude
products forwardwithout purification, an85:15mixture of
epoxy-ketones 12 was obtained after chromatography
(73% yield from 7) (Scheme 4).
Treatment of the 85:15mixture of diastereomeric epoxy-

ketones 12withhydrazine hydrate (50%aqueous solution)
and acetic acid led to the allylic alcohols 13 (characterized

Scheme 2. Detailed Retrosynthetic Analysis of Diol 1

Scheme 3. Synthesis of Bicyclic Enone 7
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in a separate experiment) via a Wharton rearrangement
(Scheme 5).7 Workup and subjection of the crude allylic
alcohols 13 to Dess-Martin periodinane oxidation gave
enone 6 in 60% yield over the two steps. γ-Enolization of
enone 6 was achieved using Et3N andMe3SiOTf and gave
extended silyl enol ether 5. Based on Grieco’s precedent,8

in situ oxidation with purified m-CPBA followed by stir-
ring with TBAF generated R-hydroxy ketone 4 as a single
diastereomer in 70% yield. The stereochemistry of 4 was
confirmed by X-ray crystal structures of diols 1 and 14
(vide infra) which indicated that the oxidation had, as
expected, occurredopposite to the bridgehead axialmethyl
group.

Finally, the reduction of R-hydroxy ketone 4 was
explored. Using 4 equiv of NaBH4 in MeOH at 0 �C, an
82:18 mixture of alcohols 1 and 14 were generated. After
chromatography, trans-1,2-diol 1was isolated in 80% yield
and cis-1,2-diol 14 in 13% yield. As predicted, steric
hindrance led to a preferred hydride attack on the face
opposite to the methyl group. Unequivocal proof of the
structure of trans-1,2-diol 1 was obtained by X-ray crystal-
lography (Scheme 6).

In contrast, and somewhat surprisingly, reduction of
R-hydroxy ketone 4 using 3 equiv of DIBAL-H in THF at
�78 �C led to thepreferred formationof cis-1,2-diol 14which
was isolated in 73% yield. Structural proof was obtained
byX-ray crystallography (Scheme 7). There was no evidence
of the formation of trans-1,2-diol 1 in this reaction. Our con-
jecture is that, with DIBAL-H, an aluminum alkoxide forms
which, if it adopts an axial position, can coordinate to the
axial oxygen of the ketal group. This would lead to a confor-
mational change of the A-ring, exposing the other carbonyl
face to the excess DIBAL-H that is present. Notably, the
complementary diastereoselectivity produced with NaBH4

and DIBAL-H facilitates synthetic access to either trans-or
cis-1,2-diols in the quassinoid family of natural products.
In summary, a concise synthesis of the AB rings of

samaderine C has been developed (12 steps, 8 isolation
steps, 7.8%overall yield). Inparticular,wehave successfully
implemented a strategy for the stereoselective synthesis of
the trans-1,2-diol motif present in samaderine C (and a range

Scheme 4. Telescoped Synthesis of Epoxy-Ketone 12

Scheme 5. Synthesis of R-Hydroxy Ketone 4

Scheme 6. Stereoselective Synthesis andX-ray Crystal Structure
of trans-1,2-Diol 1

Scheme 7. Stereoselective Synthesis andX-ray Crystal Structure
of cis-1,2-Diol 14
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of other quassinoids). Our approach includes a stereoselective
R-hydroxylation (of an extended silyl enol ether) and a
reduction. A complementary route to a cis-1,2-diol, a motif
that is present in other quassinoid natural products such as
castelanolide,15hasalsobeendiscovered.Webelieve that these
newaspectshavegreatpotential forquassinoid total synthesis.
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