Synthesis of pyrano[2,3-*c*]carbazoles, pyrano[3,2-*b*]carbazoles and furo[3,2-*b*]carbazole derivatives via iodocyclization

KRISHNA CHAITANYA TALLURI and RAJAGOPAL NAGARAJAN* School of Chemistry, University of Hyderabad, Hyderabad 500046, India e-mail: rnsc@uohyd.ernet.in

MS received 3 August 2011; revised 13 September 2011; accepted 15 September 2011

Abstract. A simple and facile synthesis of pyranocarbazole derivatives starting from easily accessible *O*-propargylated carbazoles using iodocyclization in good yields is reported.

Keywords. Carbazole; pyranocarbazole; furocarbazole; iodocyclization; O-propargylcarbazole.

1. Introduction

Carbazole alkaloids have attracted the attention of synthetic chemists due to their easily accessible structural features and promising biological applications.¹ Among these, pyranocarbazole alkaloids form a prominent group due to their occurrence in various plant sources and also their intriguing structural features.² Pyrayafolines, eustifolines, clausamines, clausevatines, etc. are some of the important pyranocarbazole alkaloids that have been synthesized in recent times² (figure 1). Clausamines have been reported to inhibit EBV activation in Raji cells.³ Diaryl pyranocarbazole derivatives were reported to show photochromic properties.⁴ In this context, an efficient methodology for the synthesis of these pyranocarbazole derivatives is desirable.

The synthesis of benzopyran and quinoline derivatives from the corresponding propargyl derivatives has attracted synthetic chemists in recent times.^{5,6} Larock and co-workers reported a simple methodology for the synthesis of benzopyrans through iodocyclization.⁷ These reactions involve readily available reagents like iodine and simple bases which are inexpensive and ecofriendly. These reactions are also very efficient, clean and do not require harsh conditions. Further, these products can be useful building blocks for the synthesis of fused heterocycles.

2. Experimental

2.1 *General procedure for O-propargylated carbazoles*

An oven dried 100 mL round bottom flask equipped with a teflon coated magnetic stirring bar was charged with hydroxycarbazole (5 mmol), potassium carbonate (15 mmol) in 15 mL of acetone under stirring. After stirring for 30 min., propargyl bromide (6 mmol) was added slowly and reaction mass was stirred at room temperature for 6 h. Reaction mass was poured into water, neutralized with 0.1 M HCl, extracted with ethyl acetate, washed twice with water (50 mL \times 2), dried for an hour, sodium sulfate and solvent was removed under vacuum to sulfate the corresponding *O*-propargylated carbazole as a low melting solid.

2.1a 9-*Ethyl-1,4-dimethyl-3-(prop-2-ynyloxy)-9H-carbazole* (**2a**): mp: 72–74°C; IR(KBr): 3273, 2968, 2920, 2870, 2125, 1581, 1512, 1464, 1371, 1302, 1261, 1197, 1140, 1070, 1026, 792, 744, 540, 432 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.24 (d, J = 8.0 Hz, 1H), 7.46–7.40 (m, 2H), 7.22 (t, J = 7.6 Hz, 1H), 6.99 (s, 1H), 4.72 (s, 2H), 4.58 (q, J = 6.8 Hz, 2H), 2.81 (s, 6H), 2.51 (s, 1H), 1.41 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 148.7, 141.5, 125.1, 124.1, 123.3, 122.9, 120.8, 120.4, 118.6, 118.4, 117.4, 108.4, 79.7, 74.9, 59.5, 39.3, 20.0, 15.4, 12.9; m/z = 277, positive mode; Anal. Calcd for C₁₉H₁₉NO: C, 82.28; H, 6.90; N, 5.05%; found: C, 82.11; H, 6.85; N, 5.12%.

2.1b *9-Ethyl-3-(prop-2-ynyloxy)-9H-carbazole* (**2b**): mp: 66–68°C; IR(KBr): 3287, 3051, 2976, 2932, 2121,

^{*}For correspondence

Figure 1. Pyranocarbazole alkaloids.

1622, 1579, 1485, 1323, 1292, 1230, 1180, 1086, 1060, 1024, 923, 856, 802, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.15 (d, J = 7.6 Hz, 1H), 7.78 (s, 1H), 7.52 (t, J = 6.8 Hz, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.27–7.24 (m, 2H), 4.86 (s, 2H), 4.33 (q, J = 7.2 Hz, 2H), 2.61 (s, 1H), 1.44 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 151.5, 140.6, 135.7, 125.8, 123.2, 122.7, 120.5, 118.5, 115.7, 109.2, 108.7, 105.8, 79.4, 75.4, 57.3, 37.6, 13.9; m/z = 250, positive mode; Anal. Calcd for C₁₇H₁₅NO: C, 81.90; H, 6.06; N, 5.62%; found: C, 81.85; H, 6.12; N, 5.56%.

2.1c 9-Benzyl-3-(prop-2-ynyloxy)-9H-carbazole (**2c**): mp: 102–104°C; IR(KBr): 3283, 3065, 3024, 2912, 2852, 2127, 1626, 1597, 1489, 1448, 1381, 1354, 1325, 1188, 1057, 966, 933, 893, 848, 802 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.10 (d, J = 7.6 Hz, 1H), 7.73 (s, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.22–7.26 (m, 5H), 7.13–7.15 (m, 3H), 5.5 (s, 2H), 4.8 (s, 2H), 2.55 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 151.7, 141.3, 137.2, 136.3, 128.8, 127.5, 126.4, 126.0, 123.3, 122.8, 120.4, 118.9, 115.8, 109.6, 109.0, 105.6, 79.2, 75.3, 57.2, 46.7; m/z = 312, positive mode; Anal. Calcd for C₂₂H₁₇NO: C, 84.86; H, 5.50; N, 4.50%; found: C, 84.95; H, 5.56; N, 4.39%.

2.2 General procedure for Sonogashira coupling of O-propargylatedcarbazoles with aryl iodides

An oven dried 50 mL Schlenk tube equipped with a teflon coated magnetic stirring bar was charged with O-propargylated carbazole (2 mmol), 1 g of molecular sieves and aryl iodide (2.2 mmol). The tube was evacuated and filled with nitrogen. To it, 10 mL of dry THF and 5 mL of freshly distilled triethylamine were added under nitrogen and the reaction was stirred for 10

minutes at room temperature. Pd(PPh₃)₂Cl₂ (2 mol%) and CuI (1 mol%) were added under nitrogen and the the reaction mixture was stirred at room temperature for 4 h, after which time TLC (95:05 hexanes:ethyl acetate) indicated complete conversion. Reaction mass was filtered through celite. The filterate was poured into crushed ice slowly and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over anhydrous sodium sulfate and solvent was removed under reduced pressure. The crude material was purified by column chromatography (eluent: 5–15% ethyl acetate in hexanes) using silica gel (100–200 mesh).

2.2a 9-Ethyl-3-(3-phenylprop-2-ynyloxy)-9H-carbazole (**3a**): mp: 120–122°C; IR(KBr): 3043, 2974, 2854, 1626, 1595, 1483, 1471, 1444, 1371, 1321, 1288, 1230, 1190, 1151, 1008, 844, 800, 748, 690, 420 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.11 (d, J = 7.6 Hz, 1H), 7.80 (s, 1H), 7.50 (m, 3H), 7.42–7.22 (m, 7H), 5.05 (s, 2H), 4.35 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 151.8, 140.6, 135.6, 131.9, 128.3, 125.7, 123.3, 122.8, 122.6, 120.5, 119.1, 118.5, 115.8, 109.1, 108.6, 105.9, 87.1, 84.7, 58.2, 37.6, 13.9; m/z = 326, positive mode; Anal. Calcd for C₂₃H₁₉NO: C, 84.89; H, 5.89; N, 4.30%; found: C, 84.66; H, 5.81; N, 4.28%.

2.2b 9-Benzyl-3-(3-p-tolylprop-2-ynyloxy)-9H-carbazole (**3b**): mp: 140–142°C; IR(KBr): 3028, 2916, 2229, 1604, 1510, 1493, 1475, 1356, 1323, 1246, 1222, 1174, 1055, 1026, 909 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.15 (d, J = 8.0 Hz, 1H), 7.84 (s, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.42–7.37 (m, 3H), 7.31–7.26 (m, 5H), 7.23 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.18–7.14 (m, 4H), 5.50 (s, 2H), 5.05 (s, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 152.1, 141.3, 138.8, 137.3, 136.3, 131.8, 129.1, 128.8, 127.5, 126.4, 126.0, 123.4, 122.9, 120.5, 119.5, 118.9, 116.0, 109.6, 109.0, 105.8, 87.3, 83.9, 58.2, 46.7, 21.5; m/z = 402, positive mode; Anal. Calcd for C₂₉H₂₃NO: C, 86.75; H, 5.77; N, 3.49%; found: C, 86.67; H, 5.72; N, 3.41%.

2.2c 9-Benzyl-3-(3-(4-nitrophenyl)prop-2-ynyloxy)-9H-carbazole (3c): mp: 154–156°C; IR(KBr): 3088, 3024, 2924, 2856, 1626, 1591, 1487, 1467, 1448, 1379, 1344, 1286, 1238, 1215, 1184, 1059, 895, 817, 723, 607, 424 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.17 (d, J = 8.4 Hz, 2H), 8.13 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 8.8 Hz, 2H), 7.45 (t, J = 8.8 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.26–7.30 (m, 5H), 7.22–7.16 (m, 3H), 5.50 (s, 2H), 5.07 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 151.8, 147.3, 141.3, 137.2, 136.4, 132.5, 129.2, 128.8, 127.5, 126.4, 126.1, 123.5, 123.4, 122.7, 120.4, 119.0, 115.8, 109.7, 109.1, 105.8, 90.0, 85.2, 57.9, 46.7; m/z = 433, positive mode; Anal. Calcd for C₂₈H₂₀N₂O₃: C, 77.76; H, 4.66; N, 6.48%; found: C, 77.62; H, 4.61; N, 6.56%.

2.2d 9-Benzyl-3-(3-(4-methoxyphenyl)prop-2-ynyloxy)-6-methyl-9H-carbazole (3d): mp: 134–136°C; IR(KBr): 3020, 2916, 2228, 1600, 1510, 1475, 1355, 1322, 1240, 1222, 1174, 1050, 1026, 908 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.92 (s, 1H), 7.77 (s, 1H), 7.43 (d, 2H), 7.42–7.24 (m, 4H), 7.19–7.13 (m, 3H), 6.85 (d, J = 6.8 Hz, 2H), 5.48 (s, 2H), 5.03 (s, 2H), 3.82 (s, 3H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 159.8, 151.9, 139.6, 137.4, 136.5, 133.4, 128.7, 128.1, 127.4, 127.3, 126.4, 123.1, 123.0, 120.3, 115.8, 114.6, 113.9, 109.5, 108.7, 105.7, 87.0, 83.2, 58.2, 55.3, 46.7, 21.4; m/z = 418, positive mode; Anal. Calcd for C₂₉H₂₃NO₂: C, 83.43; H, 5.55; N, 3.35%; found: C, 83.28; H, 5.51; N, 3.41%.

2.2e 9-Benzyl-3-methyl-6-(3-p-tolylprop-2-ynyloxy)-9H-carbazole (**3e**): mp: 128–130°C; IR(KBr): 3026, 2915, 2227, 1601, 1491, 1475, 1356, 1243, 1226, 1171, 1055, 1021, 911 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.93 (s, 1H), 7.78 (s, 1H), 7.39 (d, J = 7.6 Hz, 2H), 7.28–7.13 (m, 11H), 5.48 (s, 2H), 5.03 (s, 2H), 2.57 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 151.9, 139.6, 138.7, 137.4, 136.5, 131.8, 129.1, 128.8, 128.2, 127.4, 127.3, 126.4, 123.1, 123.0, 120.4, 119.4, 115.8, 109.5, 108.7, 105.7, 87.2, 83.9, 58.2, 46.7, 21.5, 21.4; Anal. Calcd for C₃₀H₂₅NO: C, 84.98; H, 6.86; N, 3.81%; found: C, 84.85; H, 6.72; N, 3.76%.

2.2f 9-Benzyl-3-methyl-6-(3-(4-nitrophenyl)prop-2-ynyloxy)-9H-carbazole (**3f**): mp: 170–172°C; IR(KBr): 2922, 2858, 1732, 1593, 1493, 1452, 1340, 1199, 1026, 850, 796 $\rm cm^{-1};\ ^1H\ NMR\ (400\,MHz,$ $CDCl_3$, TMS) δ 8.16 (d, J = 8.8 Hz, 2H), 7.90 (s, 1H), 7.74 (d, J = 2.0 Hz, 1H), 7.57 (d, J = 8.8 Hz, 2H), 7.28–7.26 (m, 6H), 7.17–7.12 (m, 3H), 5.46 (s, 2H), 5.04 (s, 2H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) & 151.5, 147.3, 139.6, 137.3, 136.6, 132.6, 129.3, 128.8, 128.3, 127.5, 127.5, 126.4, 123.5, 123.2, 122.8, 120.3, 115.6, 109.6, 108.8, 105.7, 90.1, 85.1, 57.9, 46.7, 21.4; m/z = 447, positive mode; Anal.Calcd for C₂₉H₂₂N₂O₃: C, 78.01; H, 4.97; N, 6.27%; found: C, 78.21; H, 5.06; N, 6.35%.

2.2g 9-*Ethyl-1,4-dimethyl-3-(3-p-tolyl prop-2-ynyloxy)*-9*H*-carbazole (**3g**): mp: 148–150°C; IR(KBr): 3020, 2925, 2230, 1600, 1475, 1355, 1240, 1225, 1170, 1056, 1021, 911 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.36 (d, J = 7.2 Hz, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 6.8 Hz, 1H), 7.41– 7.39 (m, 2H), 7.30–7.25 (m, 1H), 7.16–7.12 (m, 2H), 4.90 (s, 2H), 4.60 (q, J = 7.0 Hz, 2H), 2.90 (s, 3H), 2.89 (s, 3H), 2.39 (s, 3H), 1.43 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 149.1, 141.5, 138.6, 137.3, 134.9, 131.7, 131.2, 129.1, 125.1, 124.2, 122.9, 121.1, 119.1, 118.6, 117.4, 114.6, 108.4, 84.6, 60.7, 39.3, 21.5, 20.2, 15.4, 13.0; m/z = 368, positive mode; Anal. Calcd for C₂₆H₂₅NO: C, 84.98; H, 6.86; N, 3.81%; found: C, 84.85; H, 6.72; N, 3.76%.

2.2h 9-Ethyl-1,4-dimethyl-3-(3-(4-nitrophenyl)prop-2-ynyloxy)-9H-carbazole 166-168°C; (**3h**): mp: IR(KBr): 2918, 2854, 1743, 1610, 1554, 1508, 1332, 1261, 1205, 1182, 1091, 1016, 883, 869, 812, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.31 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2Hz), 7.60 (d, J = 7.2 Hz), 7.60 (d, J = 7.J = 7.2 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.52 (d, J =7.2 Hz, 1H), 7.38 (m, 1H), 7.06 (s, 1H), 5.08 (s, 2H), 4.61 (q, J = 7.2 Hz, 2H), 2.86 (s, 3H), 2.84 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) § 148.7, 141.4, 135.0, 132.5, 132.4, 129.5, 125.2, 123.5, 122.8, 121.0, 120.4, 118.8, 118.7, 117.5, 114.5, 108.5, 90.7, 84.9, 60.4, 39.3, 20.2, 15.5, 13.0; m/z = 326, positive mode; Anal. Calcd for $C_{25}H_{22}N_2O_3$: C, 84.89; H, 5.89; N, 4.30%; found: C, 84.51; H, 5.41; N, 9.93%. m/z = 399, positive mode; Anal. Calcd for C₂₅H₂₂N₂O₃: C, 75.36; H, 5.57; N, 7.03%; found: C, 75.48; H, 5.51; N, 7.12%.

2.3 General procedure for iodocyclization of aryl-O-propargylated carbazoles

An oven dried 10 mL round bottom flask equipped with a teflon coated magnetic stirring bar was charged with aryl-*O*-propargyl carbazole (0.2 mmol), sodium bicarbonate (0.4 mmol) and iodine (0.6 mmol) in nitromethane (2 mL) and reaction mixture was stirred at room temperature for 4–6 h, after which time TLC (95:05 hexanes:ethyl acetate) indicated complete conversion. The reaction mixture was quenched with 5% solution of sodium thiosulphate, extracted with dichloromethane, dried for an hour sodium sulphate, adsorbed on silica and purified by column chromatography (5–10% ethyl acetate in hexanes) using silica gel (100–200 mesh). 2.3a 7-*Ethyl-2-iodo-1-phenyl-3*,7-*dihydropyrano*[2, 3-*c*]*carbazole* (**4a**): mp: 146–148°C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.45–7.43 (m, 2H), 7.41 (d, J = 8.8 Hz, 1H), 7.34–7.23 (m, 6H), 6.60 (m, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.08 (s, 2H), 4.36 (q, J = 7.6 Hz, 2H), 1.43 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 150.8, 141.1, 140.4, 140.1, 136.3, 1308, 128.3, 128.0, 124.9, 124.1, 121.9, 119.1, 118.6, 117.8, 114.4, 110.2, 107.8, 86.7, 77.1, 37.4, 13.8; m/z = 452, positive mode; Anal. Calcd for C₂₃H₁₈INO: C, 61.21; H, 4.02; N, 3.10%; found: C, 61.25; H, 4.04; N, 3.06%.

2.3b 7-Benzyl-2-iodo-1-(4-nitrophenyl)-3,7-dihydropyrano[2, 3-c]carbazole (**4b**): mp: 188–190°C; IR(KBr): 3057, 2922, 2858, 1595, 1514, 1454, 1425, 1194, 1091, 1005, 889, 848, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.17 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.30–7.27 (m, 4H), 7.23–7.20 (m, 2H), 7.12 (d, J = 6.8 Hz, 2H), 6.66– 6.63 (m, 2H), 5.52 (s, 2H), 5.10 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 151.7, 147.1, 146.9, 141.1, 139.6, 136.9, 136.8, 131.6, 128.9, 127.6, 126.3, 125.6, 123.3, 123.1, 121.4, 118.5, 118.3, 118.0, 114.7, 111.5, 108.7, 88.8, 77.2, 46.5; m/z = 559, positive mode; Anal. Calcd for C₂₈H₁₉IN₂O₃: C, 60.23; H, 3.43; N, 5.02%; found: C, 60.45; H, 3.38; N, 5.12%.

2.3c 7-Benzyl-2-iodo-10-methyl-1-(4-nitrophenyl)-3,7-dihydropyrano[2,3-c]carbazole (4c): mp: 194– 196°C; IR(KBr): 3207, 3069, 3032, 2916, 2852, 1730, 1595, 1518, 1452, 1305, 1211, 1147, 1066, 1014, 848, 800, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.18 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.37–7.02 (m, 9H), 6.35 (s, 1H), 5.47 (s, 2H), 5.09 (s, 2H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 151.0, 147.2, 147.1, 139.6, 139.4, 137.2, 137.0, 131.9, 128.9, 127.6, 127.6, 127.1, 126.3, 123.2, 123.1, 122.5, 121.5, 118.0, 114.6, 111.4, 108.3, 88.7, 76.0, 46.5, 20.8; m/z = 573, positive mode; Anal. Calcd for C₂₉H₂₁IN₂O₃: C, 60.85; H, 3.70; N, 4.89%; found: C, 60.75; H, 3.75; N, 4.76%.

2.3d 6-*Ethyl-3-iodo-5,11-dimethyl-4-(4-nitrophenyl)*-2,6-*dihydropyrano*[3,2-*b*]*carbazole* (**4d**): mp: 180– 182°C; IR(KBr): 3414, 2961, 2914, 2843, 1595, 1510, 1454, 1346, 1176, 1078, 1006, 860, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.26–8.24 (m, 3H), 7.50–7.48 (m, 3H), 7.38 (m, 1H), 7.23 (t, J = 7.2 Hz, 1H), 4.99 (s, 2H), 4.35 (d, J = 6.4 Hz, 2H), 2.80 (s, 3H), 2.02 (s, 3H), 1.28 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 150.0, 147.6, 146.8, 143.2, 141.5, 136.1, 130.8, 127.5, 126.1, 124.5, 124.5, 124.1, 123.4, 123.2, 119.3, 117.1, 114.8, 109.1, 91.2, 40.4, 19.8, 15.1, 12.9; m/z = 525, positive mode; Anal. Calcd for C₂₅H₂₁IN₂O₃: C, 57.26; H, 4.04; N, 5.34%; found: 57.36; H, 4.08; N, 5.23%.

2.4 5-Ethyl-4,10-dimethyl-3-(2-nitro-1-p-tolylvinyl)-3,5-dihydro-2H-furo[3,2-b]carbazole (5)

mp: 140–142°C; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.25 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.26–7.19 (m, 5H), 5.93 (d, J = 5.2 Hz, 1H), 5.50 (m, 1H), 4.84 (dd, J = 9.6 Hz, J = 9.6 Hz, 1H), 4.54 (dd, J = 3.6 Hz, J = 3.6 Hz, 1H), 4.46 (q, J = 7.6 Hz, 2H), 2.76 (s, 3H), 2.42 (s, 3H), 2.21 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, TMS) δ 144.6, 142.9, 141.8, 138.7, 137.5, 136.6, 129.4, 126.9, 125.8, 124.2, 123.2, 122.3, 119.8, 119.1, 118.4, 115.9, 108.9, 76.7, 75.6, 70.8, 40.3, 21.2, 20.3, 15.0, 12.7; m/z = 559, positive mode; Anal. Calcd for C₂₇H₂₆N₂O₃: C, 76.03; H, 6.14; N, 6.57%; found: C, 76.31; H, 6.41; N, 6.53%.

3. Results and discussion

In continuation of our efforts in the synthesis of various heteroarylcarbazole derivatives from easily accessible precursors,⁸ we report here, a simple synthesis of new pyranocarbazole derivatives employing iodocyclization. The synthesis of aryl-*O*-propargylated precursors is demonstrated in scheme 1. Hydroxycarbazoles (**1a–1d**) were synthesized employing methods reported in literature.⁹ These hydroxycarbazoles were *O*-alkylated using propargyl bromide, K_2CO_3 in acctone. The *O*-propargyl derivatives **2a–d** were subjected to Sonogashira coupling with various aryl iodides employing Pd(PPh_3)₂Cl₂, CuI and triethylamine as base in THF (scheme 1). The products **3a–g** and their yields are summarized in table 1. All the products were obtained in good yields.

Then we carried out the cyclization reaction of phenyl-O-propargylated derivative **3a** in various solvents like THF, dioxane, DMF, etc. We found that the conditions using nitromethane as solvent, 3 eq. iodine and 2 eq. sodium bicarbonate gave the best yields. Employing these optimized conditions, we successfully synthesized various pyranocarbazole derivatives in good yields. The results are summarized in table 2.

Substituents on the aryl ring have significant effect on the course of reaction. Electron withdrawing substituents on the aryl group increased the yields. Electron

Scheme 1. Synthesis of aryl-O-propargylated carbazoles.

donating substituents resulted in a complex mixture of products. Various substituted carbazoles were employed, the 1,4-dimethyl derivative **3h** provided linear product, which is of particular interest in biological applications.

All the products were well-characterized by ¹H and ¹³C NMR spectra. Interestingly in the ¹H NMR spectra of cyclized products 4a-c, the C₅-H was shifted to upfield from δ 8.11 (3a) to δ 6.56 (4a). This considerable upfield shift can be explained by the anisotropic effect of the aryl group, which clouds the C₅-H after cyclization (figure 2). The same was observed in the cases of 4b and 4c. The perpendicular geometry and proximity of aryl ring can be seen in the crystal structures of 4a and 4b (figure 3). To our surprise, when we carried out the reaction with 9-ethyl-1,4-dimethyl-3-(3-(4-p-Tolyl-prop-2-ynyloxy)-9H-carbazole **3g**, we obtained a completely different product 5 in 70% yield (scheme 2). A furocarbazole derivative formation is observed. Formation of a five-membered ring followed by the replacement of iodine by nitromethyl anion resulted in the furocarbazole derivative. The proposed mechanism for this observation is shown in scheme 3.

The compounds **4a** and **4b** were also characterized by X-ray crystallographic analysis.¹⁰ The ORTEP diagrams are shown in figure 3.

Table 1.Aryl-O-propargylated carbazoles.

Entry	Reactant	Hydroxycarb.	Coupled product	Time (h)	Yield (%)
1	C ₆ H ₅ I	1b		8	85
2	4-Me-C ₆ H ₄ I	1c		8	82
3	$4-O_2N-C_6H_4I$	1c		8	81
4	4-MeO-C ₆ H ₄ I	1d	Me N Bn 3d OMe	6	85
5	4-Me-C ₆ H ₄ I	1d	Me Bn 3e Me	6	86
6	$4-O_2N-C_6H_4I$	1d		6	84
7	4-Me-C ₆ H ₄ I	1a		8	78
8	4-O ₂ N-C ₆ H ₄ I	1a	Me V El Me 3h	6	85

In all the cases, $Pd(PPh_3)_2Cl_2$ (2 mol%) and CuI (1 mol%) were used in the presence of Et₃N as a base and THF as a solvent at r.t.

	R ₂ N R R	$\begin{array}{c} 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	or R_2 R_1 R_1 R_1 R_1 R_1 R_1 R_1 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_2 R_1 R_2 R_2 R_2 R_1 R_2 R		
Entry	Reactant	Cyclized product	Time (h)	Yield (%)	
1	3a		4	70	
2	3c	O ₂ N N Bn 4b	6	72	
3	3f	O ₂ N Me Bn 4c	6	74	
4	3h	Me N N Et Me H H NO2	4	78	

 Table 2.
 Pyranocarbazole derivatives.

In all the cases, iodine (3 eq) and $NaHCO_3$ (2 eq) were used in the presence of nitromethane as solvent at r.t.

Figure 2. Observation of anisotropic effect in 4a–c.

Scheme 2. Furocarbazole formation.

Figure 3. ORTEP diagrams of 4a and 4b. Hydrogen atoms are omitted for clarity.

Scheme 3. Proposed mechanism for the formation of 5.

4. Conclusion

In conclusion, we report here a simple and facile synthesis of new pyranocarbazole derivatives from easily accessible *O*-propargylated carbazoles employing iodocyclization in good yields. An interesting product with nitromethane insertion is observed. Further investigations are under progress.

Acknowledgements

We gratefully acknowledge the Department of Science and Technology (DST) for financial assistance (Project number: SR/S1/OC-70/2008) and for providing a single-crystal X-ray diffractometer facility in our school. TKC thanks Council of Scientific and Industrial Research (CSIR) for Senior Research Fellowship. The authors thank Mr. Bharat, Mr. Anand and Mr. Nagarjuna for their help in solving crystal structures.

References

- (a) Gribble G W *The Alkaloids*; Brossi A Ed.; Academic Press: San Diego CA, 1990 p 239; (b) Knölker H-J and Reddy K R 2002 *Chem. Rev.* **102** 4303; (c) Cordell G A *The Alkaloids*; 2008 vol. **65**; (d) Gribble G W 1991 *Synlett.* **28** 289; (e) Gribble G W, Saulnier M G, Sibi M P and Obaza-Nutaitis J A 1984 *J. Org. Chem.* **49** 4518; (f) Knölker H-J *The Alkaloids*, (G A Cordell ed.) Academic Press Amsterdam 2008 **65** 1–430; (g) Kirsch G H 2001 *Curr. Org. Chem.* **5** 507
- (a) Naffziger M R, Ashburn B O, Perkins J R and Carter R G 2007 J. Org. Chem. 72 9857; (b) Lebold T P and Kerr M A 2008 Org. Lett. 10 997; (c) Lebold T P and Kerr M A 2007 Org. Lett. 9 1883; (d) Forke R, Krahl M P, Krause T, Schlechtingen G and Knölker H-J 2007 Synlett. 268; (e) Krahl M P, Jager A, Krause T and Knölker H-J 2006 Org. Biomol. Chem. 4 3215; (f) Knölker H-J and Wolfgang F 1997 Synlett. 1108; (g) Knölker H-J, Fröhner W and Wagner A 1998 Tetrahedron Lett. 39 2947; (h) Knölker H-J and Reddy K R

1999 Synlett 596; (i) Knölker H-J, Baum E and Reddy K R 2000 Tetrahedron Lett. **41** 1171; (j) Czerwonka R, Reddy K R, Baum E and Knölker H-J 2006 Chem. Commun. 711; (k) Fröhner W, Reddy K R and Knölker H-J 2007 Heterocycles **74** 895; (l) Mal D, Senapati B K and Pahari P 2007 Tetrahedron **63** 3768; (m) Jana A and Mal D 2010 Chem. Commun. **46** 4411

- (a) Ito C, Katsuno S, Ruangrungsi N and Furukawa H 1998 Chem. Pharm. Bull. 46 344; (b) Ito C, Katsuno S, Itoigawa M, Ruangrungsi N, Mukainaka T, Okuda M, Kitagawa Y, Tokuda H, Nishino H and Furukawa H 2000 J. Nat. Prod. 63 125; (c) Ito C, Itoigawa M, Sato A, Hasan C M, Rashid M A, Tokuda H, Mukainaka T, Nishino H and Furukawa H 2004 J. Nat. Prod. 67 1488
- (a) Oliveira M M and Salvador M A 2005 *Mol. Cryst. Liq. Cryst.* 43 173; (b) Delbaere S, Berthet J, Salvador M A, Vermeersch G and Oliveira M M 2006 *Int. J. Photoenergy* 1.
- 5. (a) Larock R C Acetylene Chemistry Chemistry Biology and Material Science; Diederich F, Stang P J and Tykwinski R R Eds.; Wiley-VCH: New York 2005; Chapter 2 pp 51; (b) Barluenga J, Gonzalez J M, Campos P J and Asensio G 1988 Angew. Chem., Int. Ed. Engl. 27 1546; (c) Knight D W, Redfern A L and Gilmore J 2002 J. Chem. Soc., Perkin Trans. 1 622; (d) Arcadi A, Cacchi S, Fabrizi G, Marinelli F and Moro L 1999 Synlett. 1432; (e) Fischer D, Tomeba H, Pahadi N K, Patil N T and Yamamoto Y 2007 Angew. Chem., Int. Ed. 46 4764; (f) Nishizawa M, Takao H, Yadav V K, Imagava H and Sugihara T 2003 Org. Lett. 5 4563; (g) Manarin F, Roehrs J A, Gay R M, Brandão R, Menezes P H, Nogueira C W and Zeni G 2009 J. Org. Chem. 74 2153; (h) Laya S M, Banerjee A K and Cabrera E V 2009 Curr. Org. Chem. 13 720
- 6. (a) Knight D W, Redfern A L and Gilmore J 1998 Chem. Commun. 2207; (b) Arcadi A, Cacchi S, Giuseppe S D, Fabrizi G and Marinelli F 2002 Org. Lett. 4 2409; (c) Barluenga J, Vazque-Villa H, Ballesteros A and Gonzalez J M 2003 J. Am. Chem. Soc. 125 9028; (d) Yue D, Yao T and Larock R C 2005 J. Org. Chem. 70 10292; (e) Yue D, Yao T and Larock R C 2005 J. Com. Chem. 7 809; (f) Yao T, Zhang X and Larock R C 2005 J. Org. Chem. 70 7679; (g) Yao T, Zhang X and Larock R C 2004 J. Am. Chem. Soc. 126 11164; (h) Larock R C and Yue D 2001 Tetrahedron Lett. 42 6011; (i) Zhang X, Campo M A, Yao T and Larock R C 2005 Org. Lett. 7 763; (j) Zhang X, Sarkar S and Larock R C 2006 J. Org. Chem. 71 236; (k) Waldo J P and Larock R C 2005 Org. Lett. 7 5203; (1) Waldo J P and Larock R C 2007 J. Org. Chem. 72 9643; (m) Barluenga J, Trincado M, Marco-Arias M, Ballesteros A, Rubio E and Gonzalez J M 2005 Chem. Commun. 2008
- (a) Kesharwani T, Worlikar S A and Larock R C 2006 J. Org. Chem. **71** 2307; (b) Zhang X, Yao T, Campo M A and Larock R C 2010 Tetrahedron **66** 1177; (c) Mehta S, Waldo J P and Larock R C 2009 J. Org. Chem. **74** 1141
- (a) Gaddam V, Ramesh S and Nagarajan R 2010 Tetrahedron 66 4218; (b) Gaddam V and Nagarajan R 2007 J. Org. Chem. 72 3573; (c) Gaddam V and Nagarajan R 2008 Org. Lett. 10 1975; (d) Chaitanya T K and Nagarajan R 2007 Tetrahedron Lett. 48 2489; (e) Meesala R and Nagarajan R 2010 Tetrahedron Lett.

51 422; (f) Jella R R and Nagarajan R 2011 *Synlett.* 529

- Tran-Thi H A, Nguyen-Thi T, Michel S, Tillequin F, Koch M, Pfeiffer B, Pierre A and Trinh-Van-Dufat H 2004 *Chem. Pharm. Bull.* **52** 540; (b) Langendoen A, Koomen G-J and Pandit U K 1987 *Heterocycles* **26** 91
- 10. (a) The CCDC deposition number of **4a** is 818251; molecular formula: $C_{23}H_{18}INO$, unit cell parameters: a 6.4622(14) b 13.492(3) c 21.416(5) beta 98.668(3) space group P21/c; (b) The CCDC deposition number of **4b** is 818250; molecular formula: $C_{28}H_{19}IN_2O_3$, unit cell parameters: a 17.9078(18) b 12.4689(15) c 20.656(2) space group Pna21