This article was downloaded by: [Tufts University]

On: 10 December 2014, At: 07:46

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Synthesis and Structure Elucidation of New Spiro Compounds with Polyfluoroalkyl and Phosphonate Ester Groups

Zhijian Shi^{ab}, Yang Zhao^a, Weiguo Cao^{ab}, Shunli Zhang^a & Mei Liu^a

To cite this article: Zhijian Shi, Yang Zhao, Weiguo Cao, Shunli Zhang & Mei Liu (2009) Synthesis and Structure Elucidation of New Spiro Compounds with Polyfluoroalkyl and Phosphonate Ester Groups, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 39:8, 1494-1503, DOI: 10.1080/00397910802537143

To link to this article: http://dx.doi.org/10.1080/00397910802537143

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform.

^a Department of Chemistry , Shanghai University , Shanghai, China

^b Key Laboratary of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China Published online: 19 Mar 2009.

However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Synthetic Communications®, 39: 1494–1503, 2009 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online

DOI: 10.1080/00397910802537143

Synthesis and Structure Elucidation of New Spiro Compounds with Polyfluoroalkyl and Phosphonate Ester Groups

Zhijian Shi,^{1,2} Yang Zhao,¹ Weiguo Cao,^{1,2} Shunli Zhang,¹ and Mei Liu¹

¹Department of Chemistry, Shanghai University, Shanghai, China ²Key Laboratary of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China

Abstract: A series of spiro compounds with polyfluoroalkyl and phosphonate ester groups has been synthesized via several steps. The structures of these compounds were confirmed by ¹H NMR, ¹³C NMR, infrared (IR), and mass spectrometry (MS) as well. The possible reaction mechanism for the formation of these products was also proposed.

Keywords: Phosphonate ester group, polyfluoroalkylated spiro compound, structure elucidation

INTRODUCTION

Fluorine-containing organic compounds have played an important role in synthetic organic chemistry and pharmaceutical chemistry because of their biological activities. The ability of the fluorine atom to enhance biological and therapeutical activities of certain organic compounds has led to widespread interest in selective introduction of fluorine atoms and fluoroalkyl groups into organic molecules. [1–3] The development of synthetic methodologies in organofluorine chemistry has always been of paramount importance. The cyclic compounds containing perflour-

Received September 10, 2008.

Address correspondence to Zhijian Shi and Weiguo Cao, Shanghai University, Shanghai 200444, China. E-mail: shzhjian@shu.edu.cn; wgcao@staff.shu.edu.cn

oalkyl have drawn much more attention because of their unique physiological and potential biological properties, which can be imparted by a fluoroalkyl group. However, the preparation of perfluoroalkylated organic compounds suffered from long synthetic procedures and the difficulty of introducing the fluoroalkyl group. [4–14] In this article, we report a simple synthesis of a series of spiro compounds, 5a–c and 6a–c, with per(poly)fuoroalkyl and phosphonate ester groups. The possible mechanisms for the formation of these products were also proposed.

RESULTS AND DISCUSSION

In the presence of KOH and PEG-400 in acetone at 57–60°C, 1,5-dioxa-spiro[5.5]undecane-2,4-dione (3)^[15] reacted with 3-bromopropene to give 3,3-diallyl-1,5-dioxa-spiro[5.5]undecane-2,4-dione (4). Compound 4 reacted with perfluoroalkyl iodides (a-c) in a water-acetonitrile biphasic solvent system, using Na₂S₂O₄ and Na₂CO₃ as initiators, to offer cyclic compounds 5a-c with high yields. The reaction of compounds 5a-c with triethyl phosphite proceeded at 200°C gave rise to the products 6a-c (Scheme 1, Table 1).

The structures of compounds 4, 5a-c, and 6a-c were confirmed by means of infrared (IR), mass spectrometry (MS) (Table 2), ¹H NMR, and ¹³C NMR (Table 3).

Scheme 1. Synthesis of polyfluorinated spiro compounds.

1496 Z. Shi et al.

Compound	Solvent	Reaction condition	State	Мр	Yield (%)
4	(CH ₃) ₂ CO	60°C 5 h	Yellow oil		65
5a	H_2O/CH_3CN		White needle crystal	136.4–137.1	92
5b	H ₂ O/CH ₃ CN	0°C 3 h	White needle crystal	125.5-126.8	91
5c	H ₂ O/CH ₃ CN	0°C 3 h	White needle crystal	149.9-150.3	90
6a	$P(OCH_2CH_3)_3$	200°C 2 h	Yellow oil	_	76
6b	$P(OCH_2CH_3)_3$	$200^{\circ}\text{C}~2\text{h}$	Yellow oil	_	75
6c	$P(OCH_2CH_3)_3$	$200^{\circ}\text{C}~2\text{h}$	Yellow oil	_	70

Table 1. Preparation of compounds 4, 5a-c, and 6a-c

The reaction mechanism is shown in Scheme 2. The R_F radical derived from perfluoroalkyl iodides in the presence of sodium dithionite and sodium carbonate attacked the carbon–carbon double bond of compound 4, followed by cyclization, to form spiro compound 5. Then, the spiro compound 6 with polyfluoroalkyl and phosphonate ester groups was obtained via the reaction of compound 5 with triethyl phosphite.

EXPERIMENTAL

Melting and boiling points are uncorrected. IR spectra were recorded on an Avatar 370 Fourier transform (FT) spectrophotometer; solid samples were examined as KBr discs, and oil samples were examined as liquid films. NMR spectra were determined with DRX 500-MHz spectrometer, using solutions in CDCl₃ with tetramethylsilane (TMS) as the internal standard for ¹H and ¹³C nuclei respectively. MS spectra were run on a 5979 MSD spectrometer.

General Procedure for the Preparation of 4

Potassium hydroxide (KOH) (5 mmol) and PEG-400 (0.2 mmol) were added to a suspension of 1,5-dioxa-spiro[5.5]undecane-2,4-dione (5 mmol) in acetone (25 ml), and the mixture was stirred at 50°C for 5 min. 3-Bromopropene (10 mmol) was added and refluxed for 5 h. The insoluble material was filtered off, and the solvent was evaporated under reduced pressure. Then, 3,3-diallyl-1,5-dioxa-spiro[5.5]undecane-2,4-dione (4) was collected by distillation (10 mmHg, 120–125°C fraction).

Table 2. MS and IR data of compounds 4, 5a-c and 6a-c

Compound	MS (m/z, %)	IR (cm^{-1})
4	264 [M+, 5.0], 166 [(M-C ₆ H ₁₀ O) ⁺ , 56.0], 148 [(M-C ₆ H ₁₀ O-H ₂ O) ⁺ , 23.0], 138 [(M-C ₆ H ₁₀ O-CO) ⁺ , 52.0], 122 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 50.0], 107 [(M-C ₆ H ₁₀ O-OH-CH ₂ CH=CH ₂) ⁺ , 21.0], 98 [C ₆ H ₁₀ O ⁺ , 100.0], 79 [(M-C ₆ H ₁₀ O-CO-OH-CH ₂ CH=CH ₂) ⁺ , 68.0]	3064.8 ($\nu_{=\text{CH}}$), 3002.5 ($\nu_{=\text{CH}}$), 2948.9 ($\nu_{\text{C-H}}$), 1769.9 ($\nu_{\text{C=O}}$), 1747.9 ($\nu_{\text{C=O}}$), 1639.0 ($\nu_{\text{C=C}}$)
5a	335 [(M-1-C ₆ H ₁₀ O) ⁺ , 24.1], 291 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 28.3], 263 [(M-1-C ₆ H ₁₀ O) ⁺ , 24.1], 291 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 5.9], 99 [(C ₆ H ₁₀ O + 1) ⁺ ,70.9], 98 [(C ₆ H ₁₀ O) ⁺ , 100.0], 94 [(M-1-R _F -C ₆ H ₁₀ O-CO ₂ -CO) ⁺ , 66.6], 55 [(M-1-R _F -C ₆ H ₁₀ O- 2CH ₂ CH=CH ₂ -CO) ⁺ , 66.6], 53 [(M-1-R _F -C ₆ H ₁₀ O- CH ₂ CH=CH ₂ -CO-CO ₂) ⁺ , 23.6] 41 [(CH ₂ -CHCH ₂) ⁺ 75.9]	2947.5 ($\nu_{\rm CH}$), 2871.0 ($\nu_{\rm C-H}$), 1770.2 ($\nu_{\rm C=O}$), 1733.7 ($\nu_{\rm C=O}$), 1305.7 ($\nu_{\rm C-F}$), 532.9 ($\nu_{\rm C-I}$)
5b	385 [(M-I-C ₆ H ₁₀ O) ⁺ , 24.9], 313 [(M-I-C ₆ H ₁₀ O-CO-CO ₂) ⁺ , 23.4], 293 [(M-R _F -C ₆ H ₁₀ O) ⁺ , 3.6], 99 [(C ₆ H ₁₀ OH) ⁺ , 100.0], 55 [(M-I-R _F -C ₆ H ₁₀ O-2CH ₂ CH=CH ₂ -CO) ⁺ , 90.9], 41 I(CH ₂ =CHCH ₂) ⁺ 47 11	2953.0 ($\nu_{\text{C-H}}$), 2866.8 ($\nu_{\text{C-H}}$), 1763.6 ($\nu_{\text{C=O}}$), 1733.7 ($\nu_{\text{C=O}}$), 1307.0 ($\nu_{\text{C-F}}$), 530.9 ($\nu_{\text{C-I}}$)
5c	403 [(M-I-C ₆ H ₁₀ O) ⁺ , 8.6], 401 [(M-I-C ₆ H ₁₀ O) ⁺ , 25.3], 359 [(M-I-C ₆ H ₁₀ O-CO ₂) ⁺ , 8.6], 357 [(M-I-C ₆ H ₁₀ O-CO ₂) ⁺ , 27.8], 331 [(M-I-C ₆ H ₁₀ O-CO ₂ -CO) ⁺ , 8.6], 329 [(M-I-C ₆ H ₁₀ O-CO ₂ -	2953.6 ($\nu_{\text{C-H}}$), 2870.9 ($\nu_{\text{C-H}}$), 1762.9 ($\nu_{\text{C}=\text{O}}$), 1733.3 ($\nu_{\text{C}=\text{O}}$), 1306.3 ($\nu_{\text{C-F}}$), 795.0 ($\nu_{\text{C-Cl}}$),
		(Continued)

Table 2. Continued

CO) ⁺ , 29.3], 99 [(C ₆ H ₁₀ O) ⁺ , 100.0], 55 [(M-I-R _F -C ₆ H ₁₀ C ₂ CH ₂ CH=CH ₂ -CO) ⁺ , 64.7] 428 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 10.0], 400 [(M-C ₆ H ₁₀ O-CO ₂ -CO) 18.0], 335 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁺ , 23.0], 263 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁺ , 25.0], 213 [(M-R _F -C ₆ H ₁₀ O-CO ₂ -CO) ⁺ , 25.0], 199 [R _F ⁺ , 6.2], 191 [(M-R _F -PO(CH ₂ CH ₃) ₂ -CO ₂ -CO) ⁺ , 25.0], 169 [R _F ⁺ , 6.2], 138 [(HPO(CH ₂ CH ₃) ₂) ⁺ , 36.0], 99 [C ₆ H ₁₁ O ⁺ , 100.0] 478 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 6.0], 450 [(M-C ₆ H ₁₀ O-CO ₂ -CO) ⁺ , 11.0], 385 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁺ , 25.0], 313 [(M-R _F -C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁺ , 25.0], 138 [(HPO(CH ₂ CH ₃) ₂) ⁺ , 20.0], 138 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 20.0], 138 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 9.0] 403 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 2.8], 494 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 9.0] 404 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 2.8], 494 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 12.0], 331 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 12.0], 331 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 12.0], 331 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 12.0], 331 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 12.0], 331 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 12.0], 232 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 231 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 12.0], 232 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 232 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 232 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 232 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 232 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 233 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 233 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , CO ₂ -CO) ⁺ , 23.0], 233 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ , CO ₂ -CO) ⁺ , 23.0], 233 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ , CO ₂ -CO) ⁺ , 23.0], 233 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ , CO ₂ -CO) ⁺ , 23.0], 233 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ , CO ₂ -CO) ⁺ , 23.	(11)	
24 A 49	CO) ⁺ , 29.3], 99 [(C ₆ H ₁₀ O) ⁺ , 100.0], 55 [(M-I-R _F -C ₆ H ₁₀ O- 2CH ₂ CH-CH ₂ CO) ⁺ , 64.7]	502.0 ($\nu_{\text{C-I}}$)
47	428 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 10.7] 10.01 325 [OA II DOCHI CII N + 32 01 322 [OA	2997.7 ($\nu_{\text{C-H}}$), 2953.0 ($\nu_{\text{C-H}}$),
47	18.UJ, 535 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁻ , 25.UJ, 265 [(M- C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ -CO ₂ -CO) ⁺ , 35.0], 231 [(M-R _F - C ₆ H ₁₀ O-CO ₂ -CO) ⁺ , 25.0], 219 [R _F ⁺ , 6.2], 191 [(M-R _F -	11/8.3 ($V_{C=O}$), 1/32.0 ($V_{C=O}$), 1311.6 (V_{C-F}), 1260.6 ($V_{P=O}$), 1041.9 (V_{P-C-C}), 712.8 (V_{P-C})
74 84	$PO(CH_2CH_3)_2$ - CO_2 - $CO)^+$, 29.0], 169 [R _F ⁺ , 6.2], 138 [(HPO(CH ₂ CH ₃) ₂) ⁺ , 36.0], 99 [C ₆ H ₁₁ O ⁺ , 100.0]	
49	478 [(M-C ₆ H ₁₀ O-CO ₂) ⁺ , 6.0], 450 [(M-C ₆ H ₁₀ O-CO ₂ -CO) ⁺ , 11 01 385 [(M-C ₇ H ₂ O-PO(CH ₂ CH ₂) ₂) ⁺ 75 01 313 [(M-CH ₂ CH ₂) ₂) ⁺ 75 01 313 [(M-CH ₂ CH ₂ CH ₂) ₂) ⁺ 75 01 313 [(M-CH ₂ CH ₂	2999.7 ($\nu_{\text{C-H}}$), 2960.0 ($\nu_{\text{C-H}}$),
49	C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ -CO ₂ -CO) ⁺ , 37.01, 231 [(M-R _F -	1318.6 ($\nu_{\text{C-F}}$), 1240.6 ($\nu_{\text{P=O}}$),
49	$C_6H_{10}O-CO_2-CO)^+$, 27.0], 219 [R_F^+ , 4.8], 191 [(M- R_F -	$1042.9 \ (\nu_{P-O-C}), 712.9 \ (\nu_{P-C})$
49	$PO(CH_2CH_3)_2$ - CO_2 - $CO)^+$, 20.0], 138 [(HPO(CH ₂ CH ₃) ₂) ⁺ , 40.0], 99 [$C_6H_{11}O^+$, 100.0]	
$403 \ [(M-C_6H_{10}O-PO(CH_2CH_{20}) + 18.0], 331 \ CO_2-CO)^+, 12.0], 329 \ [(M-CO_2-CO)^+, 12.0], 3$	496 [($M-C_6H_{10}O-CO_2$) ⁺ , 2.8], 494 [($M-C_6H_{10}O-CO_2$) ⁺ , 9.0],	2998.8 ($\nu_{\text{C-H}}$), 2952.2 ($\nu_{\text{C-H}}$),
PO(CH_2CH_3) ⁺ , 18.0], 331 CO_2 -CO) ⁺ , 12.0], 329 [(M-C	403 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂) ⁺ , 6.0], 401 [(M-C ₆ H ₁₀ O-	1779.3 ($\nu_{\rm C=O}$), 753.0 ($\nu_{\rm C=O}$),
CO_2 - CO)+, 12.0], 329 [(M-C)]	PO(CH ₂ CH ₃) ₂) ⁺ , 18.0], 331 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ -	1311.6 ($\nu_{\text{C-F}}$), 1260.6 ($\nu_{\text{P=O}}$),
	CO_2 - $CO)^+$, 12.0], 329 [(M-C ₆ H ₁₀ O-PO(CH ₂ CH ₃) ₂ -CO ₂ -	$1041.9 \ (\nu_{\text{P-O-C}}), 769.2 \ (\nu_{\text{C-Cl}}),$
$(CO)^{-}$, 3/.0], 231 [(IM-KF-C ₆) $(CO)^{-}$	CO) , 37.0], 231 [(M-KF-C ₆ H ₁₀ O-CO ₂ -CO) , 27.0], 233 m + 3 % 101 (M P PO/CH CH) CO CO) + 3 % % 113%	/10.8 (VP-C)
$[K_{\rm F}, 3.0], 191 [(M-K_{\rm F}-\Gamma O)]$ $[({ m HPO}({ m CH}_2{ m CH}_3)_2)^+, 40.0], 5$	$[K_F, 3.8], 191 [(M-K_F-PO(CH_2CH_3)_2-CO_2-CO)], 20.0], 138 [(MPO(CH_2CH_3)_2)^+, 40.0], 99 [C_6H_{11}O^+, 100.0]$	

Table 3. NMR data of compounds 4, 5a-c and 6a-c

1 able 3. INMIK data	c data of compounds 4, 3a-c and 0a-c	
Compound	¹ H NMR $(\delta \times 10^{-6}) J$ (Hz)	¹³ C NMR $(\delta \times 10^{-6}) J$ (Hz)
4	5.12 (d-d-d, 2H, $CH_2 = /$, $^2J = 1.52$, $^3J_{cis} = 10.28$, $^4J = 1.44$), 5.03 (d-d-t, 2H, $^2J = 1.52$, $^3J_{trans} = 17.20$, $^4J = 1.44$), 5.71 (d-d-t, 2H, $CH = ^3J = 7.42$, $^3J_{trans} = 17.20$, $^3J_{cis} = 10.28$), 2.75 (d, 4H, *CH_2 -CH =, $^3J = 7.42$), 1.93 (m, 4H, CH_2), 1.74 (m, 4H, CH_2), 1.50 (m, 2H, CH_2).	
5a	2.25 (m, 2H, R _F -CH ₂), 2.94 (m, 2H, 2×CH), 2.55 (m, 2H, CH ₂), 2.39 (m, 2H, CH ₂), 3.30 (m, 2H, CH ₂), 1.93 (m, 4H, 2×CH ₂), 1.74 (m, 4H, 2×CH ₂), 1.50 (m, 2H, CH ₂)	29.24 (t, R _F -CH ₂ , $^2J_{F,C}$ = 21.68), 46.81 (s, * CH-CH ₂ R _F), 44.70 (s, CH ₂), 52.02 (s, C), 43.44(s, CH ₂), 36.69 (s, CH), 4.68 (s, CH ₂ I), 171.43 (s, O=CO), 171.38 (s, O=CO), 105.90 (s, O-C-O), 37.74 (s, CH ₂), 21.94 (s, CH ₂), 23.79 (s, CH ₂), 22.00 (s, CH ₂), 37.57 (s, CH ₂), 117.64 (t-t, CF ₃ CF ₂ *CF ₂ , $^2J_{F-C}$ = 30.75, $^1J_{F-C}$ = 252.68), 108.58 (t-h, CF ₃ *CF ₂ , $^2J_{F-C}$ = 37.58, $^1J_{F-C}$ = 262.95), 117.71 (q- $^2J_{F-C}$), 20.75, $^2J_{F-C}$ = 37.58, $^2J_{F-C}$ = 262.95), 117.71 (q- $^2J_{F-C}$)
1 5	2.25 (m, 2H, R _F -CH ₂), 2.94 (m, 2H, 2×CH), 2.54 (m, 2H, CH ₂), 2.39 (m, 2H, CH ₂), 3.31 (m, 2H, CH ₂ I), 1.94 (m, 4H, 2×CH ₂), 1.75 (m, 4H, 2×CH ₂), 1.51 (m, 2H, CH ₂)	L, CF ₃ , $J_{F,C} = 33.00$, $J_{F,C} = 263.73$ 29.16 (t, R_F -CH ₂ , $^2J_{F,C} = 21.68$), 46.84 (s, * CH - CH ₂ R _F), 44.73 (s, CH ₂), 52.05 (s, C), 43.50 (s, CH ₂), 36.72 (s, CH), 4.62 (s, CH ₂ D), 171.43 (s, O=CO), 171.38 (s, O=CO), 105.88 (s, O-C-O), 37.77 (s, CH ₂), 22.10 (s, CH ₂), 23.80 (s, CH ₂), 21.97 (s, CH ₂), 37.62 (s, CH ₂), 118.61 (t-t, CF ₃ CF ₂ CF ₂ *CF ₂ , $^2J_{F,C} = 31.90$, $^1J_{F,C} = 253.80$), $^110.32$ (t-p, CF ₃ CF ₂ *CF ₂ *CF ₂ , $^2J_{F,C} = 31.90$, $^1J_{F,C} = 265.40$), 109.31 (t-h, CF ₃ *CF ₂ , $^2J_{F,C} = 31.90$, $^1J_{F,C} = 265.40$), 109.31 (t-h, CF ₃ *CF ₂ , $^2J_{F,C} = 31.90$,

(Continued)

Table 3. Continued

Compound	¹ H NMR $(\delta \times 10^{-6}) J$ (Hz)	13 C NMR $(\delta \times 10^{-6}) J (Hz)$
Şc	2.26 (m, 2H, R _F -CH ₂), 2.94 (m, 2H, $2 \times CH$, $^3J = 6.32$), 2.54 (m, 2H, CH2, $^2J = 13.59$, $^3J = 6.32$), 2.60 (m, 2H, CH2, $^2J = 13.59$, $^3J = 6.31$), 2.40 (m, 2H, CH ₂ 1, $^2J = 8.98$, $^3J = 6.31$), 1.94 (m, 4H, $2 \times CH_2$), 1.75 (m, 4H, $2 \times CH_2$), 1.51 (m, 2H, CH)	$^{1}J_{\text{F-C}} = 234.45$, 117.30 (q-t, CF ₃ , $^{2}J_{\text{F-C}} = 33.00$, $^{1}J_{\text{F-C}} = 286.80$) 29.21 (t, R _F -CH ₂ , $^{2}J_{\text{F-C}} = 21.68$), 46.80 (s, *CH -CH ₂ R _F), 44.69 (s, CH ₂), 52.00 (s, C), 43.46 (s, CH ₂), 36.75 (s, CH), 4.80 (s, CH ₂), 171.38 (s, O=CO), 171.34 (s, O=CO), 105.82 (s, O-C-O), 37.72 (s, CH ₂), 21.94 (s, CH ₂), 23.77 (s, CH ₂), 21.98 (s, CH ₂), 37.55 (s, CH ₂), 118.27 (t-t, CF ₂ CF ₂ CF ₃ CF ₃ CF ₄ CF ₄ CF ₂ CF ₄
6 a	2.10 (m, 2H, R _F -CH ₂), 2.35 (m, 1H, CH), 2.21 (m, 2H, CH ₂), 2.16 (m, 2H, CH ₂), 2.35 (m, 1H, CH), 2.46 (m, 2H, P-CH ₂ , $^2J_{P-H} = 8.80$, $^3J = 6.20$), 1.90 (m, 4H, 2 \times CH ₂), 1.72 (m, 4H, 2 \times CH ₂), 1.50 (m, 2H, 2)	111.24 (t-p, CICF ₂ CF ₂ *CF ₂ CF ₂ CF ₂ , 2 F ₁ C ₁ CF ₂
99	2 × CH2), 1.72 (m, 4H, 2 × CH2), 1.30 (m, 2H, CH2), 4.18 (m, 2H, OCH ₂ , ${}^{3}J = 5.28, {}^{3}J_{\text{P,H}} = 10.56$), 1.35 (m, 3H, CH ₃ , ${}^{3}J = 5.28, {}^{4}J_{\text{P,H}} = 1.46$), 4.20 (m, 2H, OCH ₂ , ${}^{3}J = 5.22, {}^{3}J_{\text{P,H}} = 10.99$), 1.37 (m, 3H, CH ₃ , ${}^{3}J = 5.28, {}^{4}J_{\text{P,H}} = 1.46$) 2.11 (m, 2H, R _F -CH ₂), 2.34 (m, 1H, CH), 2.21 (m, 2H,	24.50 (d, F-CH ₂ , J _{P-C} =141.15), 171.20 (s), 0=CO), 171.17 (s, O=CO), 105.14 (s, O-C-O), 28.62 (s, CH ₂), 28.74 (s, CH ₂), 61.60 (d, OCH ₂ , ² J_{P-C} o-c = 6.83), 16.25 (s, CH ₃), 16.10 (s, CH ₃), 115.8 (t- t, CF ₃ CF ₂ *CF ₂ , ² J_{F-C} = 30.75, $^{1}J_{F-C}$ = 252.67), 108.5 (t-h, CF ₃ *CF ₂ , $^{2}J_{F-C}$ = 37.50, $^{1}J_{F-C}$ = 258.97), 118.8 (q-t, CF ₃ , $^{2}J_{F-C}$ = 33.00, $^{1}J_{F-C}$ = 285.67) 29.19 (t, R _F -CH ₂ , $^{2}J_{F-C}$ = 21.675), 38.15 (d, CH, ³ J_{P-C}

CH₂), 2.16 (m, 2H, CH₂), 2.34 (m, 1H, CH), 2.44 (m, 2H, P-CH₂, $^2J_{\rm P-H} = 8.98$, $^3J = 6.31$), 1.91 (m, 4H, $2 \times {\rm CH_2}$), 1.72 (m, 4H, $2 \times {\rm CH_2}$), 1.49 (m, 2H, CH₂), 4.11 (m, 2H, OCH₂, $^3J = 5.22$, $^3J_{\rm P-H} = 10.99$), 1.33 (m, 3H, CH₃, $^3J = 5.22$, $^4J_{\rm P-H} = 1.09$), 4.16 (m, 2H, OCH₂, $^3J = 5.22$, $^4J_{\rm P-H} = 10.99$), 1.33 (m, 3H, CH₃, $^3J = 5.22$, $^4J_{\rm P-H} = 1.09$)

2.12 (m, 2H, R_F-CH₂), 2.56 (m, 1H, CH, ${}^3J = 6.34$), 2.19 (m, 2H, CH₂, ${}^2J = 13.59$, ${}^3J = 6.32$), 2.15 (m, 2H, CH₂), 2.36 (m, 1H, CH), 2.44 (m, 2H, P-CH₂, ${}^2P_{\rm P}$, ${}_{\rm H} = 8.98$, ${}^3J = 6.31$), 1.90 (m, 4H, 2 × CH₂), 1.72 (m, 4H, 2 × CH₂), 1.71 (m, 2H, CH₂), 4.19 (m, 2H, OCH₂, ${}^3J = 5.24$, ${}^3J_{\rm P-H} = 10.89$), 1.35 (m, 3H, CH₃, ${}^3J = 5.24$, ${}^3J_{\rm P}$, ${}_4J_{\rm P-H} = 1.29$), 4.19 (m, 2H, OCH₂, ${}^3J = 5.24$, ${}^3J_{\rm P}$, ${}_4J_{\rm P-H} = 10.89$), 1.35 (m, 3H, CH₃, ${}^3J = 5.24$, ${}^4J_{\rm P-H} = 1.29$)

 $\begin{array}{l} c = 3.375,\ 39.94\ (s,\ CH_2),\ 52.03\ (s,\ C),\ 39.77\ (d,\ CH_2,\ ^3P_{\rm P-C} = 4.5),\ 36.86\ (d,\ CH,\ ^2P_{\rm P-C} = 13.65),\ 24.42\ (d,\ P-CH_2,\ ^1P_{\rm P-C} = 141.15),\ 174.22\ (s,\ C=0.0),\ 174.00\ (s,\ O=CO),\ 105.67\ (s,\ O-C-O),\ 37.63\ (s,\ CH_2),\ 22.33\ (s,\ CH_2),\ 24.09\ (s,\ CH_2),\ 21.80\ (s,\ CH_2),\ 37.84\ (s,\ CH_2),\ 61.50\ (s,\ CCH_2),\ 15.76\ (s,\ CH_3),\ 61.72\ (s,\ CCH_2),\ 16.10\ (s,\ CH_2),\ 118.3\ (t-t,\ CF_3CF_2CF_2\ ^2F_{\rm P-C} = 30.75,\ ^1F_{\rm P-C} = 255.00),\ 110.4\ (t-p,\ CF_3CF_2\ ^2F_{\rm P-C} = 30.75,\ ^1F_{\rm P-C} = 255.00),\ 110.4\ (t-p,\ CF_3CF_2\ ^2F_{\rm P-C} = 30.75,\ ^1F_{\rm P-C} = 33.75,\ ^1F_{\rm P-C} = 33.00,\ ^1F_{\rm P-C} = 33.00$

c = 285.67)29.41 (t, R_F-CH₂, ²J_{F-C} = 21.67), 38.28 (d, CH, ³J_{P-C} = 3.38), 43.23 (s, CH₂), 51.67 (s, C), 44.15 (d, CH₂, ³J_{P-C} = 4.58), 36.91 (d, CH, ²J_{P-C} = 14.77), 24.37 (d, P-CH₂, ¹J_{P-C} = 141.15), 171.29 (s, O=CO), 171.29 (s, O=CO), 171.29 (s, O=CO), 171.29 (s, CH₂), 24.06 (s, CH₂), 24.09 (s, CH₂), 21.80 (s, CH₂), 24.09 (s, CH₂), 21.80 (s, CH₂), 21.80 (s, CH₂), 21.80 (s, CH₂), 61.72 (d, OCH₂, ²J_{P-O} c = 6.83), 15.76 (s, CH₃), 61.72 (d, OCH₂, ²J_{P-O} c = 6.83), 15.76 (s, CH₃), 109.52 (t+t, CICF₂CF₂CF₂CF₂ CF₂, ²J_{F-C} = 33.08, ¹J_{F-C} = 26.85), 114.88 (t-p, CICF₂CF₂*CF₂*CF₂*CF₂*2, ²J_{F-C} = 31.87, ¹J_{F-C}

1502 Z. Shi et al.

$$Na_{2}S_{2}O_{4} \xrightarrow{H_{2}O} 2Na^{+} + O_{2}SSO_{2}^{-}$$

$$O_{2}SSO_{2}^{-} + 2R_{F}I \xrightarrow{} 2R_{F}SO_{2}. + 2I^{-}$$

$$R_{F}SO_{2}. \xrightarrow{} R_{F}. + SO_{2}$$

$$R_{F} + H_{2}C = HCH_{2}C \xrightarrow{} O$$

$$H_{2}C = HCH_{2}C \xrightarrow{} O$$

Scheme 2. Mechanism for the formation of spiro compounds.

Typical Procedure for the Preparation of 5a-c

Compound 4 (2 mmol) reacted with perfluoroalkyl iodides (a–c) (2 mmol) in a water–acetonitrile biphasic solvent system (v/v=8:1) at 0°C for 3 h using sodium dithionite (Na₂S₂O₄) and sodium carbonate (Na₂CO₃) as initiators. After that, water (4 mL) was added to dissolve the inorganic salts, and ethyl acetate (10 mL×3) was added to extract organic compounds. The organic layer was dried over anhydrous sodium sulfate. The solvent was removed by evaporation under reduced pressure, and the residue was recrystallized from ethyl acetate–petroleum (v/v=5:1) to obtain pure product 5a–c.

Typical Procedure for the Preparation of 6a-c

Compounds **5a-c** (2 mmol) reacted with triethyl phosphite (2 ml) at 200°C and was kept boiling slightly for 2 h. Excess triethyl phosphite was removed by evaporation under reduced pressure to give **6a-c**.

ACKNOWLEDGMENTS

The authors are grateful to the National Natural Science Foundation of China (20872088), Leading Academic Discipline Project of Shanghai

Municipal Education Commission (Nos. J50102, 08ZZ44) for their financial support. We also thank the Instrumental Analysis and Research Center of Shanghai University for running all the NMR samples.

REFERENCES

- Kanai, M.; Percy, J. M. Short, stereoselective syntheses of α-fluoroalkenoate derivatives, α-fluoroenones and α-fluoroenals from HFC-134a. *Tetrahedron Lett.* 2000, 41, 2453–2455.
- Schlosser, M.; Brugger, N.; Schmidt, W.; Amrhein, N. β,β-Difluoro analogs of α-oxo-β-phenylpropionic acid and phenylalanine. *Tetrahedron* 2004, 60, 7731–7742.
- Yang, X.; Zhang, L.; Liu, J. A straightforward preparation of fluorinecontaining 1,2-dihydropyrimidines and pyrimidines with 2,2-dihydropolyfluoroalkylaldehydes. *Tetrahedron* 2007, 63, 5643–5648.
- Cao, W.; Shi, Z.; Fan, C.; Ding, W. Convenient synthesis of methyl 4-carboethoxy-3-perfluoroalkyl-5-methoxyhexa-2,4-dienoates. J. Fluorine. Chem. 2002, 116, 117–120.
- Cao, W.; Shi, Z.; Fan, C.; Sun, R. A facile synthesis of ethyl 2,4-dimethoxy-6-perfluoroalkylbenzoates via acyclic precursors. *Chin. J. Chem.* 2004, 22, 1174–1176.
- Shi, Z.; Ni, H.; Cao, W.; Liu, W.; Liang, C. Synthesis and structure elucidation of new spiro compounds with per(poly)fluoroalkyl group. *Chin. J. Chem.* 2006, 24, 980–982.
- Wu, F.; Huang, W. Synthesis of polyfluoroalkyl substituted cyclopropane derivatives. J. Xiamen University (Natural Science Ed.) 1999, 38, 366–366.
- 8. Huang, W.; Wu, Y. The reaction of silyl enol ether of conjugated ketones with perfluoroalkyl iodide. *Chin. J. Org. Chem.* **1993**, *13*, 633–637.
- Huang, W.; Ma, W.; Chen, J.; Zhan, B. Synthesis and properties of α-perfluoroalkyl pyrrole. Chin. J. Org. Chem. 1990, 10, 244–247.
- Guo, X.; Chen, Q. The first example of addition reactions of sterically hindered terminal olefins, α-substituted styrenes, with perfluoroalkyl iodides initiated by sodium dithionite. J. Fluorine. Chem. 1999, 93, 81–86.
- 11. He, P.; Zhu, Z. Study on the reactions of fluoroalkanesulfonyl azides with cycloalkenyl ether and aryl ynamines. *Tetrahedron* **2006**, *62*, 549–555.
- Wang, H.; Zhao, M.; Li, H.; Lu, L. Solvent-controlled asymmetric Strecker reaction: stereoselective synthesis of alpha-trifluoromethylated alpha-amino acids. Organic Lett. 2006, 8, 1379–1381.
- 13. Cao, P.; Xiao, C.; Chen, Y. Fluoroalkylation of aromatics: An intramolecular radical cyclization of 4-chloro-1,1,2,2,3,3,4,4-octafluorobutylbenzenes. *J. Fluorine. Chem.* **2006**, *127*, 1079–1086.
- Taguchi, T.; Okada, M. Fluorinated cyclopropanes. J. Fluorine. Chem. 2000, 105, 279–283.
- Jiang, H.; Zhang, J.; Du, W.; Zhu, S. A convenient synthesis of novel Meldrum's acid C60 fullerene derivatives. Chin. J. Chem. 2007, 25, 86–89.