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Members of the akuammiline[1] alkaloids such as echit-
amine,[2] vincorine,[3] and corymine,[4] like indole alkaloid
minfiensine,[5] possess a highly congested pentacyclic ring
system (Figure 1). These alkaloids exhibit a number of

impressive biological activities, including significant anti-
cancer activity.[6] Although the first member of akuammiline
alkaloids (echitamine) was characterized more than eighty
years ago, only a few successful methods to synthesize the
challenging tetracyclic subring system of 9a,4a-iminoethano-
carbazole 1 are described[7,8] because of the synthetic
difficulties.[9] In 2005, Overman and co-workers reported the
first elegant synthesis of minfiensine by using an asymmetric
Heck/iminium ion cyclization as the key step to assemble the
tetracyclic platform of 3,4-dihydro-9a,4a-iminoethano-carba-
zole.[10]

As a part of our studies on the synthesis of indole
alkaloids,[11] we describe herein a concise total synthesis of
(�)-minfiensine that involves highly efficient construction of
functionalized tetracyclic skeleton 1 through a three-step,
one-pot cascade reaction including cyclopropanation, ring
opening, and ring closure.

Scheme 1 outlines our synthetic design for a three-step,
one-pot cascade reaction for the efficient assembly of
tetracyclic skeleton 1. Thus, the diazo decomposition of

diazo ketone 2 with appropriate R1, R2, and R3 functional
groups leads to the formation of cyclopropane intermediate 3.
The unstable cyclopropane ring in 3 is activated by an a-
ketone and is prone to collapse to generate an indolenium
cation (4), which is intramolecularly captured in situ by the
sulfonamide group in 4 to create substituted tetracyclic 1.
Preinstallation of a ketone (or enol) functional group in 1 is
beneficial to the formation of the fifth ring during the final
steps of synthesis of (� )-minfiensine by palladium-catalyzed
a-vinylation of the ketone.[12]

To perform the cascade reaction for assembly of tetracy-
clic 1, diazo ketones 2a–e needed to be prepared first
(Scheme 2). Treatment of known N-Ts tetrahydrocarbolines
5a–d[13] with a strong base, such as LiHMDS or NaH, allowed
the formation of trans a,b-unsaturated esters 6a–d. The
double bond in 6a–d was then saturated with H2 in the
presence of Pd/C to provide esters 7a–d in a 83–87% yield
from 5a–d. Expansion of the ester side chain was easily
realized in two steps by hydrolysis of 7a–d and then
condensation with Meldrum<s acid to give b-ketone esters
8a–d in a 63–72% yield. a-Diazo b-ketone esters 2a–d were
prepared in a 82–89% yield by reacting 8a–d with p-ABSA
and Et3N in MeCN, respectively. Similarly, a-diazo ketone 2e
was prepared in a 65% yield by hydrolysis of 7a and

Figure 1. Representative indole alkaloids with a core tetrahydro-9a,4a-
iminoethanocarbazole structure.

Scheme 1. Three-step one-pot cascade reaction for the assembly of
tetracyclic skeleton 1. Ts= p-toluenesulfonyl.
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subsequent condensation of the resulting acid with diazo-
methane.

With diazo esters 2a–e in hand, we next evaluated the
efficiency of a variety of metal salts as catalysts in the three-
step, one-pot cascade reaction (Table 1). Among the screened
metal salts for the diazo decomposition reaction, only CuOTf
gave a satisfying result in the model reaction of 2a. Diazo
decomposition of 2a–e in CH2Cl2 in the presence of 5 mol%
of CuOTf at room temperature provided tetracyclic products
1a–e in moderate to high yields. The chemical structure of the
reaction product was identified as either a single isomer of
enol ester 1a–b or as a two-isomer mixture of the b-keto ester
and the enol ester (1c–d); the product structure was largely
dependent on the R2 substituent on nitrogen center of the
indole. The fundamental architecture of product 1 was
unambiguously confirmed by the two-dimensional NMR
spectra analysis of 1a and by the X-ray crystallographic
analysis of cis b-hydroxyester 9a,[14] which was obtained by
reduction of 1d with NaBH4 [Eq. (1) and Figure 2].

Successful construction of tetracyclic skeletons 1a–e
provided us with a good opportunity to begin the synthesis
of indole alkaloids with a skeleton of type 1. To demonstrate
the usefulness of these skeletons with versatile functional
groups, 1a and 1e were used as starting materials for the
synthesis of (� )-minfiensine. As shown in Scheme 3, the a-
methyl ester in 1a was readily removed by using standard
Krapcho conditions[15] to give 1e with an 87% yield. Initial
experiments to remove the Ts group in 1e led to decom-
position of the skeleton under acidic conditions. After
reduction of the ketone in 1e with NaBH4, the resulting
mixture (without purification) of the two separable diaste-
reomers 10a and 10b (7:4 ratio) was treated with Na/

Scheme 2. Reagents and conditions: a) LiHMDS (1m in THF,
1.5 equiv), THF, �40 8C, 10 h for 5a and 5b, NaH (1.2 equiv), DMF,
RT, 2 h, for 5c and 5d ; b) Pd/C (10 mol%), H2 (1 atm), MeOH/THF
1:1, 24 h, 7a (83% from 5a), 7b (87% from 5b), 7c (86% from 5c),
7d (85% from 5d); c) LiOH (3 equiv), MeOH/THF/H2O 1:1:0.2, 25 8C,
2 h; d) DCC (1.1 equiv), DMAP (0.1 equiv), TEA (1.5 equiv), Meldrum’s
acid (1.5 equiv), CH2Cl2, 25 8C, 20 h, then MeOH, reflux for 10 h, 8a
(72% from 7a), 8b (65% from 7b), 8c (63% from 7c), 8d (68% from
7d); e) p-ABSA (1.1 equiv), TEA (3 equiv), CH3CN, 25 8C, 12 h, 2a
(86%), 2b (89%), 2c (83%), 2d (82%); f) CH2N2 (10 equiv), Et2O,
0 8C!25 8C, 12 h, 65% from 7a. Boc= tert-butylcarboxycarbonyl;
LiHMDS= lithium hexamethyldisilazide; DCC=dicyclohexyl carbodi-
imide; DMAP=4-dimethylaminopyridine; TEA= triethylamine; Mel-
drum’s acid= isopropylidene malonate; p-ABSA=4-acetamidoben-
zenesulphonyl azide.

Table 1: Yields of the cascade reaction of diazo ketone 2.[a]

R1 R2 R3 Salts Yield of
1 [%] [b]

Ratio[c] of
ketone:enol

2a H Boc COOMe CuI 0
2a H Boc COOMe [Cu(acac)2] 0
2a H Boc COOMe Rh(OAc)2 8 (1a) 0:1
2a H Boc COOMe [Cu(MeCN)4]PF6 15 (1a) 0:1
2a H Boc COOMe Cu(OTf)2 25 (1a) 0:1
2a H Boc COOMe CuOTf 50 (1a) 0:1
2b MeO Boc COOMe CuOTf 52 (1b) 0:1
2c H Me COOMe CuOTf 81 (1c) 1:30
2d MeO Me COOMe CuOTf 82 (1d) 1:5
2e H Boc H CuOTf 42 (1e) 1:0

[a] Reaction conditions: metal salt (0.05 equiv), and CH2Cl2 as the
solvent. [b] Yield of isolated product. [c] Determined from 1H NMR
analysis.

Figure 2. ORTEP diagram of 9a.
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naphthalenide at �78 8C in THF to produce a mixture of
separable amines 11a and 11b in a 93% yield from 1e.
Importantly, the above two-step procedure of the ketone
reduction and the removal of the Ts group could be simplified
to a one-step reaction by using a large excess of Na/Hg
amalgam to provide single diastereomer 11b in 63% yield.
Alkylation of 11a and 11b with (Z)-2-iodo-2-butenyl mesy-
late and subsequent oxidation with the Dess–Martin reagent
afforded ketone 13 in 74% yield over two steps. Palladium-
catalyzed intramolecular a-vinylation of ketone 13, by using
conditions improved by Cook and co-workers,[16] facilitated
the formation of the fifth ring to give pentacyclic 14 in 60%
yield. Conversion of the ketone functional group of 14 into an
enol triflate was realized by reaction of 14 with Comins<
reagent under strong basic conditions to provide 15 in 88%
yield. Replacement of the triflate group with a hydroxymethyl
group by microwave assisted Still cross-coupling[17] with tri-n-
butylstannylmethanol and the removal of the tert-butylcar-

boxycarbonyl (Boc) group with TMSOTf led to the total
synthesis of (� )-minfiensine.[18]

In summary, we have developed a highly efficient method
for the assembly of tetracyclic skeleton 1 with readily
manipulated functional groups. The usefulness and efficiency
of the newly developed methodology was demonstrated by
the completion of a concise total synthesis of highly congested
(� )-minfiensine with a 4% overall yield in 12 steps from
tetrahydrocarboline 5a. Synthesis of members of the akuam-
miline alkaloids by using synthesized tetracyclic skeleton 1
are under investigation and the results will be reported in due
course.
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