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Room Temperature Gold-Catalysed Arylation of Heteroarenes: 

Complementarity to Palladium Catalysis 

Alexander J. Cresswell[a] and Guy C. Lloyd-Jones*[a] 

Abstract: Tailoring of the pre-catalyst, the oxidant and the arylsilane 

enables the first room temperature, gold-catalysed, innate C–H 

arylation of heteroarenes. Regioselectivity is consistently high and, 

in some cases, distinct from that reported with palladium catalysis. 

Tolerance to halides and boronic esters, in both the heteroarene and 

silane partners, provides orthogonality to Suzuki-Miyaura coupling. 

We recently reported a new route to biaryls via oxidative 

cross-coupling of moderately electron-rich arenes with 

aryltrimethylsilanes.1,2 This gold-catalysed reaction exploits the 

innate SEAr-type reactivity of the arene partner, rather than a 

directing group, and proceeds under mild and convenient 

conditions (Scheme 1).  

 

Scheme 1. Gold-catalysed C–H arylation.
1,2

 CSA = camphorsulfonic acid. 

However, although many substituents are tolerated, 

including esters, aldehydes, alcohols, and (pseudo)halides, the 

only heteroarenes we were able to efficiently arylate under our 

original conditions were 2-bromothiophenes.1,2 By stabilising the 

Au(III)2 catalyst with a strongly electron donating 2-pyridylidene 

ligand, Itami and Segawa et al. showed that arylation of other 

heteroarenes was feasible.3 However, the range was still limited 

(four isoxazoles, one indole, and one benzothiophene) the yields 

moderate (13–54%), and the reaction rather slow (5 mol% Au, 

65 °C, 18-48h).3 Larrosa et al. have also reported a gold-

catalysed polyfluoroarylation of π-rich heteroarenes via double 

C–H activation (5 mol% Au, 35 mol% Ag, 110 °C).4  

The area of metal-catalysed, innate C–H arylation of 

heteroarenes5,6 remains dominated by palladium catalysis, with 

a frequent requirement for highly elevated temperatures (often 

>100 °C), an excess of one coupling partner, stoichiometric Ag 

or Cs additives, or inert conditions. In this respect, we were 

motivated to explore the potential of our gold-catalysed arylation 

methodology1 to address these issues, and perhaps even 

enable C–H arylations which are not currently possible with 

palladium.  

Initial investigations focused on the arylation of indole 1 

with Ar-TMS 2 to give 4 (Figure 1). Using our originally-reported 

conditions,1 arylated indole 4 was produced in only 16% yield, 

with the remainder of the indole 1 being consumed by competing 

(uncatalysed) oxidative decomposition. Using thtAuBr3 as a 

more rapidly-activating pre-catalyst2 improved conversion (40% 

of 4), but interaction of 1 with the in situ iodine(III) oxidant1 

remained a problem. However, by sterically-encumbering the 

oxidant (3b-c), the undesired oxidation was reduced, and 4 

could be obtained in 87% yield over 2.5 hours using oxidant 3c.7 

Because the methanol co-solvent1 is known to be a catalyst 

inhibitor,2 we tested whether the arylation of 1 could be 

accelerated using methanol-free conditions. However, despite a 

faster initial rate, the generation of 4 ceased after approximately 

35% conversion of 2,8 with unreacted indole 1 then being slowly 

consumed in a non-productive oxidation (Figure 1, left-hand plot). 

Having found that removal of the methanol causes reaction 

stalling, we tested whether a silyl-tethered alcohol could act as a 

methanol surrogate.8 Accordingly, replacing aryl-TMS 2 with 

arylsilane 5, bearing a 3-hydroxypropyldimethylsilyl (HPDMS) 

group,9 resulted in much more efficient arylation (>90% 

conversion of 5 in under an hour, Figure 1 right-hand plot) 

allowing isolation of 4 in 87% yield. Notably, the addition of one 

equivalent of methanol to 2 is not an effective substitute for 5: 

the generation of 4 ceases after 40% conversion of 2 (see SI). 

 

 

Figure 1. Identification of conditions for efficient C–H arylation of indole 1. All 

yields are calculated by 
19

F NMR against an internal standard. 
a
Time at which 

1 is fully consumed. 
b
Time at which arylation ceases. Ar = 4-fluorophenyl;  

CSA = camphorsulfonic acid; tht = tetrahydrothiophene; Ts = 4-toluenesulfonyl. 
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Having established a rapid and efficient arylation process, 

concise routes for Ar-HPDMS synthesis were next designed. 

Reagents 7 and 8, easily prepared via alkene hydrosilylation in 

one or two steps without chromatography (see SI), can be 

conveniently applied in one-pot processes (Scheme 2). For 

example, ‘HPDMS chloride’ 7 adds to the aryllithium derived 

from 9 to afford Ar-HPDMS 10 after O-desilylation, and adapting 

the trialkylsilylation procedure of Yamanoi and Nishihara,10 

‘HPDMS hydride’ 8 silylates iodoarene 11 to give Ar-HPDMS 12 

after cleavage of the THP protecting group. Although the latter 

procedure suffers from competing reduction 

(protodeiodination)10 this method does tolerate functionality that 

would otherwise be incompatible with lithiation-silylation 

approaches (e.g. -CO2Me). With convenient routes to Ar-

HPDMS reagents in hand, their performance in heteroarene C–

H arylations was evaluated next. 

 

Scheme 2. Ar-HPDMS preparation. HPDMS = 3-hydroxypropyldimethylsilyl; 

NMP = N-methylpyrrolidinone; TMS = trimethylsilyl; THP = tetrahydropyranyl; 

Ts = 4-toluenesulfonyl. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Isolated yields from arylation of indole 1 followed by 
19

F NMR at 22 °C. tht = tetrahydrothiophene; Piv = pivaloyl; Ts = 4-toluenesulfonyl. 
a
Stalled at 

65% conversion of 13b. 
b
Stalled at 75% conversion of 13f       
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With respect to the arylsilane (Scheme 3), the process is 

compatible with a range of useful spectator functionalities, 

including carboxyl (14f), boryl (14m), silyl (TMS) (14k,l) and 

halogen (Br) groups (14d). Paralleling earlier work with Ar-TMS 

reagents (e.g. 2) for C–H arylation,1,2,3 Ar-HPDMS 13b bearing 

ortho-substitution led to slow and inefficient arylation (43% yield), 

whereas silanes 13i-j bearing highly electron-withdrawing 

substituents proved unreactive. The generality of the C–H 

arylation protocol with respect to the heteroarene partner is also 

good (Scheme 4), with regioselectivity essentially quantitative 

(>95%) in all but one case (i.e. 16r, ≥80%). Again, the reaction 

tolerates a range of functionalities on this partner, including 

carboxyl (16b-d,l-n), boryl (16k), and halogen (Br, Cl) groups 

(16a,d,f-i,l,o-q). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4. Isolated yields from room temperature arylation of 15a-t. followed by 
19

F NMR at 22 °C. Conditions: A = 3c (1.3 equiv) + CSA (1.5 equiv); B = 

PhI(OH)OTs (1.3 equiv). Ar = 4-fluorophenyl; pin = pinacolato; Ts = 4-toluenesulfonyl. 
a
Contaminated with 8% diarylated product. 

b
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In most cases we employed the sterically-encumbered 

oxidant 3c (conditions A) developed for the arylation of indole 1, 

but for slower-reacting 15l-q, commercially-available Koser’s 

reagent [PhI(OH)OTs] proved superior (conditions B), leading to 

increased arylation rates.11 Some heteroarenes (including 

isoaxazole, for which the Itami-Segawa catalyst3 is successful) 

proved unsuitable, either due to a lack of reactivity, or because 

they gave complex mixtures of products (see SI for full details) 

It is particularly instructive to compare and constrast our 

new methodology with prior art in metal-catalysed, innate C–H 

arylation of heteroarenes. For example, indoles 4,15f-k have not 

previously been used in C–H arylation, and the only other “low” 

temperature (<100 °C) methods for the β-arylation of indoles (as 

opposed to α-arylation)12 include a Cu-catalysed protocol with 

diaryliodonium salts (35 °C)13 and an oxidative, Pd-catalysed 

process with arylboronic acids (80 °C).6c The successful 

α-arylation of brominated pyrrole 15a and furan 15l are also 

significant, as there are no other publsihed examples of C–H 

arylation of these or other ring-halogenated pyrroles/furans. The 

regioselective arylation of brominated thiophenes 15o-p14 and 

benzo[b]thiophenes 15q15 and 15r under such mild conditions is 

also likely to find application in the preparation of functional 

organic materials.16,17 
 

 

 

 

 

 

 

 

 

 

Table 1. State-of-the-art in Pd-catalysed C–H arylation of selected 

heteroarenes with aryl halides (see main text for references). 

As a further illustration of practical advance, the state-of-

the-art in Pd-catalysed C–H arylation of some of the 

heteroarenes employed in the current work are presente din 

Table 1 (i.e. for 15c,18 15n,19 15o,p,14 15q,16 15r,20 and 15s21).22 

Although catalyst loadings in some cases are <1 mol%, all of the 

procedures require an excess of one coupling partner (typically 

the heteroarene), elevated temperatures (80–160 °C), and, 

almost invariably, an inert atmosphere. By constrast, all of these 

heteroarenes can be arylated at ambient temperature, under air, 

in ≤3 hours under our gold-catalysed conditions, typically 

employing 2 mol% Au and  1:1 coupling partner stoichiometry. 

Complementarity to Pd catalysis is also apparent for the 

selective23 arylation of pyrrole 15m, which contrasts with the 

-arylation of 15m reported with Pd(TFA)2 as the catalyst 

(Scheme 5, left).24 Similarly, the β-arylation of pyridone 15t is the 

first example of C–H arylation25 at this position that does not 

require polyfluorinated arene partners (Scheme 5, right).26  

 

 

 

 

 

 

 

Scheme 5. Complementarity to Pd catalysis: β-arylations of pyrrole 15m and 

pyridone 15t. Ar = 4-fluorophenyl; Ar
F
 = perfluoroaryl; TFA = trifluoroacetate;  

Piv = pivaloyl; Ts = 4-toluenesulfonyl. 

In summary, we have developed the first room 

temperature, gold-catalysed, innate C–H arylation of 

heteroarenes, proceeding with high chemo- and regioselectivity. 

The process is facilitated by use of a rapidly activating thtAuBr3 

pre-catalyst,2 the exclusion of methanol as co-solvent, and the 

use of tailored oxidants and arylsilane partners. 

 Complementarity to Pd catalysis is apparent not only from 

the exceptionally mild and non-inert reaction conditions, but also 

the ability to effect certain arylations which are currently not 

possible with Pd catalysts. Moreover, as far as we are aware, 

this work provides the first examples of boryl spectator 

functionality (pinB) in both coupling partners in a metal-catalysed 

C–H arylation (i.e. 14m and 16k).27 Together with halides 14d 

and 16a,d,f-i,l,o-q, these products highlight the orthogonality of 

gold-catalysed C–H arylation to Suzuki-Miyaura cross-coupling. 

Experimental Section 

Preparation of 14a. A 30 mL vial equipped with a stirrer bar was charged 

with 13a (194 mg, 1.00 mmol, 1.0 equiv), 1 (289 mg, 1.00 mmol, 1.0 

equiv), thtAuBr3 (10.5 mg, 0.02 mol, 2 mol%), and CHCl3 (10 mL). The 

mixture was stirred for ca. 1 min to fully dissolve the thtAuBr3 pre-catalyst, 
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resulting in a deep red-orange solution. Taking no precautions to exclude 

air or moisture, 3c (583 mg, 1.30 mmol, 1.3 equiv) and CSA (356 mg, 

1.50 mmol, 1.5 equiv) were added simultaneously in a single portion, and 

the vial sealed with a screw cap. Over approximately 1 min, the solution 

changed to a clear pale-yellow solution, signifying pre-catalyst activation. 

After 1 h, 19F NMR indicated no further reaction and Celite (ca. 4 g) was 

added. The volatiles were allowed to evaporate to give a free-flowing 

powder. Purification via flash column chromatography (100 g SiO2, 40 

mm Ø, 60:40 hexane/toluene, ca. 14 mL fractions) gave 14a as a clear, 

colorless gum (332 mg, 89%). 
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