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Scheme 1. Cycloheptanone synthesis via a formal [5+2] cycloaddition re
dicobalt acetylene complex 1.
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A stereoselective [5+2] cycloaddition reaction using a new five-carbon unit, that has a dicobalt acetylene
complex moiety and an enol silyl ether moiety, was developed. In the presence of a Lewis acid, the five-
carbon unit reacted with an enol triisopropylsilyl ether to give a 1-acetyl-2-silyoxycycloheptane deriva-
tive, in which the three contiguous substituents on the seven-membered ring arrange cis to each other.
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There are a number of natural compounds containing a cyclo-
heptane ring with various kinds of substituents. The [4+3] cycload-
dition reaction1 of dienes or furan derivatives with allyl cationic
species represents an efficient method for constructing seven-
membered carbocycles, but much less attention has been paid to
the [5+2]-type reactions.2 We have developed dicobalt acetylene
complex 1 and its analogues as useful five-carbon units in the for-
mal [5+2] cycloaddition reaction with enol silyl ethers3a,b or sily-
loxyallenes3c (Scheme 1).

The reaction proceeds through intermolecular addition of cat-
ionic species A with an enol silyl ether followed by the intramolec-
ular cyclization of silyloxonium ion B to give cycloheptanone
derivative 24 in a stereoselective fashion.5 These results led us to
develop a new synthetic method for polysubstituted cycloheptane
derivatives through another type of formal [5+2] cycloaddition
reaction (Scheme 2).

Thus, the use of dicobalt acetylene complex 3 as a five-carbon
unit would afford cycloheptane derivative 4 through the stepwise
addition reaction involving cationic intermediates C and D.6 It
should be noted that cycloadduct 4 possesses the ketone moiety
as one of the three substituents on the seven-membered ring,
while the ketone moiety of the cycloadduct 2 in Scheme 1 is
incorporated in the carbocycle. Therefore, the utility of the new
[5+2]-type reaction depends on the stereoselectivity at the three
contiguous stereogenic centers in cycloadduct 4. We report herein
the highly stereoselective formal cycloaddition reaction of
five-carbon unit 3 and its analogue with enol silyl ethers.

The new five-carbon unit was synthesized in only two steps as
shown in Scheme 3. Methyl vinyl ketone was subjected to the
conjugate addition reaction with organocopper reagent 5,7 which
was prepared by successive treatment of methyl propargyl ether
with butyllithium and copper(I) thiocyanate, in the presence of
tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf). The
resulting enol silyl ether 6 was then reacted with Co2(CO)8 to
afford the desired dicobalt acetylene complex 7.8 Although both
of the enol silyl ethers 6 and 7 were found to readily undergo
action of
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Scheme 3. Preparation of the new five-carbon unit 7.

Table 1
Stereoselective synthesis of cycloheptane derivatives by formal [5+2] cycloaddition
reactionsa,b

Entry Enol silyl ether Product Yield (%)

1 69

2 77

3 70

4 76

5 86

6 78

a The general procedure is described in Ref. 9.
b Minor diastereomers were not detected by proton NMR spectra.

Figure 1. Suggested transition state models for the cyclization step.

Scheme 2. Formal [5+2] cycloaddition reaction of a new five-carbon unit leading to
substituted cycloheptanes.
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autooxidation of the allylic methylene group, addition of a small
amount of 2,6-di-tert-butyl-4-methylphenol (BHT) effectively
reduced the side reaction.

The reactions of dicobalt acetylene complex 7 and enol silyl
ethers derived from the corresponding aldehydes were examined
under the influence of ethylaluminum dichloride (Table 1).9

Gratifyingly, the formal [5+2] cycloaddition reaction proceeded at
0 �C in good yield, and the desired products were obtained in a
highly stereoselective manner. The stereochemistry of the cyclo-
heptane derivative was determined by 1H NMR spectra. Thus, the
very small vicinal coupling constants10 between the a-protons of
the three substituents indicated that these substituents are all cis
to each other (entries 1–5). The reaction of 7 with the enol silyl
ether derived from isobutyraldehyde also occurred smoothly to af-
ford a cycloheptane derivative 4f having a quaternary carbon atom
as a single diastereomer (entry 6).

The stereochemical outcome of the cycloaddition reaction can
be rationalized by the transition state models which correspond
to the intramolecular cyclization step of the silyloxonium ion inter-
mediate D in Scheme 2. Taking into account the rigidity as well as
the bulkiness of the cobalt complex moiety,11 transition state mod-
els in which the R group occupies an equatorial position can be de-
picted (Fig. 1). In these models, D-2 would suffer from the serious
steric repulsion between the two bulky silyl groups, while D-3 hav-
ing the enol silyl ether at the pseudo axial position would also be
disfavored. Therefore, the diastereomer with all-cis substituents
is formed through transition state D-1.

As was reported previously, the cyclic dicobalt acetylene com-
plexes can be transformed into useful compounds in one step
(Scheme 4). For example, cycloaddition product 4b underwent



Scheme 4. Transformation of the cyclic dicobalt acetylene complex.

Scheme 5. Synthesis and reactions of dicobalt acetylene complexes with a cyclic
enol silyl ether moiety.
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reductive decomplexation12 by refluxing with tributyltin hydride
in benzene to afford the corresponding cycloheptene 8. On the
other hand, oxidation of 4b with cerium(IV) ammonium nitrate re-
sulted in the formation of maleic anhydride 9 in high yield.3,13

Next, the formal [5+2] cycloaddition reaction was applied to the
synthesis of bicyclic compounds. New five-carbon units 10 and 11
having a cyclic enol silyl ether moiety were prepared from the cor-
responding 2-cycloalken-1-ones through a similar method for the
synthesis of 7 (Scheme 5).7

In these cases, the use of 2,6-lutidine instead of BHT was found
to give better results, because the enol silyl ethers tend to undergo
hydrolysis rather than autooxidation.

The enol silyl ether derived from isobutyraldehyde was chosen
as the coupling partner with cobalt complex 10, so as to avoid the
formation of the product as a mixture of four diastereomers. The
reaction under the previous conditions using ethylaluminum
dichloride at 0 �C (Method A) gave the desired bicyclic ketone 12
in moderate yield along with by-product 13 which arose from desi-
lylation of the silyloxonium ion intermediate. We found, however,
that the reaction under the influence of titanium(IV) chloride pro-
ceeds even at �78 �C (Method B), giving rise to the desired product
12 in 93% yield as a single diastereomer. The reaction of six-mem-
bered substrate 11 by adopting Method B resulted in the formation
of bicyclic ketone 14 in good yield. Judging from the coupling
constants in the 1H NMR spectra, compound 12 possessed a
cis-fused 5–7 skeleton, and the configuration of the 6–7 bicyclic
system of 14 was suggested to be trans. Although the origin of
the different stereochemical outcome depending on the ring size
of the substrates is not clear, the present cycloaddition reaction
shows promise for constructing highly substituted bicyclic systems
in short steps.

In summary, we have developed an efficient method for the
synthesis of substituted cycloheptane derivatives on the basis of
a formal [5+2] cycloaddition reaction. The five-carbon unit 7, a
dicobalt acetylene complex possessing a leaving group and an enol
silyl ether moiety, was prepared from commercially available com-
pounds in only two steps. Under the influence of a Lewis acid, the
cobalt complex reacted with enol triisopropylsilyl ethers to afford
cycloheptane derivatives having three substituents as a single dia-
stereomer. The formal [5+2] cycloaddition reaction was applied to
construct bicyclic skeleton, and applications in total synthesis of
polycyclic natural compounds are under investigation.
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