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Abstract: Microsomal prostaglandin E2 synthase-1 (mPGES-1) is
a novel therapeutic target for the treatment of inflammation and
pain. During the course of studies aimed at the identification of a
suitable mPGES-1 inhibitor for clinical development, a need arose
for preparing enantiomerically enriched amino alcohols (S,5)-2 and
(8,5)-3. Described herein, a concise synthesis of (S,S5)-2 and (S,5)-3
has been developed wherein both amino alcohols are derived from
a commercially available, low-cost starting material.
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Inducible microsomal prostaglandin E, synthase-1 (mPG-
ES-1), the predominate synthase involved in cyclooxyge-
nase-2 (COX-2) mediated PGE, production, is a novel
therapeutic target of considerable interest in the treatment
of inflammation and pain.' We have been interested in
preparing substituted benzoxazoles of type 1 as mPGES-1
inhibitors (Figure 1).? During the course of studies aimed
at the identification of a suitable inhibitor for clinical de-
velopment, a need arose for obtaining hundreds of grams
of enantiomerically enriched amino alcohols (§,S)-2 and
(8,5)-3. Due to the trans-1,3-relationship between the sub-
stituents on (§,5)-2 and (S5,5)-3, one of the substituents on
the cyclohexyl ring occupies a presumably thermodynam-
ically unfavorable axial orientation, which could make the
synthesis more challenging.
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Figure 1 General structure of novel mPGES-1 inhibitors (1) and
new synthetic targets (S,5)-2 and (S,5)-3
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While no prior studies on the synthesis of either (S,5)-2 or
(8,5)-3 have appeared in the literature, Zhu et al. prepared
the related carboxylic acid (S,5)-4 in six steps from enan-
tiomerically enriched (97% ee) lactone (S,5)-5
(Scheme 1);? the latter compound being prepared in four
steps from commercially available material.* While (S.,S)-
4 presumably could be converted into desired (S,S)-2, the
existing synthesis of (S,5)-4 is lengthy, and the starting di-
enophile is expensive. Based on prior work by Mura-
hashi,’ Zhu et al. attempted to shorten their route via a
direct SN2 opening of lactone (S,5)-5 with sodium azide.
Unfortunately, partial racemization occurred during the
reaction, presumably due to ring opening via a competing
Sx2’ pathway.’ We detail below a concise synthesis of
(8,5)-2 and (S,5)-3, of which both compounds are derived
from a low cost starting material.
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Scheme 1 Zhu’s synthesis of (S,5)-4 based on Trost’s enantiomeri-
cally enriched lactone (S,5)-5. Reagents and conditions: (a) Na,COs,
MeOH, r.t.; (b) H,, Pd/C, MeOH; (c) TsCl, py, CH,Cl,; (d) NaNj,
DMF, 80 °C; (e) LiOH, THF—-MeOH-H,0, 40 °C; acidic workup.

Our initial API requirements for (S,5)-2 were met via the
synthetic sequence outlined in Scheme 2. Thus, resolution
of Cbz-protected amino alcohol rac-6, which was pur-
chased from a vendor,® using chiral super critical fluid
chromatography (SFC)’ afforded enantiomerically en-
riched carbamate (S,5)-6® (98% ee). Hydrogenolysis of
the Cbz-group in (S,5)-6 gave rise (98%) to the desired
amine (S,5)-2.>!° HATU-mediated coupling of amine
(S,9)-2 with carboxylic acid 7? afforded amide (S,S)-8.'!
Compound (S,5)-8 was shown to be a potent inhibitor in
our mPGES-1 enzyme assay (Scheme 2). Conversely,
enantiomer (R,R)-8'? was 75-fold less active, displaying
only weak activity. The absolute configuration at C(1) and
C(3) on the cyclohexyl ring in (S,S5)-8 was unambiguously
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established as (15,3S) via X-ray crystallography
(Figure 2)."3

The option of purchasing carbamate rac-6 was convenient
as it provided access to gram quantities of enantiomerical-
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Scheme 2 Reagents and conditions: (a) resolution, SFC, Chiral Pak
AD-H 250 column (EtOH-CO,, 1:3, 40 °C); (b) H,, 10% Pd/C (cat.),
MeOH, 50 psi, 16 h; (c) carboxylic acid 7 (1.0 equiv), amine 2 (1.2 equiv),
HATU (1.2 equiv), i-Pr,NEt (5.0 equiv), DMF, r.t., 16 h. * mPGES-1
enzyme inhibition assay. Numbers indicate ICy, values generated
from 10-point concentration response relationships in duplicate, n va-
lues in parentheses denotes number of iterations. For enzyme assay
conditions, see ref. 14.

Figure 2 ORTEP diagram of compound (S.,5)-8
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Scheme 3 Reagents and conditions: (a) EtOH (1.0 equiv), concd
HCI (cat.), 80 °C, 4 h; (b) DPPA (1.0 equiv), Et;N (1.1 equiv), tolu-
ene, 70 °C, 1 h; BnOH (1.05 equiv), Et;N (1.1 equiv), 80 °C, 5 h; (c)
LiOH-H,O (5.0 equiv), THF-MeOH-H,0 (6:3:1), r.t., 5 h; (d)
BH, THF (2.2 equiv), THF, -5 °C, 4 h.
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ly pure amino alcohol (S,5)-2; however, this tactic did not
represent a long-term solution for meeting our API needs.
The high cost of rac-6, coupled with long lead times,
meant sourcing this material was no longer practical;
hence, we sought to develop a practical synthesis of rac-
6, capable of delivering hundreds of grams of API.

Our synthesis of rac-6 commenced from dicarboxylic
acid 9, a low cost, commercially available mixture of cis-
and trans-isomers (Scheme 3).15 The trans-isomer can be
efficiently isolated in high purity using the procedure of
Skita and Rossler.!® Monoesterification of frans-isomer
10 afforded ester 11.!7 Under these conditions, no epimer-
ization to the corresponding cis-isomer was seen. Curtius
rearrangement of carboxylic acid 11 and trapping of the
intermediate isocyanate with benzyl alcohol led to the cor-
responding carbamate. Subsequent saponification of the
ester with lithium hydroxide gave rise (72%) to carboxylic
acid 12. Again, under these conditions, no epimerization
to the cis-isomer occurred. It should be mentioned that in
a prior study Hewgill and Jefferies utilized a Schmidt re-
action to convert dicarboxylic acid 10 into the related ami-
no acid rac-4.'"® Unfortunately, this procedure utilizes the
highly toxic and potentially explosive hydrazoic acid,
which was seen as a significant drawback to our API
needs.

Desired alcohol rac-6 was realized in 72% yield via bo-
rane reduction of carboxylic acid 12 (Scheme 3). The
spectral properties of rac-6, prepared according to
Scheme 3, were identical to an authentic sample of rac-6.
Over 100 grams of rac-6 was prepared according to
Scheme 3.

Enantiomerically enriched amino alcohol (S,5)-3 was also
prepared from commercial dicarboxylic acid 9
(Scheme 4). Toward this end, treatment of monoester 11
with methyl magnesium bromide, followed by subsequent
Curtius rearrangement of the carboxylic acid led to tertia-
ry alcohol rac-13. Resolution of rac-13 using SFC afford-
ed enantiomerically enriched alcohol (S,5)-13."
Hydrogenolysis of the benzyloxycarbonyl group in (S,S)-
13 gave rise (90%) to the desired amino alcohol [(S,S)-
3].22° Over 100 grams of rac-13 was prepared via this
synthetic route. HBTU-Mediated coupling of amine (S,S)-
3 with carboxylic acid 14? gave rise to amide (S,5)-15.2!
Compound (S,S5)-15 was a potent inhibitor of mPGES-1 in
the enzyme assay (Scheme 3); the corresponding enantio-
mer [(R,R)-15] was ca. 50-fold less potent.??

The absolute configuration of (S,5)-3 was established
based on the synthesis shown in Scheme 5. Thus, conden-
sation of enantiomerically enriched amine (S,5)-2 with
acetyl acetone afforded dimethylpyrrole 16. Oxidation
(TPAP, NMO) of the alcohol gave the corresponding al-
dehyde. Treatment of the aldehyde with methyl magne-
sium bromide led to secondary alcohol 17. The addition to
the aldehyde was essentially nonselective under these
conditions (dr = 55:45). Oxidation of the alcohol with
TPAP and NMO gave rise (76%) to the corresponding
methyl ketone. Subjection of the ketone to methyl Grig-
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Scheme 4 Reagents and conditions: (a) MeMgBr (3.0 M solution in
Et,0, 3.15 equiv), THF, 0 °C—r.t., 16 h; (b) DPPA (1.0 equiv), Et;N
(1.1 equiv), toluene, 70 °C, 1 h; BnOH (1.05 equiv), Et;N (1.1 equiv),
80 °C, 5 h; (c) resolution, SFC chromatography, Chiral Pak IA 250
column (EtOH-i-PrOH-CO,, 1:1:6, 40 °C); (d) H,, 10% Pd/C,
MeOH, 50 psi, r.t., 18 h; (e) carboxylic acid 14 (1.0 equiv), amine 3
(1.2 equiv), HBTU (1.2 equiv), Et;N (1.5 equiv), DMF, r.t., 16 h. *
mPGES-1 enzyme inhibition assay. Numbers indicate ICs, values ge-
nerated from 10-point concentration response relationships in dupli-
cate, n values in parentheses denotes number of iterations. For
enzyme assay conditions, see ref. 14.
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Scheme 5 Reagents and conditions: (a) acetyl acetone (1.1 equiv),
AcOH (cat.), toluene, reflux, Dean—Stark, 2 h; (b) TPAP (cat.), NMO
(1.5 equiv), 4 A mol. sieves, CH,Cl,, 2 h; (¢) MeMgBr (3.0 M soln in
Et,0, 1.2 equiv), Et,0, 0 °C, 30 min; (d) NH,OH-HCI (20 equiv),
Et;N (10 equiv), i-PrOH-H,O (2.5 mL, 4:1), reflux, 6 h; NaOH (4.0
equiv), 0 °C, 16 h; (e) carboxylic acid 14 (1.0 equiv), amine (S,$)-3
(1.2 equiv), HBTU (1.2 equiv), Et;N (1.5 equiv), DMF, r.t., 16 h.

nard afforded the tertiary alcohol in 83% yield. Subse-
quent hydrolysis of the dimethyl pyrrole gave amine
(8,5)-3 in low yield. Coupling (S,5)-3 with carboxylic acid
14 afforded (S,S)-15. Using chiral SFC conditions similar
to above, (S,5)-15, prepared according to Scheme 5, co-
eluted with (S,S)-15 prepared according to Scheme 4. In
addition, the biological activity of (S,5)-15, prepared ac-
cording to Scheme 5, was identical to the activity of (S,S)-
15 prepared according to Scheme 4. Based on these data,

it is highly likely that the absolute configuration at C(1)
and C(3) on the cyclohexyl ring of (S,5)-15 is (15,35).

In summary, we have described a concise racemic synthe-
sis of two amino alcohols, which were resolved by chiral
chromatography to afford enantiomerically enriched
(8,5)-2 and (S,5)-3. Those key intermediates were used for
the preparation of potent mPGES-1 inhibitors. Both amino
alcohols were derived from the same low cost starting ma-
terial. Over 100 grams of (S,5)-2 and (S,5)-3 were pre-
pared utilizing the described chemistry.
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1.43 (tt, J=13.2,3.4 Hz, 1 H), 1.27 (td, /= 13.2, 3.5 Hz,

1 H), 1.11 (s, 3 H), 1.10 (s, 3 H), 1.02 (qd, J = 12.3, 3.8 Hz,
1 H). 3C NMR (125 MHz, MeOH-d,): § = 158.4, 138.6,
129.6, 129.1, 129.0, 73.24, 67.37, 43.92, 32.65, 31.35,
28.19, 27.03, 26.93, 25.41, 22.09. LRMS (ESI): m/z =313.9
[M + Na]*.

Analytical data for (S,5)-3: clear oil. '"H NMR (400 MHz,
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(ESI): m/z =158.1 [M + H]*.

Analytical data for (S,5)-15: white solid; 98% ee (analytical
chiral HPLC). '"H NMR (400 MHz, DMSO-dy): § = 7.57 (br
d,J=7.69 Hz, 1 H), 7.39 (s, 1 H), 7.29 (s, 1 H), 4.11-4.15
(m, 2 H), 3.99-4.03 (m, 1 H), 3.92 (s, 1 H), 3.09-3.15 (m, 2
H), 2.53-2.57 (m, 1 H), 2.34 (s, 3 H), 1.71-1.79 (m, 4 H),
1.54-1.64 (m, 3 H), 1.46-1.53 (m, 3 H), 1.26-1.34 (m, 1 H),
1.08-1.15 (m, 1 H), 1.02 (s, 3 H), 1.01 (s, 3 H), 0.87-0.95
(m, 1 H). BC NMR (125 MHz, DMSO-dy): 5 =173.1, 162.4,
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Compound (R,R)-15 (98% ee) was prepared using similar
conditions to that described for the preparation of (S,5)-15
except (R,R)-13 (98% ee) was used in place of (S,5)-13.
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