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a b s t r a c t

A novel N-phenyl carbazole substituted 2, 4,6-trisphenyl-triazine host material(TPCPZ) for solution
processed green phosphorescent organic light-emitting devices (PhOLEDs) was synthesized by a Suzuki-
cross coupling reaction. The optical, electrochemical and thermal properties of TPCPZ have been char-
acterized. TPCPZ exhibits a high glass transition temperature of 165 �C and a triplet energy of 2.63 eV. The
appropriate HOMO energy level (�5.39 eV) and LUMO energy level (�2.16 eV) matching with the HOMO
energy level of PEDOT:PSS(�5.35 eV) and the LUMO energy level of Cs2CO3/Al bilayer cathode (�2.2 eV),
facilitate the transfer of holes and electrons. The solution-processed single-layer device using TPCPZ as
the host for fac-tris(2-(4-phenylpyridine)iridium (Ir(ppy)3) exhibited a low turn-on voltage of 3.5 V, a
maximum current efficiency of 20.8 cd A�1 and a maximum luminance of 18,000 cd m�2. These results
demonstrated that TPCPZ as a host material is advantageous for fabrication of highly efficient single-layer
green PhOLEDs.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Since efficient phosphorescent emitters for organic light-emit-
ting diodes (PhOLEDs) was discovered by Forrest’s group, tremen-
dous efforts have been made in the development of highly efficient
devices [1e5]. In PhOLEDs, the emitting layer consists of a phos-
phorescent dye which is doped into a host material to avoid con-
centration quenching and to optimize the charge balance. High
efficiencies are obtained only when the energy is efficiently
transferred from the host to the phosphorescent dye. To achieve
efficient electrophosphorescence, the choice of host is of vital
importance [6].Generally, the triplet energy of the host material is
higher than that of the guest. For efficient OLEDs, well balanced
charge carrier transport and a broad recombined zone are desir-
able. In general, the electron mobility of many host materials is
much lower than the hole mobility because of the fact that they
consist electron donors such as aromatic amines, carbazoles. This
task is mostly solved by a design of a bipolar material [7,8]. Intro-
duction of strong electron donors such as aromatic amines or car-
bazoles [9] to electron accepting N-heterocycles like pyridine [10e
1.

013 Published by Elsevier Ltd. All
12], oxadiazole [13e16], phenathroline [17e19], benzimidazole
[20e24], is well described. Triazines, are known to be good electron
conductors and their derivatives have been used as electron
transport layers in OLEDs [4,25e28].Recently, some bipolar host
materials based on triazines for PhOLEDs are reported [29e34]. A
series of donor substituted 1,3,5-triazine derivatives as host for blue
or green PhOLEDs show good performance.

In recent years, many groups are devoted to improve the per-
formance of solution-processed PhOLEDs which are highly desir-
able to simplify the fabrication process and reduce the cost of larger
area displays [35e44]. Even though polymer light-emitting diodes
can be easily fabricated by solution casting, they are generally
difficult to synthesize and purify for electronic devices. Therefore, it
is a good strategy to develop OLEDs based on solution-processed
small molecules. However, the largest challenge for small mole-
cules lies in the poor solubility accompanied by the tendency to
crystallize and failure to form high quality films. Consequently, it is
of significant importance to design and synthesize amorphous
small molecules with high purity and solubility. To date, few works
reported on bipolar host based on 1, 3,5-triazine for solution-
processed PhOLEDs.

In this work, a bipolar host composed of electron-transporting 2,
4,6-trisphenyl-triazine and hole-transporting N-phenyl carbazole,
rights reserved.
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namely 2, 4,6-tris (3-((9-phenyl) carbazol-3-yl)-phenyl) -tri-
azine(TPCPZ) is designed and synthesized. The dipolar nature of
TPCPZ can promote the strong pep intermolecular stacking of
molecules in the solid state, which can facilitate high charge
transport. Moreover, the electron-donating N-phenyl carbazole
moieties are conjugated to the electron accepting 2, 4,6-trisphenyl-
triazine core; the donor-acceptor intramolecular interaction tends
to decrease the energy gap. TPCPZ has a triplet energy of 2.62 eV,
which make it suitable as host material for green phosphorescent
emitters. The material exhibits high thermal stability and good
sublimation properties. The glass transition temperature of 165 �C
ensures morphological stability of the host-guest emission layer
during the operation of the device. Additionally, TPCPZ has
good solubility in common solvents such as CH2Cl2, CHCl3, 1,2-
dichloroethane et al., which make it suitable for the fabrication of
solution-processed PhOLEDs. The single-layer device with TPCPZ as
host has low turn-on voltage of 3.5 V, a high maximum luminance
efficiency of 20.8 cd A�1 andmaximum luminance of 18,000 cdm�2

in a solution-processed green phosphorescent OLED using an
emitter of fac-tris(2-(4-phenylpyridine)iridium (Ir(ppy)3)).

2. Experimental

2.1. General

All reactants and solvents were purchased from commercial
sources and used without further purification. 1H NMR and 13C
NMR spectra were recorded on a Bruker ARX300 NMR spectrom-
eter with Si(CH3)4 as the internal standard. Elemental analysis was
performed on an Elementar Vario EL CHN elemental analyzer. Mass
spectra were obtained using a Thermo Electron Corporation Fin-
nigan LTQ mass spectrometer. UVevis absorption spectra were
recorded with a spectrophotometer (Agilent 8453) and PL spectra
were recorded with a fluorospectrophotometer (Jobin Yvon,
FluoroMax-3). Thermogravimetric analysis (TGA) was performed
using a Netzsch simultaneous thermal analyzer (STA) system (STA
409PC) under dry nitrogen atmosphere at a heating rate of
10 �C min�1. Glass transition temperature was recorded by differ-
ential scanning calorimetry (DSC) at a heating rate of 10 �C min�1

with a thermal analysis instrument (DSC 2910 modulated calo-
rimeter). Cyclic voltammetry measurements were performed on a
Princeton Applied Research potentiostat/galvanostat model 283
voltammetric analyzer in CH2Cl2 solutions (10�3 M) at a scan rate of
100 mV s�1 with a platinum plate as the working electrode, a silver
wire as the pseudo-reference electrode, and a platinumwire as the
counter electrode. The supporting electrolyte was tetrabuty-
lammonium hexafluorophosphate (0.1 M) and ferrocene was
Scheme 1. Synthetic
selected as the internal standard. The solutions were bubbled with
a constant argon flow for 10 min before measurements.

DFT calculations of TPCPZ were performed using the Gaussian
03 program package. The calculationwas optimized at the B3LYP/6-
31G(d) level of theory. The molecular orbitals were visualized using
Gaussview [45].

2.2. Synthesis of 2,4,6-tris(3-((9- phenyl)carbazol-3-yl)-phenyl)-
triazine(TPCPZ)

To a solution of 2,4,6-tris(3-bromophenyl)-triazine (TBrPZ)
(0.546 g, 1.0 mmol) and N-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolane-2-yl)-6H-carbazole (1.107 g, 3.0 mmol) in 20 mL
of toluene and 4 mL of ethanol was added 2 mL of 2.0 M aqueous
K2CO3 solution. The reaction mixture was then purged with ni-
trogen for 10 min before adding tetrakis(triphenylphosphine)
palladium(0) (0.055 g, 0.048 mmol). After refluxing for 24 h under
nitrogen, the resulting mixture was cooled to room temperature
and then poured into water and extracted with 60 mL (3 � 20 mL)
CH2Cl2. The combined organic phase was then washed with 20 mL
(2 � 10 mL) saturated aqueous NaCl solution and dried with
anhydrous Na2SO4. After removal of the solvent by rotary evapo-
ration, the residue was purified by silica gel column chromatog-
raphy to afford TPCPZ as a white solid. Yield: 0.60 g (58.08%).1H
NMR(300 MHz, CDCl3): d(ppm) 9.17 (s, 3H), 8.81e8.78 (d, 3H), 8.50
(s, 3H), 8.16e8.19 (d, 3H), 7.96e7.98(d, 3H), 7.80e7.83(m, 3H),
7.67e7.73 (t, 3H), 7.65e7.56 (m, 12H), 7.52e7.43 (m, 6H), 7.40e7.35
(m, 6H), 7.16e7.20 (m, 3H). 13C NMR (75 MHz, CDCl3)
d(ppm):109.50, 109.78, 118.67, 119.71, 120.03, 123.06, 123.62,
125.18, 125.80, 126.71, 126.97, 127.14, 127.39, 128.78, 129.54, 131.16,
132.68, 136.51, 137.29, 140.18, 141.02, 142.18, 171.57. MS (MALDI-
TOF) [m/z]: calcd for C75H48N6, 1033.22; found, 1033.48. Anal.
Calcd. for C75H48N6 (%): C, 87.18; H, 4.68; N 8.13. Found: C, 87.34; H,
4.72; N 8.38.

2.3. Device fabrication and performance measurements

The solution-processed single-layer device using TPCPZ as host
with a configuration ITO/PEDOT:PSS (40 nm)/TPCPZ: Ir(ppy)3
(90 wt%:10 wt%,100 nm)/Cs2CO3 (2 nm)/Al (120 nm) has been
fabricated by spin-coating. In a general procedure, indium-tin oxide
(ITO)-coated glass substrates were pre-cleaned carefully and
treated by UV ozone for 4 min. A 40 nm Poly(3,4-ethylenedioxythio
phene) doped with Poly(styrene-4-sulfonate)(PEDOT:PSS) aqueous
solutionwas spin coated onto the ITO substrate and baked at 210 �C
for 10 min. The substrates were then taken into a nitrogen glove
box, where Ir(ppy)3-doped TPCPZ layer was spin coated onto the
route of TPCPZ.
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Fig. 2. Normalized UVevis absorption (Abs, green curve), photoluminescence (PL, blue
curve) and phosphorescence (77 K) (PH, red curve) spectra of TPCPZ.
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PEDOT:PSS layer from 1,2-dichloroethane solution and annealed at
120 �C for 30 min. The substrate was then transferred into an
evaporation chamber, where the Cs2CO3/Al bilayer cathode was
evaporated at evaporation rates of 0.2 and 10�A/s for Cs2CO3 and Al,
respectively, under a pressure of 1 � 10�3 Pa. The current-voltage-
brightness characteristics of the device were characterized with
Keithley 4200 semiconductor characterization system. The elec-
troluminescent spectra were collected with a Photo Research
PR705 Spectrophotometer. All measurements of the devices were
carried out in ambient atmosphere without further encapsulations.

3. Results and discussion

3.1. Synthesis and characterization

Scheme 1 shows the synthetic routes and structure of the newly
synthesized TPCPZ. 2,4,6-tris(3-bromophenyl)-triazine (TBrPZ) was
synthesized according to the literature procedure4. N-phenyl-3-
(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)-6H-carbazole was
synthesized according to the literature procedure with carbazole as
start material [46]. Subsequently, Suzuki-cross coupling reaction of
TBrPZ with N-phenyl-3-(4, 4, 5,5-tetramethyl-1, 3, 2-dioxabor-
olane-2-yl)-6H-carbazole led to TPCPZ with a yield of 58.08%.
Finally, the product was purified by the silica column method and
recrystallization from n-hexane/CH2Cl2, yielding the very pure
white powders. 1H NMR, 13C NMR, matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF) mass spectrometry, and
elemental analysis were employed to confirm the chemical struc-
ture of TPCPZ in the experimental section.

3.2. Thermal properties of the host materials

The thermal properties TPCPZ were investigated by thermal
gravimetric analyses (TGA) and differential scanning calorimetry
(DSC) under nitrogen atmosphere at a heating rate of 10 �C min�1.
As shown in Fig.1, TGA measurement reveals its high thermal
decomposition temperature (Td), corresponding to 5% weight-loss
of 559 �C. The DSC trace exhibits a clear glass transition temper-
ature(Tg) of 165 �C during the second heating scans. The thermal
analysis results clearly demonstrate the very high thermal stability
of TPCPZ, which facilitates the forming of amorphous films through
solution processing.
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Fig. 1. TGA traces (blue curve) of TPCPZ recorded at a heating rate of 10 �C min�1, DSC
(red curve) measurement recorded at a heating rate of 10 �C min�1.
3.3. Optical properties of the host materials

Fig. 2 depicts the UVevis absorption and photoluminescence
(PL) spectra of TPCPZ in hexane. Four major absorption peaks locate
at 223, 252, 289, 335 nm in the absorption spectra, while the
emission peaks appear at 405 nm in the PL spectra. The absorption
peaks at 223, 252 nm can be attributed to the pep* and nep*
transitions of the central 2, 4,6-trisphenyl-triazine and outer N-
phenyl. The absorptionpeaks at 289nm, 335nmcanbe attributed to
the pep* and nep* transitions of the outer carbazole of TPCPZ.
From the absorption edge of the UVevis absorption, the optical
bandgap (Eg) of TPCPZ can be estimated to be 3.23 eV. The phos-
phorescence spectra measured from a frozen 2-methyltetrahy
drofuran matrix at 77 K are also shown in Fig. 2. The triplet en-
ergy of TPCPZwas determined to the value of 2.63 eV by the highest
energy 0e0 phosphorescent emission, which is sufficiency high
enough to serve as the appropriate host for Ir(ppy)3.
3.4. Electrochemical analysis and theoretical calculations of the
host material

The electrochemical properties TPCPZ were studied in solution
through cyclic voltammetry (CV) using tetrabutylammonium
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Fig. 3. Oxidation part of the CV curves of TPCPZ in CH2Cl2 solutions (10�3 M).



Fig. 4. Optimized geometries and calculated HOMO and LUMO density maps for TPCPZ according to DFT calculations at B3LYP/6-31* level.
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hexafluorophosphate (TBAPF6) as the supporting electrolyte and
ferrocene as the internal standard. The highest occupied molecular
orbital (HOMO) energy level of TPCPZ was characterized by the
electrochemical cyclic voltammetry (CV) (Fig.3). During the anodic
scan in CH2Cl2, TPCPZ exhibited reversible oxidation process, which
can be assigned to the oxidation of electron-donating carbazole
moiety, with the onset potential of 1.18 eV. No reduction wave was
detected. On the basis of the onset potential for oxidation, the
HOMO energy level was estimated to be �5.39 eV, the HOMO en-
ergy level approach the work function of PEDOT(�5.2 eV), which
allows in a low barrier of hole injection. The LUMO energy level of
TPCPZ estimated from the HOMO energy level and Eg is �2.16 eV,
whichmatches the LUMO energy level of Cs2CO3/Al bilayer cathode
(�2.2 eV), facilitates electrons injection.

DFT calculations were performed to understand the physical
properties of the TPCPZ at themo-Lecular level. As shown in Fig.4,
the outer layer N-phenyl carbazole units are significantly twisted
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driving voltage of 10 V.
with inner 2, 4,6-trisphenyl-triazine unit, resulting in a non-planar
structure in the molecule. These geometrical characteristics can
effectively prevent intermolecular interactions between systems
and thus suppress molecular recrystallization and limit the extent
of conjugation between the central core and branches, which im-
proves the morphological stability of thin film of TPCPZ. The LUMO
level of TPCPZ is localized predominantly on the 2, 4,6-trisphenyl-
triazine unit, while the HOMO level is distributed over the outer
layer N-phenyl carbazole fragments.

3.5. Electroluminescent properties

The single-layer green electrophosphorescent device with
TPCPZ as the host and Ir(ppy)3 as the dopant with the configura-
tion of ITO/PEDOT:PSS/TPCPZ:Ir(ppy)3/Cs2CO3/Al has been fabri-
cated by spin-coating. As shown in Fig.5, the electroluminescence
(EL) spectra of TPCPZ based device is identical with the CIE
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coordinates of (0.315, 0.605), corresponding to the emission of
Ir(ppy)3, and indicate the efficient energy transfer from the host to
Ir(ppy)3. The JeV characteristic curves of the device demonstrate
the turn-on voltage is only 3.5 V. On one hand, the low turn-on
voltage of TPCPZ based device is most likely due to their high-
lying HOMO energy level and low-lying LUMO energy level,
which matched with the HOMO energy level of
PEDOT:PSS(�5.35 eV) and the LUMO energy level of Cs2CO3/Al
bilayer cathode (�2.2 eV), thereby facilitated holes and electrons
injection of the device. On the other hand, the bipolar nature of
TPCPZ make it have good and balanced charge carrier transport
properties for the holeeelectron recombination process and
confinement of the exciton formation zone in the emissive layer.
As revealed in Fig. 5, the maximum LE value of this single-layer
green-emitting device was 20.8 cd A�1 and a maximum lumi-
nance was 18,000 cd m�2.

4. Conclusions

In summary, we have designed and synthesized a novel bipolar
solution-processable triazine-based host material. TPCPZ exhibits
high glass transition temperature and high thermal stability. Re-
sults from CV and computational calculations show that TPCPZ has
high-lying HOMO energy level and low-lying LUMO energy level.
The triplet energy of TPCPZ is 2.63 eV. Utilizing TPCPZ as host
material, highly efficient solution-processed single-layer green
PhOLED has been achieved with low turn-on voltage of 3.5 V, a
maximum current efficiency of 20.8 cd A�1 and a maximum
luminance of 18,000 cd m�2.
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