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Rhodium-Catalyzed Intramolecular Cascade Sequence for the 

Formation of Fused Carbazole-Annulated Medium-Sized Rings by 

Cleavage of C(sp
2
)−−−−H/C(sp

3
)−−−−H Bonds 

QiuyunLi,
a
Bin Li

a
 and Baiquan Wang*

abc

The rhodium(III)-catalyzed intramolecular annulation of alkyne-

tethered 3-(indol-3-yl)-3-oxopropanenitriles for the synthesis of 

fused carbazolescaffolds via C−−−−H activation has been developed. A 

series of six-, seven-, and eight-membered hydroazepino[3,2,1-

jk]carbazoles were achieved. This reaction proceeded under mild 

reaction conditions and with a broad substrates scope. The 

reaction involved sequential cleavage of C(sp
2
)−−−−H/C(sp

3
)−−−−H bonds 

and annulation with the tethered alkyne. 

The indole skeletons are found in many biologically active 

natural products and are useful moieties in functional 

materials and drug design.
1
 Among them, fused polycyclic 

indoles such as carbazoles, which are also the constituents of a 

large amount of important skeleton for many bioactive natural 

products, photorefractive materials, and organic dyes (Figure 

1).
2
 In addition, corresponding medium-sized-ring analogues 

are also the constituents of numerous natural products and 

pharmaceutical agents.
3
 This class of compounds possesses a 

functionalized medium-sized ring bridged to the N1- and C3-

positions of the carbazoles. Therefore, it is of great significance 

for the construction of these scaffolds. Few methods have 

been reported for the synthesis of azaheterocyclo[3,2,1-

jk]carbazoles (Scheme 1).
4
 So, the development of a general 

method for the rapid construction of their analogue library 

remains a challenge. 

Recent years have witnessed an explosive growth of 

synthetic transformations relying on transition-metal catalyzed 

C–H bond activation processes.
5
 Owning to its high efficiency, 

functional-group tolerance, and selectivity, rhodium(III) 

catalysis has emerged as a powerful tool in C–H activation in 

recent decades. Rh(III)-catalyzed C(sp
2
)−H activation with 
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Figure 1 Biologically active compounds containing carbazole or 1,2-fused 

indoline moieties. 
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Scheme 1 Synthesis of azaheterocyclo[3,2,1-jk]carbazoles. 

 

subsequent cross-coupling with alkynes or alkenes is a rapidly 

evolving research field. In 2010, Miura and Satoh,
6a

 Rovis,
6b

 

and Li
6c 

independently reported rhodium(III)-catalyzed 

oxidative C−H/N−H funcIonalizaIon of benzamides in the 

coupling with alkynes. In 2012, we reported the annulation of 

benzoylacetonitrile with internal alkynes to get substituted 

naphtho[1,8-bc]pyrans.
6x

 In 2016, we also reported Rh(III)-

catalyzed carbocyclization reactions of 3-(indolin-1-yl)-3-

oxopropanenitriles with alkynes and alkenes.
6q

 However, the 

intermolecular reactions showed low regioselectivity with 

unsymmetrical alkynes, especially for the unsymmetrical 

dialkylalkynes. Consequently, intramolecular reactions are 

highly attractive on account of regioselectivity, high efficiency, 

and versatility for fused heterocyclic compounds. The 

rhodium-catalyzed intramolecular C−H activation reactions 

also have been reported recent years,
7
 but most of them are 
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limited to Rh(III)-catalyzed C(sp
2
)−H activation with 

hydroarylation of alkene tethers, Rh(III)-catalyzed 

C(sp
2
)−H/C(sp

3
)−H activation of the intramolecular reactions 

with N-tethered alkene have never been reported. Based on 

the pioneering works (Scheme 2), we became interested in the 

Rh(III)-catalyzed intramolecular reaction of alkyne-tethered 

indol-3-yl-propanenitrile. Herein we report the rhodium-

catalyzed intramolecular annulation of alkynes via a C−H bond 

activation pathway to efficiently construct fused carbazoles 

(Scheme 2d). 
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Scheme 2 Rhodium-catalyzed activation and annulation. 

We initiated our studies by investigating the reaction of 

indole-derived propanenitrile (1a) as model substrate. When 

the reaction was performed in the presence of [Cp*RhCl2]2 (5 

mol %), CsOAc (0.4 mmol, 2 equiv), and Cu(OAc)2·H2O (0.4 

mmol, 2 equiv) in MeCN at 120 °C for 12 h under Ar 

atomosphere (entry 1, Table 1), to our delight, the desired 

product 2a was obtained in 50% isolated yield. Changing the 

solvent, oxidant, and temperature (entries 2−10), the yield was 

improved to 92% when DMF as the solvent and TEMPO as the 

oxidant in 100 °C (entry 9). Without catalyst no reaction was 

occurred (entry 11). In the absence of oxidant 2a was obtained 

in 21% yield (entry 12). Different catalysts were also tested 

(entries 13−16), [Cp*RhCl2]2 got the highest yield. 

With the optimal conditions in hand, we surveyed various 

substrates to determine the scope of the reaction. When n = 4, 

the reaction proceeded smoothly to give a series of fused 

carbazoles in moderate to excellent yields. Ignoring the 

substituted groups at the 4-, 5-, 6-, or 7-position, both the 

electron-donating and electron-withdrawing groups could 

proceed smoothly to afford the corresponding carbazoles in 

synthetically useful yields (Table 2, 2a−−−−n). The molecular 

structure of 2a was confirmed by its 
1
H and 

13
C NMR spectra, 

mass spectra, and single-crystal X-ray diffraction analysis 

(Figure 2). Then, the electronic effects of aryl groups attached 

to the alkyne were examined, which were all available for this 

intramolecular annulation reaction, affording the 

corresponding products in good yields (Table 2, 2o−−−−r). 2-

Naphthalene group could be accommodated in the reaction, 

giving product 2s in 67% yield. Compound 2t with an 

oxazepino-7-membered ring was also produced in 53% yield by 

this method. Satisfyingly, the intramolecular reaction could be 

extended to generate fused carbazoles 2u and 2v with 6- and 

8-membered rings in 89% and 44% yields, respectively. 

Table 1 Optimization of reaction conditions
a
 

N

HO CN

N

Ph

O
CN

4

1a 2a

Ph
[Cp*RhCl2]2 (5 mol %)

CsOAc (2 equiv)

additive, solvent, temp

 
Entry Solvent Oxidant T/°C Yield (%)

b
 

1 CH3CN Cu(OAc)2·H2O 120 50 

2 DMF Cu(OAc)2·H2O 120 55 

3 DCE Cu(OAc)2·H2O 120 trace 

4 t-AmOH Cu(OAc)2·H2O 120 47 

5 DMF Ag2CO3 120 15 

6 DMF AgOAc 120 18 

7 DMF DDQ 120 trace 

8 DMF DTBP 100 trace 

9 DMF TEMPO 100 92 

10 DMF TEMPO 80 85 

11
c
 DMF TEMPO 100 n.r. 

12 DMF - 100 21 

13
d
 DMF TEMPO 100 45 

14
e
 DMF TEMPO 100 43 

15
f
 DMF TEMPO 100 trace 

16
g
 DMF TEMPO 100 51 

a
Reaction conditions: 1a (0.2 mmol), [Cp*RhCl2]2 (5.0 mol %), CsOAc 

(0.4 mmol, 2.0 equiv), additive (0.4 mmol), solvent (1 mL), 100 °C, 

12 h. 
b
Isolated yield. 

c
Without [Cp*RhCl2]2, 

d
[Cp*IrCl2]2 (5.0 mol %), 

e
Cp*Rh(CH3CN)3(SbF6)2 (5.0 mol %), 

f
Cp*Co(CO)I2 (5.0 mol %), 

g
[(p-

cymene)RuCl2]2 (5.0 mol%). 

 
Figure 2 Molecular structure of 2a 
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Table 2 Rh(III)-catalyzed intramolecular cyclization to fused 

carbazoles
a
 

N

HO CN

R1 = H, 2a (92%)

4-Me, 2b (86%)

4-Cl, 2c (81%)

5-Me, 2d (88%)

5-OMe, 2e (81%)

5-F, 2f (85%)

5-Cl, 2g (77%)

5-Br, 2h (84%)

5-CO2Me, 2i (71%)

5-NO2, 2j (88%)

6-Me, 2k (92%)

6-Br, 2l (84%)

7-Me, 2m (83%)

7-Cl, 2n (80%)

R3 = F, 2o (88%)

Cl, 2p (70%)

Me, 2q (71%)

OMe, 2r (89%)

N

HO CN

R3

N

HO CN

2s (67%)

N

HO CN

O

2t (53%)

N

HO CN

2u (89%)

N

HO CN

2v (44%)b

N

HO

R2

CN

N

R2

O
CN

n
n-2

[Cp*RhCl2]2 (5 mol%)

CsOAc (2 equiv)
H

H

R1 R1

1 2

TEMPO (2 equiv)

DMF, 100 oC

R1

 
a
Reaction conditions: 1a (0.2 mmol), [Cp*RhCl2]2 (5.0 mol %), CsOAc 

(0.4 mmol, 2.0 equiv), TEMPO (0.4 mmol, 2.0 equiv), DMF, 100 °C, 

12 h, isolated yield.
b
Cp*Rh(CH3CN)3(SbF6)2 (5 mol%). 

 

Based on the literature work,
6f

 a possible mechanism for this 

rhodium-catalyzed cascade reaction is proposed as shown in 

Scheme 3. The first step is likely to be the acidic C(sp
3
)−H bond 

activation process affording intermediate 3, then C(sp
2
)−H bond 

activation through the CMD mechanism gives a five-membered 

rhodacycle 4. The coordination and insertion of the tethered alkyne 

leads to the six, seven or eight-membered rhodacycle intermediate 

5. After ketone enolization intermediate 6 is formed and undergoes 

reductive elimination to afford product 2a and Cp*Rh(I). Cp*Rh(I) is 

oxidized by TEMPO to afford Cp*Rh(OAc)2 for the next catalytic 

cycle.  

 

Scheme 3 Proposed mechanistic pathway of the annulation reaction 

Synthetic applications of this protocol have been demonstrated 

(Scheme 4). Fused carbazole 2a was synthesized in 89% yield on a 

gram scale even under reduced catalyst loading (Scheme 4, eqn (a)). 

Furthermore, the hydroxyl group of 2a can act as an efficient 

directing group for further rhodium(III)-catalyzed C−H 

functionalization at the 9-position of the fused carbazole derivatives. 

Reactions of 2a with ethyl acrylate and diphenylacetylene gave the 

corresponding olefination product 8 and fused carbazoles 10 in 38% 

and 87% yields, respectively (Scheme 4, eqn (b) and (c)). 

 

 

Scheme 4 Gram-scale synthesis and derivatization reactions of carbazole 

In summary, we have developed a mild and efficient method for 

the synthesis of fused carbazoles, based on a rhodium(III)-catalyzed 

C−H bond activation and subsequent intramolecular oxidative 

annulation of the tethered alkynes by cleavage of 

C(sp
2
)−H/C(sp

3
)−H bonds. This reaction has high selectivity and a 

broad substrate scope, contributing to the formation of heterocyclic 

scaffolds of utmost importance in agrochemistry or medicinal 

chemistry. Further applications of this method in the synthesis of 

other targets are in progress. 

The authors wish to thank the National Natural Science 

Foundation of China (No. 21672108, and 21421062) and the Natural 

Science Foundation of Tianjin (16JCZDJC31700) for financial support. 
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Rhodium-Catalyzed Intramolecular 

Cascade Sequence for the Formation 

of Fused Carbazole-annulated 

Medium-Sized Rings by Cleavage of 

C(sp2)−H/C(sp3)−H Bonds 

 

The rhodium(III)-catalyzed intramolecular annulation of alkyne-tethered 3-(indol-3-yl)-

3-oxopropanenitriles for the synthesis of fused carbazole scaffolds via C−H activation 

has been developed. A series of six-, seven-, and eight-membered hydroazepino[3,2,1-

jk]carbazoles were achieved.  
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