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Abstract A metal-free procedure for the hydrogenative reduction of
substituted N-heteroaromatics has been developed by using hydrosila-
nes as reducing agents. The optimized conditions were successfully ap-
plied to the reactions of quinolines, quinoxalines, and quinoline N-ox-
ides. They were also effective for the reduction of quinolines bearing
amino or hydroxy groups, where H, was evolved through dehydrogena-
tive silylation of the amine or hydroxy moieties. Preliminary mechanis-
tic studies revealed that the initial step in the catalytic cycle involves
1,4-addition of the hydrosilane to the quinoline to give a 1,4-dihydro-
quinoline; this is followed by (transfer) hydrogenation to deliver the tet-
rahydroquinoline as the final product.
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Dearomative catalytic reduction of N-heteroarenes is
among the most straightforward strategies applicable to a
variety of azacyclic compounds.! This transformation, how-
ever, is often ineffective due to the intrinsic features of the
N-aromatic unit: significant resonance stabilization and
strong basicity.? Among the obtainable dearomatized N-
heterocycle products, tetrahydroquinolines, accessible
through hydrogenation of quinolines, are of special interest
in the pharmaceutical and agricultural fields, and also in
the chemistry of dyes and ligands.? A handful of elegant cat-
alytic procedures for the optionally enantioselective hydro-
genation of quinoline derivatives are mainly based on pre-
cious metals such as rhodium or iridium and they frequent-
ly require harsh reaction conditions, high pressures, and/or
reactive additives (e.g., I,, HCO,H, or H,0).# As alternatives
to transition-metal catalysts, a few organocatalytic systems
have been documented for the reduction of quinolines with
H,.> For instance, Stephan and co-workers found that the
Lewis acidic borane B(C4F5); promotes (transfer) hydroge-
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nation of quinolines to give tetrahydroquinolines with H, or
i-Pr,NH as the reductant.® Although a B(C4F;);/H, catalytic
system offers an environmentally benign and atom-eco-
nomic route to saturated N-heterocycles, the high catalyst
loadings and/or limited substrate scope remain as problems
to be solved.

In this regard, we envisioned that the use of a hydrosi-
lane instead of H, as a reducing agent in the presence of
B(CgFs); catalyst might provide a sharper weapon for the re-
duction of quinoline derivatives. Although the B(CgFs);-cat-
alyzed reduction of optionally substituted 1H-indoles with
silanes to give a range of N-silylindolines has been previ-
ously reported,’*? no example of a hydrogenative reduction
of a six-membered N-heteroaromatic with the B(CgFs);/si-
lane catalytic system had been communicated until very re-
cently, when Wang and co-workers disclosed the B(CgF5);-
catalyzed reduction of pyridines and other N-hetarenes
with hydrosilanes and amines as reducing reagents.’” In a
related study, our group recently developed a B(CgF5);-pro-
moted silylative reduction of quinolines to give high yields
of tetrahydroquinoline products bearing sp3 C-Si bond(s) in
the position B to the nitrogen atom.® This reaction was
found to be subject to competitive side reaction(s), particu-
larly with quinoline substrates possessing alkyl or aryl sub-
stituents in the C-2 position. Crabtree and co-workers re-
ported a catalytic reduction of (iso)quinolines to tetrahy-
dro(iso)quinolines with PhSiH; in the presence of a cationic
Rh complex?® or with LiHBEt;'° as a catalyst.

The key to success in the present development was in
the choice of a suitable silane to avoid undesired side path-
ways, thereby improving both the scope of the reaction and
the performance of the catalyst. Here, we report the bo-
rane-catalyzed reduction of the N-aromatic ring of substi-
tuted quinoline derivatives with hydrosilanes (Scheme 1).
The present catalyst system is conveniently active, not only
for the direct reduction of 2-substituted quinolines, quinox-
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alines, or quinoline N-oxides, but also for the transfer hy-
drogenation of aminoquinolines and hydroxyquinolines
with H, generated in situ upon dehydrogenative silylation
of an amino or hydroxy group on the quinoline substrate.
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Scheme 1 B(CgFs);-catalyzed hydrogenative reduction of N-heteroarenes
with hydrosilanes

At the outset of this study, the optimal reaction condi-
tions were explored for the B(CgF;);-catalyzed reduction of
2-methylquinoline (1a) with various silanes (Table 1). The
reaction of 1a with Et,SiH, in the presence of B(CgFs); (5
mol%) proceeded smoothly at 65 °C during six hours to af-
ford 2-methyl-1,2,3,4-tetrahydroquinoline (2a) in 79% iso-
lated yield after silica-gel filtration (Table 1, entry 1). In-
creasing the catalyst loading to 10 mol% accelerated the
conversion, but gave a lower yield of 2a after 3 hours at
65 °C (entry 2). An investigation of the effects of various
solvents revealed that the use of chlorobenzene or toluene

Table 1 Screen of Reaction Conditions?

as solvent provided 2a in somewhat lower yields (58 and
68%, respectively; entries 3 and 4). Pleasingly, the reaction
of 1a with PhMe,SiH (3.5 or 5 equiv) took place efficiently
to furnish the tetrahydroquinoline product 2a in 75 and
66% yield, respectively (entries 5 and 6). A reaction with the
bulkier silane Et;SiH required a higher temperature to ob-
tain a satisfactory yield of 2a (entry 7). Less bulky silanes
such as Ph,SiH, and PhSiH; were reactive in the presence of
catalytic B(C4F5);, albeit affording 2a in moderate yields of
41 and 49%, respectively (entries 8 and 9).!" In all catalytic
runs shown in Table 1, except for entry 9, the corresponding
C-6 silylated tetrahydroquinolines 2a” were obtained as by-
products in 12-26% yields.

With the optimal conditions in hand [5 mol% of B(CgF5)s,
3.5-5 equiv of Et,SiH,], the scope of substrate reactivity was
next investigated (Scheme 2). Upon catalytic reduction, the
crude reaction mixture was initially treated with an ethere-
al solution of HCI, followed by a solution of Na,CO;-H,0 in
MeOH to neutralize the crude solution, eventually giving
rise to the corresponding NH form of reduction product.
Whereas 2-methylquinoline (1a) underwent the desired
hydrogenative reduction with Et,SiH, to give 2a in 76%
yield at 65 °C, the reductions of 2-phenylquinoline (1b) or
2-tolylquinoline (1c) were sluggish, requiring prolonged re-
action times of 24 hours to obtain satisfactory product
yields of 2b and 2c, respectively. Similarly, a double hydro-
genative reduction occurred in both N-aromatic units of
2,2'-biquinoline at 65 °C to produce the corresponding oc-
tahydro compound 2d as a single diastereomer in 53% yield.
Gratifyingly, the hydrogenative reduction of quinoxaline
with Et,SiH, proceeded smoothly at 25 °C to furnish 1,2,3,4-
tetrahydroquinoxaline (2e) in high yield. Likewise, the reac-
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.
ii) silica gel filtration [Si]

conversion = 100%
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Entry Silane (equiv) Solvent Temp (°C) Time (h) Yield® of 2a (%) Yield® of 2a'" (%)
1 Et,SiH, (3.5) cocl, 65 6 79 16
2 Et,SiH, (3.5) cocl, 65 3 60 14
3 EL,SiH, (3.5) CDCl 65 12 58 18
4 Et,SiH, (3.5) toluene-ds 65 12 68 26
5 PhMe,SiH (3.5) cocl, 65 12 75 21
6 PhMe,SiH (5.0) cocl, 65 6 66 21
7 Et,SiH (3.5) DCE-d, 85 12 77 16
8 Ph,SiH, (3.5) cocl, 65 12 M 12
9 PhsiH; (3.5) cocl, 25 2 49 <1

2 Reaction conditions: B(CgFs); (0.025-0.05 mmol), 1a (0.5 mmol), silane (1.75-2.5 mmol), solvent (0.5 mL).
b The conversions and yields of 2a and 2a' were determined by 'H NMR, with 1,1,2,2-tetrachloroethane as internal standard, after silica-gel filtration.

¢ B(CgFs); (10 mol%) was used.
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tion of a 2,3-disubstituted quinoxaline worked well at 65 °C
to give hydrogenated product 2f as the cis-diastereomer in
excellent yield. Interestingly, quinoline N-oxides 1g and 1h
turned out to be highly effective substrates, being convert-
ed into the desired tetrahydroquinoline products 2g and 2h
in high yields in the presence of catalytic B(C¢Fs);.

Next, we turned our attention to amino- or hydroxy-
substituted quinolines as other substrate types with which
transfer hydrogenation mediated by B(CgF5); might take
place upon dehydrogenative silylation of the amino or hy-
droxy groups (Scheme 3). Gratifyingly, quinolin-3-amine
(1i) reacted with Et,SiH, (5 equiv) in the presence of
B(CgF5); (10 mol%) to produce the desired hydrogenation
product 2i in 68% yield at 100 °C. Similarly, quinolin-5-
amine (1j) and quinolin-8-amine (1k) were also cleanly
converted into the corresponding tetrahydroquinolines 2j
and 2k in high yields with borane catalysis. Subsequently, a
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Scheme 2 Substrate scope of the B(C¢Fs);-catalyzed hydrogenative re-
duction of N-heteroaromatics. Reagents and conditions: B(CgFs); (0.025
mmol), 1a-h (0.5 mmol), Et,SiH, (1.75 mmol), CHCl; (0.6 mL), 25—

65 °C, 6-24 h, unless otherwise stated. ? 7 equivalents of the silane
were used. ® Isolated by column chromatography (silica gel) without
acidic or basic workup. ©5 equivalents of the silane were used. ¢Isolated
as the cis-diastereomer.
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Scheme 3 Substrate scope of the B(C¢Fs);-catalyzed transfer hydroge-
nation of amino- or hydroxy-substituted quinolines. Reagents and condi-
tions: B(CgFs); (0.025 mmol), 1i-p (0.5 mmol), Et,SiH, (1.75 mmol), CHCl;
(0.6 mL), 25-100 °C, 2-24 h. The crude reaction mixture was initially
treated with 0.25 N ethereal HCl, followed by sat. methanolic Na,CO5-H,0
to neutralize the reaction solution. Finally, the pure products from the
neutralized solution were isolated by column chromatography (silica
gel). 2 5 equivalents of the silane were used. ® 10 mol% of B(C¢Fs); was
used.

range of hydroxyquinolines were examined. The hydroxy
group of quinoline substrates reacted vigorously with
Et,SiH,; this was followed by hydrogenative reduction of
the N-aromatic ring at 85-100 °C to give the corresponding
tetrahydroquinoline products 2l-0 in 67-91% yield. Inter-
estingly, the reaction of 1p, an 8-hydroxyquinoline bearing
two iodo groups, proceeded at 25 °C to afford the tetrahy-
dro product 2p in 55% yield; in this case, C(sp?)-X bonds (X
=0, I) were tolerated.

To gain insights into the reaction details, preliminary
mechanistic studies were conducted. Initially, a less reac-
tive substrate 1b was subjected to the reaction conditions
using 1.1 equivalent of PhMe,SiH (Scheme 4). As a result,
the 1,4-dihydro product 1b" was obtained as a single prod-
uct in 89% yield after two hours at 65 °C,2 but no 1,2-addi-
tion product was detected at all. Heating the solution at
100 °C with additional B(CgFs); (10 mol%) together with
PhMe,SiH (2 equiv) gave the desired product 2b’ as well as
the C-6 silylated tetrahydroquinoline 2b” in 83% combined
yield (2b’/2b" = 70:30) (Scheme 4, a). This result indicates
that (i) the current reduction proceeds by an initial 1,4-ad-
dition pathway, (ii) dehydrogenative silylation at the C-6
position can occur competitively,’? and (iii) most of the hy-
drogen required for the conversion of 1b’ into 2b’ is gener-
ated during the dehydrogenative silylation at the C-6 posi-
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Scheme 4 Preliminary mechanistic studies. Catalytic formation of the 1,4-product 1b’, followed by addition of B(C¢Fs); and PhMe,SiH (a) or H, (1 atm)
(b). 2 The yield was determined by 'H NMR with 1,1,2,2-tetrachloroethane as the internal standard. ® The crude solution of 1b’ was degassed by freeze-

pump-thaw cycling before H, was introduced into the reactor.

tion.!? Similarly, exposing a solution of intermediate 1b’ to
an H, atmosphere (1 atm) at 100 °C in the presence of
B(CgF5); (5 mol%) gave a mixture of 2b’ and 2b" in 50% com-
bined yield (2b"/2b” = 70:30), together with ~50% of the
starting material 1b (Scheme 4, b). These results strongly
suggest that H, generated in situ is the reductant involved
in the conversion of 1b’ into the tetrahydroquinoline prod-
ucts 2b’ and 2b", and that the conversion of 1b into 1b’ is
reversible, as evidenced by the formation of 1b upon heat-
ing a solution containing 1b" at 100 °C for one hour.

In summary, we have developed the borane-catalyzed
reduction of substituted N-heteroaromatics with hydrosila-
nes, providing dearomatized azacyclic compounds. The use
of a hydrosilane as the reductant offers a convenient proce-
dure with a broad substrate scope that includes quinolines,
quinoxalines, and quinoline N-oxides within the B(CgF5);
catalyst system. Moreover, amino- or hydroxy-substituted
quinolines were also reduced to the corresponding tetrahy-
droquinolines in one pot with good to excellent yields. Pre-
liminary mechanistic studies suggested a stepwise reduc-
tion sequence involving 1,4-hydrosilylation followed by re-
duction of the enamine intermediate with the H, generated
in situ during the catalytic turnover.
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