ChemComm

COMMUNICATION

Cite this: Chem. Commun., 2014, 50 5270

Received 26th September 2013, Accepted 27th November 2013

DOI: 10.1039/c3cc47372d

www.rsc.org/chemcomm

In the presence of $B(C_6F_5)_3$ five-membered heteroarenes undergo dehydrosilylation and hydrosilylation with silanes. The former, favoured on addition of a weak base, produces H₂ as a by-product making the process catalytic in B(C₆F₅)₃ but also enabling competitive heteroarene hydrogenation.

The activation of H₂ and silanes by boron Lewis acids and a nucleophile is developing into a powerful metal-free approach to hydrogenate, hydrosilylate and dehydrosilylate a range of substrates.^{1,2} $B(C_6F_5)_3$, and its derivatives, are the Lewis acids of choice combining considerable electrophilicity with sufficient bulk to 'frustrate' Lewis adduct formation.² B(C₆F₅)₃ activates R₃Si-H via species I (Scheme 1),³ with subsequent transfer of R_3Si^+ to a nucleophile.⁴ To date the combination of I with a nucleophile forms products from either hydrosilylation (e.g., with ketones) or dehydrosilylation (e.g., with alcohols).4 However, with substrates such as heteroarenes and heteroatom substituted alkenes these outcomes are not necessarily mutually exclusive. Indeed, Oestreich et al., have shown that both the hydrosilylation and the dehydrosilylation of enolizable carbonyl compounds is possible with a related silicon cation.^{5,6} Furthermore, the generation of H₂ from dehydrosilylation permits frustrated Lewis pair

Scheme 1 Dehydro-/hydro-silylation and hydrogenation with B(C₆F₅)₃

E-mail: Michael.ingleson@manchester.ac.uk

 $E = NR_2, SR$

† Electronic supplementary information (ESI) available: Experimental procedures and characterisation. See DOI: 10.1039/c3cc47372d

(FLP) mediated hydrogenation as an additional, potentially competitive, reaction pathway (Scheme 1, bottom).²

E-H (E = R_3Si or H) bond activation by $B(C_6F_5)_3$ and heteroarenes; competitive dehydrosilylation,

Liam D. Curless, Ewan R. Clark, Jay J. Dunsford and Michael J. Ingleson*

hydrosilylation and hydrogenation[†]

We were interested in determining how I reacts with nucleophilic heteroarenes, particularly as related silicon cations have been recently demonstrated to exclusively dehydrosilylate arenes.⁷⁻⁹ Whilst B(C₆F₅)₃ reacts with highly nucleophilic arenes such as N-alkyl-indoles, this occurs only extremely slowly.¹⁰ As many heteroarenes actually have lower nucleophilicities than R₃SiH¹¹ compound I will form in their presence. Nucleophilic attack on I by a heteroarene will initially generate $[R_3Si-arenium][HB(C_6F_5)_3]$, **II**, with multiple outcomes then possible. Herein we report a study into these competing pathways which include: (i) dehydrosilylation by the direct reaction of $[HB(C_6F_5)_3]^-$ with arenium cation II (Scheme 2, left), or by base catalysis where a Lewis base deprotonates the arenium cation II before dehydrocoupling with $[HB(C_6F_5)_3]^-$ (Scheme 2, right).² (ii) Hydrosilylation by hydride transfer from $[HB(C_6F_5)_3]^-$ to $[R_3Si-arenium]^+$ (Scheme 2, red), and (iii) hydrogenation. These processes are all catalytic in $B(C_6F_5)_3$, but turnover is limited by competing deactivation pathways that have also been elucidated.

Studies commenced with 2-methylthiophene (2-MT) and Ph₃SiH. 2-MT is less nucleophilic than Ph₃SiH and does not react with $B(C_6F_5)_3$. The combination of equimolar Ph_3SiH , $B(C_6F_5)_3$ and 2-MT produced 2-Me-5-(Ph₃Si)-thiophene, 2 (Table 1, entry 1). However, aliphatic 2-MT derived species were

I

R₃Si

--B(C₆F₅)₃

View Article Online

B(C₆F₅)₃

R₃Si

II

R₂Si

[BaseH][HB(C₆F₅)₃]

H-H

School of Chemistry, University of Manchester, Manchester, M13 9PL, UK.

Table 1 Stoichiometric and catalytic electrophilic silylation of 2-MT

1 + E (;	Ph ₃ SiH 8(C ₆ F ₅) ₃ x mol %)	+ 1 (5 -	Base (x mol %) CH ₂ Cl ₂) ► Ph₃Si∽	Y = SiPh ₃	or H Y ۲۰٫ ^{- ۶-} S	Ĺ
Entry	Base	$B(C_6F_5)_3/base$	(mol%)	Time (h)	Temp. (°C)	2^{a} (%)	3 ^{<i>a</i>} (%)
1	_	100/0		42	20	34	31
2	^t Bu ₂ -py	100/100		72	20	39	10
3	Cl ₂ -py	100/100		24	20	51	33
4	Cl ₂ -py	20/20		24	60	56	34
5	Cl ₂ -py	5/5		24	60	42	18
6	Cl ₂ -py	5/100		36	60	51	27
7^b	Cl_2 -py	5/5		24	60	46	32
8 ^c	Cl_2 -py	100/100		24	60	0	0

^{*a*} Yields based on conversion of 2-MT by ¹H NMR spectroscopy, remaining material is 2-MT. ^{*b*} With 1.5 equivalents of Ph₃SiH. ^{*c*} In the presence of 1 eq. of tetrahydrothiophene.

observed and unreacted 2-MT remained despite consumption of all Ph_3SiH , indicating a non-stoichiometric reaction. $B(C_6F_5)_3$ remained the dominant borane species (by ¹¹B and ¹⁹F NMR spectroscopy), therefore an additional 4 equivalents of Ph_3SiH and 2-MT were added. This produced further equivalents of 2 indicating a catalytic process. Throughout, the aliphatic region of the ¹H NMR spectrum was complex but contained three doublets corresponding to three 2-Me groups (collectively termed 3) each representing a different substituted tetrahydrothiophene derived from hydrosilylation.¹² At no point were vinylic resonances of substituted dihydrothiophene intermediates observed.

The ability of base to increase the proportion of 2 formed by facilitating the deprotonation of the arenium cation was next investigated. Addition of 2,6-ditertbutylpyridine (^tBu₂-py, entry 2) increased the ratio of 2 relative to 3. However, to be catalytic the resultant $[H(amine)][HB(C_6F_5)_3]$ has to evolve H₂, a reaction requiring a weakly nucleophilic amine to be energetically favoured.² This precludes ^tBu₂-py and 2,6-lutidine, the latter the optimal base in stoichiometric Sila-Friedel-Crafts reactions.9 As the steric bulk of the base strongly affects the barrier to deprotonation of silylated arenium cations isosteric bases to 2,6-lutidine were explored.8,9 Using 2,6-dichloropyridine (Cl_2-py) as a suitably weak base, the amount of 2 produced (relative to 3) increased (entry 3). Replacing CH₂Cl₂ with benzene resulted in no silvlation (24 h, 20 °C). In contrast, the silvlation of carbonyl moieties with B(C₆F₅)₃/R₃SiH is more rapid in non-polar solvents than in CH₂Cl₂ which obviated ionic intermediates.^{3a} The necessity for polar solvents for heteroarene silvlation implies the formation of unobserved ionic species, for example II (Scheme 1). The silvlation of 2-MT with various silanes using $B(C_6F_5)_3/Cl_2$ -py was also explored, but Ph_3SiH produced the highest amount of 2 relative to 3, with less dehydrosilvlation observed on decreasing silane steric bulk.12

Catalytic loadings of $B(C_6F_5)_3/Cl_2$ -py required heating for reasonable reaction times (entries 4 and 5) and led to similar ratios of 2:3. Attempts with excess Cl_2 -py did not significantly improve the selectivity for 2 (entry 6). Full consumption of 2-MT was not achieved even at longer times and using 1.5 eq. of Ph₃SiH (entry 5 vs. 7), suggesting catalyst deactivation. During catalysis one new boron containing species gradually increased in intensity (by ¹¹B NMR spectroscopy where one new resonance moved progressively upfield to a limiting δ -5 ppm). We surmised that aliphatic sulfides, 3, were forming $R_2S \rightarrow B(C_6F_5)_3$ species retarding the catalysis. Indeed, equimolar tetrahydrothiophene and $B(C_6F_5)_3$ produced ^{11}B and ^{19}F NMR spectra comparable to those at the end of the catalytic runs. 12 Importantly, this mixture was inactive in silvlation (entry 8), thus 3 may be an effective catalyst poison.

It was noteworthy that the overall conversion in reactions with Cl₂-py (e.g., entries 3 and 4) would be greater than 100% based on Ph₃SiH if all the 2-MT derived aliphatic products were from the double hydrosilylation of 2-MT. As H2 is the by-product from dehydrosilvlation this results in competitive hydrogenation thus products from; (i) hydrosilvlation and hydrogenation of 2-MT and (ii) the hydrogenation of 2-MT to 2-methyl-tetrahydrothiophene (2-Me-THT) dominate.¹² Related alkene and heteroarene hydrogenation by FLPs has been reported.^{13,14} To determine what components in the reaction mixture are activating H_2 equimolar $B(C_6F_5)_3/2$ -MT was placed under D₂ (4 atm.) in the absence of Cl₂-py. At 20 °C no reduction occurred but deuterium incorporation into the alpha position of 2-MT was observed indicating reversible activation of dihydrogen. On heating to 60 °C aliphatic resonances were now also observed in the ²H NMR spectrum indicating 2-MT reduction to partially deuterated isotopomers of 2-Me-THT (eqn (1)).¹² B(C₆F₅)₃/2-MT is a rare example of a FLP in which an aromatic carbon nucleophile (2-MT) is activating dihydrogen.14,15 The reduction of 2-MT with $B(C_6F_5)_3$ in the presence of Cl_2 -py was more facile, with 66%

conversion of 2-MT to 2-Me-THT at only 20 °C (16 h, 4 atm. H₂, eqn (2)) indicating that Cl_2 -py/B(C₆F₅)₃ is more effective for 2-MT hydrogenation, analogous to the high reduction activity of FLPs with other weak bases.¹⁶ Complete reduction of 2-MT at 20 °C is retarded by coordination of 2-Me-THT to B(C₆F₅)₃.¹² The necessity for Cl_2 -py for 2-MT reduction at 20 °C is consistent with the complete absence of 2-Me-THT in base free reactions (Table 1, entry 1, by NMR spectroscopy).¹² As previous reactions were performed in a closed system the H₂ concentration increases as dehydrosilylation proceeds enabling competitive hydrogenation. Silylation with B(C₆F₅)₃/Cl₂-py performed in a tube sealed under vacuum (to minimise build up of dissolved H₂) produced no 2-Me-THT, but whilst there was a relative increase in 2, aliphatic species (from hydrosilylation) were still present.¹²

$$\begin{array}{c} CI_{2}-py + H_{2} \\ + \\ B(C_{6}F_{5})_{3} - H_{2} \end{array} \xrightarrow{CI \ N \ CI} H_{1} \\ HB(C_{6}F_{5})_{3} \end{array} \xrightarrow{FH_{2}} CI \xrightarrow{FH_{$$

The product distribution in the silylation of other heteroarenes using $Ph_3SiH/B(C_6F_5)_3/Cl_2$ -py was also explored. Thiophene, 2,2'-bithiophene and thieno-[3,2,*b*]-thiophene all resulted in no reaction at 20 °C presumably due to reduced arene nucleophilicity relative to 2-MT. 2-^{*t*}Bu-thiophene, 2-BT, was amenable to stoichiometric and catalytic electrophilic silylation which occurs with

Table 2 Electrophilic functionalisation of select heteroarenes

$1 \bigvee_{E}^{+} \xrightarrow{K \text{ mol } \%}_{H_{2}^{-}\text{ py } +} \xrightarrow{1 \text{ Ph}_{3}\text{SiH or}}_{H_{2}^{-}\text{CH}_{2}\text{Cl}_{2}} \xrightarrow{H_{3}\text{Si}}_{H_{3}^{-}\text{Si}} \xrightarrow{Y = \text{SiPh}_{3} \text{ or } H_{Y}}_{E}$									
	E = S or N-TIP	s	Sila-FC Reduced (Red.)						
Entry	Substrate	Y-H	$\begin{array}{c} B(C_6F_5)_3\\ Cl_2\text{-}py\\ (mol\%) \end{array}$	/ t (h)	T (°C)	Sila-FC ^a (%)	Red ^a (%)		
1	2-BT	Si-H	100/100	18	20	54	32		
3	N-TIPS pyrrole	Si-H Si-H	5/5 100/100	24 48	60 20	70 42	45		
4 5	<i>N</i> -TIPS-indole <i>N</i> -TIPS-indole	Si–H H–H	100/100 100/100	24 16	20 20	59 —	19^b 80^b		
6 7	2-BT <i>N</i> -TIPS-indole	H–H Si–H	100/100 100/0	24 24	20 20		80^c 21^b		
8 9	<i>N</i> -TIPS-indole <i>N</i> -TIPS-indole	H–H H–H	100/0 100/0	24 24 + 24	20 20 + 60	_	16^b 35^b		

^{*a*} Conversion by consumption of the substrate and growth of products as determined by ¹H NMR spectroscopy, unreacted starting material also present. ^{*b*} Combined conversion to the indoline and protonated indoline. ^{*c*} Acid induced ^{*l*}Bu migration results in multiple reduction products.

concomitant hydrogenation (Table 2, entries 1 and 2). Electrophilic silvlation *via* I could be extended to 5-membered N-heterocycles. Whilst *N*-TIPS protected pyrrole and indole were amenable to silvlation, hydrogenation was again competitive (entries 3 and 4), although no hydrosilvlation was observed in either case. Hydrogenation products were confirmed by independent reduction under 4 atm. H₂ (*e.g.*, entry 5). Catalytic (in B(C₆F₅)₃) reductions were limited as (i) the hydrogenation of *N*-TIPS-indole produces a better Brønsted base, *N*-TIPS-indoline, that cleaves H₂ with B(C₆F₅)₃ to form [*N*-H-*N*-TIPS-indolinium][HB(C₆F₅)₃] thus sequestering B(C₆F₅)₃ and preventing turnover, (ii) the catalytic hydrogenation of ^{*t*}Bu-tetrahydrothiophene to B(C₆F₅)₃ (entry 6).¹²

The dehydrosilylation of *N*-TIPS-indole without Cl_2 -py led to increased proportions of the reduction product, *N*-TIPS-indoline, (entry 7 vs. 4) analogous to 2-MT reactivity. Furthermore, in the absence of Cl_2 -py the FLP hydrogenation of *N*-TIPS-indole with $B(C_6F_5)_3$ also proceeds confirming that *N*-TIPS indole is also a viable carbon nucleophile for FLP H₂ activation (entries 8 and 9).¹² It is noteworthy that there is less reduction of *N*-TIPS-indole at 20 °C under H₂ than there is during silylation (entry 7 vs. 8) thus another reduction mechanism must be operating in silylation. Reduction presumably proceeds by silylation of *N*-TIPS-indole followed by

 $(HB(C_{6}F_{5})_{3}]^{T}$ $(HB(C_{6}F_{5})_{3}]^{T}$

Scheme 3 Reduction of N-TIPS-indole by competing mechanisms.

proton transfer to another molecule of *N*-TIPS-indole, as observed in electrophilic borylations,¹⁷ and finally reduction to *N*-TIPS-indoline by hydride transfer (Scheme 3).

In conclusion, $R_3Si-H-B(C_6F_5)_3$, **I**, still forms in the presence of activated heteroarenes, which for the first time are shown to be viable nucleophiles towards **I**. Catalytic silylation pathways are demonstrated, but the competitive activation of Si-H and H-H bonds by boron Lewis acids/weak nucleophiles leads to multiple products. Furthermore, the formation of aliphatic R_2S species from thiophene hydrosilylation/hydrogenation inhibits catalyst turnover by coordination to $B(C_6F_5)_3$. Finally, the hydrogenation of both 2-MT and *N*-TIPS-indole with only $B(C_6F_5)_3/H_2$ confirms both these heteroarenes are carbon nucleophiles capable of activating H_2 in a FLP. This suggests that many other arenes will be viable as carbon nucleophiles for H_2 cleavage in a FLP.

We thank the Royal Society (M. J. I.), the Leverhulme Trust (E. R. C), the European Research Council under FP7 (J. J. D.) and the University of Manchester (L. D. C.) for support.

Notes and references

- 1 W. E. Piers, A. J. V. Marwitz and L. G. Mercier, *Inorg. Chem.*, 2011, 50, 12252.
- 2 G. Erker and D. W. Stephan, *Frustrated Lewis Pairs, Uncovering and Understanding*, Springer-Verlag, Berlin, 2013.
- 3 (a) D. J. Parks and W. E. Piers, *J. Am. Chem. Soc.*, 1996, **118**, 9440; (b) D. J. Parks, J. M. Blackwell and W. E. Piers, *J. Org. Chem.*, 2000, **65**, 3090.
- 4 For select examples with O nucleophiles: (a) J. M. Blackwell, K. L. Foster, V. H. Beck and W. E. Piers, J. Org. Chem., 1999, 64, 4887; (b) S. Rubinsztajin and J. A. Cella, Macromolecules, 2005, 38, 1061. N nucleophiles: (c) J. M. Blackwell, E. R. Sonmor, T. Scoccitti and W. E. Piers, Org. Lett., 2000, 2, 3921. S nucleophiles: (d) D. J. Harrison, D. R. Edwards, R. McDonald and L. Rosenberg, Dalton Trans., 2008, 3401. For alkene silylation: (e) M. Rubin, T. Schwier and V. Gevorgyan, J. Org. Chem., 2002, 67, 1936; (f) S. Chandrasekhar, G. Chandrashekar, M. S. Reddy and P. Srihari, Org. Biomol. Chem., 2006, 4, 1650; (g) A. Simonneau and M. Oestreich, Angew. Chem., Int. Ed., 2013, 52, 11905.
- 5 C. D. F. Koenigs, H. F. T. Klare, Y. Ohki, K. Tatsumi and M. Oestreich, Org. Lett., 2012, 14, 2842.
- 6 Whilst this work was under review the mechanistic complexity of imine hydrosilylation with I was reported. J. Hermeke, M. Mewald and M. Oestreich, *J. Am. Chem. Soc.*, 2013, **135**, 17537.
- 7 H. F. T. Klare, M. Oestreich, J. Ito, H. Nishiyama, Y. Ohki and K. Tatsumi, *J. Am. Chem. Soc.*, 2011, **133**, 3312.
- 8 R. K. Schmidt, K. Muether, C. Mueck-Lichtenfeld, S. Grimme and M. Oestreich, J. Am. Chem. Soc., 2012, 134, 4421.
- 9 S. Furukawa, J. Kobayashi and T. Kawashima, J. Am. Chem. Soc., 2009, 131, 14192.
- 10 F. Focante, P. Mercandelli, A. Sironi and L. Resconi, *Coord. Chem. Rev.*, 2006, **250**, 170.
- 11 For relative nucleophilicities see: (a) M. Horn, L. H. Schappele, G. Lang-Wittowski, H. Mayr and A. R. Ofial, *Chem.-Eur. J.*, 2013, **19**, 249; (b) H. Mayr, B. Kempf and A. R. Ofial, *Acc. Chem. Res.*, 2003, **36**, 66.
 12 See ESI⁺.
- 13 L. Greb, P. Ona-Burgos, B. Schirmer, S. Grimme, D. W. Stephan and J. Paradies, *Angew. Chem., Int. Ed.*, 2012, **51**, 10164.
- 14 T. Mahdi, Z. M. Heiden, S. Grimme and D. W. Stephan, *J. Am. Chem. Soc.*, 2012, **134**, 4088.
- (a) M. P. Boone and D. W. Stephan, J. Am. Chem. Soc., 2013, 135, 8508;
 (b) E. R. Clark and M. J. Ingleson, Organometallics, 2013, 32, 6712, DOI: 10.1021/om400463r.
- (a) Y. Segawa and D. W. Stephan, *Chem. Commun.*, 2012, 48, 11963;
 (b) L. J. Hounjet, C. Bannworth, C. N. Garon, C. B. Caputo, S. Grimme and D. W. Stephan, *Angew. Chem., Int. Ed.*, 2013, 52, 7492.
- 17 V. Bagutski, A. Del Grosso, J. A. Carrillo, I. A. Cade, M. D. Helm, J. R. Lawson, P. J. Singleton, S. A. Solomon, T. Marcelli and M. J. Ingleson, *J. Am. Chem. Soc.*, 2013, 135, 474.