Rives, ibid., 13, 771 (1970).

- (9) C. T. Bahner, D. H. Brotherton, M. K. Brotherton, H. Harmon, N. H. Bingham, L. M. Rives, and S. L. Watson, Jr., *ibid.*, 13, 1240 (1970).
- (10) H. R. Gutmann, D. S. Leaf, Y. Yost, R. E. Rydell, and C. C. Chen, *Cancer Res.*, 30, 1485 (1970).
- (11) Z. Arnold, Collect. Czech. Chem. Commun., 30, 2783 (1965).
- (12) R. D. Haworth and D. Woodcock, J. Chem. Soc., 95 (1947).
- (13) A. Haddow, R. J. C. Harris, G. A. R. Kon, F. R. S. Roe, and
- E. M. F. Roe, Phil. Tran. Roy. Soc., London, 241, 147 (1948).
 (14) V. G. Kresze, H. Heskel, and H. Goetz, Justus Liebigs Ann. Chem., 674, 18 (1964).
- (15) D. A. Shirley, "Preparation of Organic Intermediates," Wiley, New York, N. Y., 1951, p 22.
- (16) C. T. Bahner, et al., J. Med. Chem., 13, 1240 (1970).
- (17) R. H. Poirier, et al., J. Org. Chem., 26, 4275 (1961).

N-Alkylaminocarbazoles as Potential Anticonvulsant and Diuretic Agents[†]

Aboo Shoeb, Falak Anwer, Randhir S. Kapil,* Satya P. Popli,

Division of Medicinal Chemistry

Prithvi R. Dua, and Bhola N. Dhawan

Division of Pharmacology, Central Drug Research Institute, Lucknow, India. Received July 12, 1972

Carbazoles, in view of incorporating an indole nucleus in their structure and their close structural resemblance to phenothiazine, have been attracting increasing attention as pharmacodynamic agents.¹⁻⁵

The present communication describes the synthesis and biological evaluation of *N*-alkylaminocarbazoles, tetrahydrocarbazoles, and those in which one of the phenyl rings has been enlarged to a seven-membered ring system.

Chemistry. The desired intermediate biphenyls were readily obtained by condensing the appropriate 2-bromonitrobenzene with the corresponding iodobenzene under Ullmann's conditions⁶ and the products were purified by silica gel column chromatography.

The biphenyls were cyclized by refluxing with triethyl phosphite⁷ to give the desired carbazoles. In cases where more than one product was expected, column chromatography in conjunction with tlc and nmr techniques was employed for isolation and characterization of the different isomers.

The synthesis of halogen-substituted tetrahydrocarbazoles and 6,7,8,9-10H-cyclohept [b] indoles was carried out by a Japp-Klingemann reaction on hydroxymethylcyclohexanone or -heptanone with aryldiazonium chloride followed by cyclization and Huang-Minlon reduction. The tetrahydrocarbazoles in turn were aromatized to carbazoles with chloranil. The corresponding N-alkylated compounds were obtained by reaction with the appropriate *tert*-aminoalkyl halides in the presence of NaH.

Biological Activity. CNS Activity. Acute toxicity, gross observational effects, and ability of the compounds to modify electroshock (SMES, 48 mA \times 0.2 sec), pentylenetetrazole (80 mg/kg sc), and strychnine (1.5 mg/kg ip) induced seizures⁸ were studied in male mice at the 0.2 ALD₅₀ dose level. The end point employed in the SMES test was the abolition specifically of the hind limb tonic-extensor component of maximal seizure, while for the pentylene-

	Diuretic activity. b	% urinary output at 0.25 ALD ₅₀ Remarks	86 Depressant,	diuretic		81 Diuretic	81 Duretic 54 Diuretic						r	<i>u</i>	2
	SMES test, % protection at	0.1 ALD ₅₀ , mg/kg ip									20	20	20	20	20
	SMES test,	0.2 ALD ₅₀ , mg/kg ip	90 0		~	~	00	000	0000		1000000 1000000	000 100 100	000000	00000	
ç		Gross effects at 0.2 ALD ₅₀	<i>•</i>		c	>	0	000	000	0000	00000	00000	>	>>>>>	>000000 →→0
²-∝` >		ALD ₅₀ , ^f mg/kg ip	100		300	222	100	150	100 150 100	100 100 100	100 100 300 300	100 1150 300 300	100 150 100 300 150	100 100 100 100 100 100 100	100 150 100 100 100 100 200 200
		Formula ^a	C16H21FN2 C2H2O4		C. H. FN. C.H.O.		C18H23FN2 C2H204	C ₁₃ H ₂₃ FN ₂ · C ₂ H ₂ O ₄ C ₁₇ H ₂₃ FN ₂ · C ₂ H ₂ O ₄	C18H23FN2 C2H204 C18H23FN2 C2H204 C17H23FN2 C2H204 C18H25CIN2 C2H204	C18H3FN3 C2H2O4 C18H3FN3 C2H2O4 C17H3FN3 C2H2O4 C18H25CN3 C2H2O4 C18H25CN3 C2H2O4 C18H23CN3 C2H2O4	C18425713 C244204 C18423713 C244204 C174425715 C244504 C1844257113 C244504 C1844257113 C244504 C184237113 C244504	C1842571, C2H2O2 C1842571, C2H2O2 C17H2571N, C2H2O4 C18H25C1N2 C2H2O4 C18H25C1N2 C2H2O4 C18H25C1N2 C2H2O4 C17H22C1N2 C2H2O4	C1,81-25 N 2, C, H, O, C, I, H, 2, F N, C, H, O, C, I, H, 2, C, H, O, C, I, H, 2, C, N, 2, C, H, O, C, I, H, 2, C(N, 2, C, H, O, C, H, 2, C(N, 2, C, H, 2, O, C, H, 2, C(N, 2, C, H, 2, O, C, H, 2, H, H, 2, H, H, 2, H, H, 2, H,	C18H35FN2 C5H204 C18H35FN2 C5H204 C17H35FN3 C5H204 C18H35CN2 C2H204 C18H35CN2 C3H204 C18H35CN2 C3H304 C17H23CN2 C2H304 C17H23CN2 C3H304	C18H35FN12 (C,H204 C1,H33FN2 (C,H204 C1,H23FN2 (C,H204 C1,H23CN2 (C,H204 C1,H23CN2 (C,H204 C1,H23CN2 (C,H204 C1,H23CN2 (C,H204 C1,H23CN2 (C,H204 C1,H23CN2 (C,H204
		Mp, °C	205		154-155	>>+ · >Y	192	192 141-142	192 141-142 140-141	192 192 141-142 140-141 170-171	192 141-142 140-141 170-171 191-192	192 141-142 140-141 170-171 191-192	192 141-142 140-141 170-171 191-192 136	192 141-142 140-141 170-171 191-192 136 220	192 141-142 140-141 170-171 191-192 136 220 220
		R2	(CH ₂) ₂ N(CH ₃) ₂		(CH ₂),N(C ₂ H ₂),		(CH ₂) ₂ NC ₄ H ₈	$(CH_2)_2NC_4H_8$ (CH ₂) ₃ N(CH ₃) ₂	(CH ₂) ₂ NC ₄ H ₈ (CH ₂) ₃ N(CH ₃) ₂ (CH ₂) ₃ N(C,H ₄) ₂	(CH2),NC4H8 (CH2),NC4H8 (CH2),N(CH3),2 (CH2),N(C2H5),2 (CH2),NC4H8	(CH2)2NC4H8 (CH2)2NC4H8 (CH2)3N(C4H3)2 (CH2)2N(C2H5)2 (CH2)2NC4H8 (CH2)2NC4H8 (CH2)3N(CH3)2	$(CH_2)_{2NC,HS}$ $(CH_2)_{2NC,HS}$ $(CH_2)_{3NC,HS}$ $(CH_2)_{3NC,HS}$ $(CH_2)_{2NC,HS}$ $(CH_2)_{3NC,HS}$	$(CH_2)_{2}NC_{4}H_{5}$ $(CH_2)_{3}NC_{4}H_{5}$ $(CH_2)_{3}N(CH_{3})_{2}$ $(CH_2)_{2}N(C_{2}H_{5})_{2}$ $(CH_2)_{3}N(CH_{3})_{2}$ $(CH_2)_{2}N(CH_{3})_{2}$	(CH2),NC(H8) (CH2),NC(H8) (CH2),NC(H3)2 (CH2),NC(H8)2 (CH2),NC(H8)2 (CH2),NC(H3)2 (CH2),NC(H3)2 (CH2)2,NC(H3)2 (CH2)2,NC(H8)2	$\begin{array}{c} (CH_2)_{NC,M_3}\\ (CH_2)_{NC,M_3}\\ (CH_2)_{3N}(CH_3)_2\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{3N}(CH_3)_2\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{2NC,M_3}\\ (CH_2)_{2NC,M_3}\\ \end{array}$
		R	н	1	ŭ	•	- II	. (II. (II.	. u u Ö						CCC CCCFF
		Compd no. <i>n</i>		•			-						· · · · · · · · · · · · · · · · · · ·	00	

ž

Table

								R. R.	R ³		Gross	SME % prote	SMES test, % protection at	Diuretic $activity, b$	
Compd no.	R,	\mathbb{R}_2	R3	R4	${ m R}_{s}$	R	R,	Mp, °C	R, ^{N1} Formula ^a	ALD ₅₀ ,f mg/kg ip	at 0.2 ALD ₅₀	0.2 ALD ₅₀ , mg/kg ip	0.1 ALD ₅₀ , mg/kg ip	output at 0.25 ALD _{so}	Remarks
	Н	H	L.	Н	Н	H	(CH ₂) ₂ NC ₄ H ₈	190	C ₁₈ H ₁₉ FN ₂ ·C ₂ H ₂ O ₄	200	<i>c</i>	80	20	61	Anticonvulsant, depressant,
	Н	CI	Н	Η	Н	Н	$(CH_2)_2 N(CH_3)_2$	250	C1,6H1,CIN2-HCI	250	9 0	100	80	<i>p</i>	diuretic Anticonvulsant
	Н	D	Н	Н	Н	Η	$(CH_2)_2 NC_4 H_8$	237	C ₁₈ H ₁₉ CIN ₂ ·HCI	300	→	60	0	88	Anticonvulsant, depressant, diuretic
	H	5=	н	H	н	Н	$(CH_2)_{3N(CH_3)_2}$	169	C ₁ ,H ₁ ,CIN ₂ ,C ₂ H ₂ O ₄	100	0 0	0	c	28 32	
	н	ΕΞ	50	ΕH	н	Ξщ	$(CH_2)_2 N(CH_3)_2$ $(CH_2)_2 NC_4 H_8$	182-183 208	C18H17CIN2.C2H204 C18H19CIN2.C2H204	100	⊃ →	001	0	36 130	Anticonvulsant Depressant,
	Н	Н	G	Н	Н	Н	(CH ₂) ₃ N(CH ₃) ₂	160-161	l C ₁₇ H ₁₉ CIN ₂ ·C ₂ H ₂ O ₄	200	→	60	20	52	uturenc Anticonvulsant, depressant, diuretic
	CH ₃ O CH ₃ O	н	H	НН	н	НН	(CH ₂) ₂ N(CH ₃) ₂ (CH ₂) ₂ NC ₄ H ₈	218-219 217	$C_{1,7}H_{20}N_{2}O \cdot C_{2}H_{2}O_{4}$ $C_{1,9}H_{22}N_{2}O \cdot C_{2}H_{2}O_{4}$	200 300	⊙ →	80 100	00	35 102	Anticonvulsant Anticonvulsant, depressant,
	сн ₃ 0 Н	H CH ₃ O	н	нн	нн	н	$(CH_{2})_{3}N(CH_{3})_{2}$ $(CH_{2})_{2}N(CH_{3})_{2}$	194 249	C ₁₈ H ₂₂ N ₂ O·C ₂ H ₂ O, C ₁₇ H ₂₀ N ₂ O·HCI	150 150	\rightarrow \rightarrow	0 100	0	178	anuretic Depressant Anticonvulsant, depressant,
	н	CH ₃ 0 CH ₃ 0	н	Н	Н	нн	(CH ₂) ₂ N(C ₂ H ₅) ₂ (CH ₂) ₂ NC ₄ H ₈	192 234	$C_{19}H_{24}N_2O \cdot C_2H_2O_4$ $C_{19}H_{22}N_2O \cdot HCl$	200 150	00	$\begin{array}{c} 0\\ 100 \end{array}$	0	- 204	diuretic Anticonvulsant,
	Н	CH ₃ O	Н	Н	Н	Н	$(CH_2)_3N(CH_3)_2$	178	$C_{18}H_{22}N_2O \cdot C_2H_2O_4$	300	0	100	100	121	diuretic Anticonvulsant,
	н	н	CH ₃ O	Н	H	н	$(CH_2)_2 N(CH_3)_2$	221	C ₁ ,H ₂₀ N ₂ O·HCI	400	→ <	0		I	diuretic Depressant
	с н :	п Ш :	O G HO		= = :	E II :	$(CH_2)_2N(C_2H_5)_3$ $(CH_2)_2NC_4H_8$	165-166		150	00	00			
	нн	нн	сн _э о н	н СН ₀	нн	нн	(CH ₂) ₃ N(CH ₃) ₂ (CH ₂) ₃ N(CH ₂) ₂	156 152	C18H22N2O-C2H2O C18H22N2O-C2H2O	300 300	0 →	08 08	00	36 36	Anticonvulsant Anticonvulsant
	Н	G	Н	Н	Н	CH ₃ O	(CH ₂) ₂ N(CH ₃) ₂	256-257	-	250	→	100	50	35	depressant Anticonvulsant,
	Н	ū	Н	Н	Η	CH ₃ O	$(CH_2)_2 N(C_2 H_5)_2$	175	$C_{19}H_{23}CIN_2O \cdot C_2H_2O_4$	250	\rightarrow	80	20	14	depressant Anticonvulsant,
	Н	G	Н	Н	Η	CH ₃ O	$(CH_2)_2 NC_4 H_8$	224	C ₁₉ H ₂₁ CIN ₂ O·HCI	250	÷	100	60	23	depressant Anticonvulsant,
	Н	a	Н	Н	Н	CH₃O	$(CH_2)_3N(CH_3)_2$	181	$C_{1_8}H_{21}CIN_2O \cdot C_2H_2O_4$	250	÷	80	20	33	depressant Anticonvulsant,
	CH 3	CH ₃ O	Н	Н	Н	Н	$(CH_2)_2 N(CH_3)_2$	245	C ₁₈ H ₂₂ N ₂ O·HCI	200	→	0		ł	Depressant
	CH,	CH ₃ 0	H	H	H	CH ₃ 0	$(CH_2)_2 N(CH_3)_2$	240	C1,9H24 N202 HCI	>800	→	0		I	Depressant
	E.	O CHO	нн	Ξн	ΗĦ	CH ₂ O	$(CH_2)_2 N(C_2H_5)_2$ (CH_1) NC H_	223 172	C_{21} H ₂₈ N ₂ O ₂ · HCl	200 300	→	0 0		:	Depressant Depressant
	CH,	CH ₃ 0	H	H	CH,0	CH 0	$(CH_2)_2^{2}N(CH_3)_3$	120	$C_{2n}H_{2k}N_{2}O_{3}$ ·HCI	300	→	0			Depressant

 Table III. Comparative Data of Acute Toxicity and Anticonvulsant

 Activity of 25 and 33

Compd	LD _{so} , mg/kg ip (95% fiducial limits) ^a	ED ₅₀ , mg/kg ip (95% fiducial limits)
25	263 (205-323)	23.5 (20.9-26.2)
33	263.1 (190-427)	20.3 (10-27)
Dillantin	150	7.1

⁴D. J. Finney, "Probit Analysis," Cambridge University Press, New York, N. Y., 1952.

tetrazole test inhibition of the clonic convulsions was the end point.

Compounds showing depressant effect on the central nervous system were also studied for their effect on the forced locomotor activity in mice using the method of Kinnard and Carr.⁹ Compounds having no gross effect on the central nervous system at 0.2 ALD₅₀ were studied for their monoamine oxidase (MAO) inhibitor activity using the method of Brodie, *et al.*¹⁰

Out of 39 compounds tested, 16 compounds afforded protection against maximal electroshock seizures in mice. Their anticonvulsant activities at 0.2 and 0.1 ALD_{50} are given in Tables I and II. The maximum protection was observed in compounds 25 and 33. Other doses of these compounds were, therefore, tested to establish a dose-response relationship to find out the ED_{50} . Both these compounds were, however, less active than dillantin which was used as a reference standard (Table III).

None of the compounds studied showed protection against pentylenetetrazole- or strychnine-induced convulsions. They were also devoid of MAO inhibitor activity and of any effect on forced locomotor activity.

Diuretic Activity. Diuretic activity of the compounds was tested in groups of five rats each, loaded orally with normal saline equal to 5% of their body weight. All compounds were administered orally and were tested at 0.25 ALD_{50} . Chlorothiazide (125 mg/kg oral) was used as a reference standard. The urinary output was measured after 4 hr and the results were expressed as percentage urinary output taking chlorothiazide activity as 100%. The maximum diuresis was obtained with compounds 17, 22, 24, and 25 (Table II).

Results and Discussion

The results listed in Tables I and II show that N-alkylaminocarbazoles possess significant anticonvulsant and diuretic activity. From the limited data available it would appear that the corresponding tetrahydrocarbazoles (1-7) and cycloheptindoles (8-11) are less active.

Introduction of the dimethylaminopropyl chain at the N atom seems to enhance the anticonvulsant activity in combination with CH₃O at positions 2, 3, and 4 (25, 29, and 30). Shortening of the chain by one carbon atom or incorporating a cyclic moiety (pyrrolidinoethyl), however, results in the retention of the activity when CH₃O is at positions 1 and 2 only (19, 20, 22, and 24). Compounds with 2- and 3-carbon atom chain and Cl at positions 2 or 3 are also active (13, 16, and 18). Substitution with both Cl and CH₃O at positions 2 and 7 demonstrates a good order of activity (31-34) while the CH₃ at position 1 reduces the activity (35-39).

Experimental Section

All melting points are uncorrected. The compounds were routinely checked by ir and nmr spectroscopy.

4-Chloro-4'-methoxy-2'-nitrobiphenyl (40). An intimate mixture of 4-chloroiodobenzene (47.7 g, 0.2 mol), 4-methoxy-2-

nitrobromobenzene (46.4 g, 0.2 mol), and copper bronze (100 g) was heated at 200-230° for 4 hr, followed by extraction of the cooled reaction mixture with hot EtOAc. The residue, after removal of the solvent, was chromatographed over a silica gel column (1 kg), which on elution with 10% C_6H_6 in hexane furnished the product: mp 79°; yield 57%. Anal. ($C_{13}H_{10}ClNO_3$) C, H, N.

2-Chloro-7-methoxycarbazole (41). 4-Chloro-4'-methoxy-2'nitrobiphenyl (30 g) was heated with triethyl phosphite (60 ml) at 160° for 9 hr, followed by removal of the solvent under vacuum. The residue was crystallized from C_6H_6 -EtOAc: mp 258°; yield 80%. Anal. ($C_{13}H_{10}$ ClNO) C, H, N.

Cyclohexane-1,2-dione 1-(4-Fluoro)phenylhydrazone (42). 4-Fluorobenzenediazonium chloride (prepared from 4-fluoroaniline, 33.3 g, 0.3 mol) in water was added during 25 min with vigorous stirring to a cooled solution of 2-formylcyclohexanone (37.8 g, 0.3 mol) in MeOH containing NaOAc (55 g) when a compound separated out. After additional stirring for 1 hr, it was diluted with water and the precipitated product was collected by filtration and recrystallized from EtOAc: mp 147-148°; yield 75%. Anal. $(C_{12}H_{13}FN_2O) C, H, N.$

1-Oxo-1,2,3,4-tetrahydro-6-fluorocarbazole (43). To the foregoing hydrazone (30.8 g, 0.14 mol) dissolved in warm glacial HOAc (300 ml) was carefully added concentrated HCl (55 ml) and the mixture heated for 10 min at 120°. After cooling it was diluted with H₂O and the precipitate collected and crystallized from C₆H₆: mp 205°; yield 48%. Anal. (C₁₂H₁₀FNO) C, H, N.

6-Fluoro-1,2,3,4-tetrahydrocarbazole (44). A mixture of 43 (13.2 g, 0.06 mol), hydrazine hydrate (90%, 10 ml), and KOH pellets (13.3 g) was warmed in diethylene glycol (100 ml) on a water bath until most of the KOH dissolved. The mixture was refluxed for 1 hr and distilled until the temperature of the reaction mixture rose to 175° . It was again refluxed for 3 hr, cooled, and poured on cold dilute HCl. The precipitated material was filtered, washed well with water, dried, and crystallized from petroleum ether: mp 102-103°; yield 65% (lit.¹¹ mp 103-104°).

3-Fhorocarbazole (45). A mixture of 44 (4.72 g, 0.025 mol) and chloranil (6.15 g, 0.025 mol) in dry xylene (30 ml) was refluxed for 1 hr. The solvent was removed and the residue after column chromatography over silica gel (80 g, solvent 20% C_6H_6 in hexane) gave the product which crystallized from C_6H_6 -hexane: mp 203°; yield 78% (lit.¹¹ mp 202-203°).

3-Fluoro-9-(2-pyrrolidinoethyl)carbazole Oxalate (12). A mixture of 45 (1.85 g, 0.01 mol) and NaH (0.48 g, 0.02 mol) was refluxed in dry xylene for 1 hr. After cooling, a solution of 2-pyrrolidinoethyl chloride (2.67 g, 0.02 mol) in dry ether (15 ml) was added and the mixture boiled for additional 4 hr. It was then cooled, diluted cautiously with cold water, and thoroughly extracted with 2 N HCl (40 ml). The acid extract was washed with ether, basified (K₂CO₃), and reextracted with ether. The ethereal layer was washed with water and dried (MgSO₄), and the solvent was removed. The residue was dissolved in minimum quantity of MeOH and treated with a methanolic solution of oxalic acid. The precipitated oxalate salt was filtered, washed with ether, and crystallized from MeOH: mp 190°; yield 87%.

By adopting a similar procedure, other N-alkylaminocarbazoles, tetrahydrocarbazoles, and cycloheptindoles were prepared (Tables I and II).

Acknowledgments. The authors are grateful to Dr. K. Kar of this Institute for making available primary screening results of diuretic activity, Mr. P. S. Gupta for technical assistance, and Mr. J. Saran and his associates for microanalysis.

References

- (1) J. T. Hicks, Ill. Med. J., 128, 622 (1965).
- (2) S. L. Shapiro, H. Soloway, and L. Freedman, J. Amer. Pharm. Ass., 46, 333 (1957).
- (3) O. Nieschulz, I. Hofmann, and K. Popendiker, Arzneim. Forsch., 9, 219 (1959).
- (4) L. M. Rice and K. R. Scott, J. Med. Chem., 13, 308 (1970).
- (5) J. G. Pecca and S. M. Albonico, *ibid.*, 13, 327 (1970).
- (6) F. Ullmann, Ber., 29, 1878 (1896).
- (7) J. I. G. Cadogan, M. Cameron-Wood, R. K. Mackie, and R. J. G. Searle, J. Chem. Soc., 4831 (1965).
 (8) E. A. Swinyard, W. C. Brown, and L. S. Goodman, J. Pharma-
- (8) E. A. Swinyard, W. C. Brown, and L. S. Goodman, J. Pharmacol. Exp. Ther., 106, 319 (1952).
- (9) W. J. Kinnard and C. J. Carr, ibid., 121, 354 (1957).
- (10) B. B. Brodie, A. Pletscher, and P. A. Shore, *ibid.*, 116, 9 (1956).
- (11) F. L. Allen and H. Suschitzky, J. Chem. Soc., 3845 (1953).