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N-Methoxymethyl-N-methylcarbamoyl(trimethyl)silane reacted with N-sulfonylimines in anhydrous
benzene under catalyst-free conditions to afford a-(N-sulfonyl)amino-N-methoxymethyl-N-methyl-
amides in good to excellent yields (71–95%). Furthermore, after acid hydrolysis at room temperature,
the corresponding a-(N-sulfonyl)amino secondary amides can be formed.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

a-Aminoamides are representatives of the smallest subunit of
peptides and proteins, and found in a wide range of natural prod-
ucts and pharmaceuticals.1 They have also been used as intermedi-
ates for the synthesis of different heterocycles.2 Due to such
interests, numerous methods for the synthesis of a-aminoamides
have been developed. Among them, the Ugi reaction has been
intensively studied over the past decades,3 in which a multicompo-
nent mixture of primary amine, carboxylic acid, aldehyde, and iso-
cyanide affords an a-(N-acyl-N-alkyl amino)amide, whose various
limitations are under continual improvement.4 Recently, Mita
et al. reported that the catalytic silylation of N-benzenesulfonylim-
ines using a Cu-secondary diamine complex as catalyst, then car-
boxylation under a CO2 atmosphere can afford a-aminoacids.5

We have also used sulfonylimines as the reaction substrates
to react with N,N-dimethylcarbamoyl(trimethyl)silane under
catalyst-free conditions, successfully realized the formation of
the a-(N-sulfonyl)aminoamides in a single step.6 However, these
results specifically address the formation of (tertiary) N,N-
dimethylamides, for efficient application within these areas, the
synthesis of a-amino secondary amides is required. To the best
of our knowledge, carbamoylsilane has never been reported for
the synthesis of a-amino secondary amides. We have tested this
process using N-methoxymethyl-N-methylcarbamoyl(trimethyl)
silane as a secondary amide source and reported here our results
about the synthesis of a-(N-sulfonyl)amino-N-methoxymethyl-N-
methyl amides (Scheme 1). N-Methoxymethyl group of a-(N-sul-
fonyl)amino-N-methoxymethyl-N-methyl amides 3 could be easily
converted into hydrogen atom by acid hydrolysis, so this approach
is an efficient method for synthesizing a-(N-sulfonyl)amino
secondary amides.7

Results and discussion

N-Sulfonylimines 2 were easily prepared by the reaction of
aldehydes and benzene sulfonicamide or p-methylbenzene
sulfonicamide,8 which reacted with N-methoxymethyl-N-methyl-
carbamoyl(trimethyl)silane 1 in a benzene solution under anhy-
drous conditions, good to excellent yields of a-(N-sulfonyl)
aminoamides 3 were obtained. Results are displayed in Table 1.
However, N-sulfinylimines as the C@N substrates did not react
with carbamoylsilane 1. This result may be from the weaker elec-
tron-withdrawing ability of sulfinyl, and may reflect that the elec-
tronic property of the substituents on the C@N bond plays a
significant role.

In an initial attempt, we selected aliphatic N-sulfonylimines,
such as propyl or isopropyl N-sulfonylimine to react with equimo-
lar amounts of carbamoylsilane 1. It was found that no desired
products were obtained, and carbamoylsilane 1 was completely
consumed. To our surprise, when N-sulfonylimine 2a reacted with
carbamoylsilane 1, the compound 4, an isomer of 2a, was isolated
in 94% yield after 16 h at 25 �C (Scheme 2). We speculate that the
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Scheme 1. The reaction of N-methoxymethyl-N-methylcarbamoyl(trimethyl)silane
1 with N-sulfonylimines 2.

Table 1
a-(N-Sulfonyl)aminoamides 3 from N-sulfonylimines 2 and carbamoylsilane 1

Entry N-Sulfonylimine Product Timea (h) Yieldb,c (%)

1
2a       3a    

16 0

2
2b  

3b  

14 71

3
2c       

3c   

18 71

4
2d       

3d   

23 84

5
2e

3e    

24 77

6
2f      

3f   

20 81

7
2g       

3g  

21 86

8
2h       

3h    

14 95

9
2i 

3i     

20 83

10

2j       3j  

23 84

11
2k    

3k  

15 79

a To complete consumption of carbamoylsilane 1 in benzene at 60 �C.
b Isolated yield based on N-sulfonylimines. Characterization data are given.12
c 1:1.1 mol ratio of N-sulfonylimines and carbamoylsilane.

Scheme 2. The isomerization of N-sulfonylimine 2a.
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Scheme 3. The plausible mechanism of isomerization of N-sulfonylimine 2a.
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Scheme 5. The proposed mechanism of the reaction.
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competitive protonolysis of carbamoylsilane 1 has occurred
because the N-sulfonylimine 2a contained enolizable a-hydrogens,
led to the desilylative protonolysis of 1 into N-methoxymethyl-N-
methylformamide A (Scheme 3), which have been isolated in reac-
tion mixture.12 Similar phenomenon was previously observed
when iminium salts with enolizable a-hydrogens were used as
substrates, where no products were obtained.9 While N-sul-
fonylimine 2a was converted to N-trimethylsilyl-N-sulfonyl-2-
methyl-2-acrylic amine B, which was hydrolyzed in the separation
process to give compound 4.10 However, the protonolysis of car-
bamoylsilane was not observed when isopropyl sulfonylimine
reacted with N,N-dimethylcarbamoyl(trimethyl)silane.6 2b pos-
sessing tertiary butyl in which there is not enolizable a-hydrogens
gave desired addition products 3b in good yields (Table 1, entry 2).

The common feature of all successful runs is the absence of ‘al-
pha’ hydrogens in the N-sulfonylimines, and the substituent on the
C@N bond being either benzene sulfonyl or p-methylbenzene sul-
fonyl. To explore the scope of this reaction system, we tested the
representative N-sulfonylimines bearing aryl, heteroaryl, and ter-
tiary aliphatic substituents on the C@N bond (Table 1, entries 2–
11). A comparison of the results obtained from 2c–h indicates that
the electronic consideration is an important factor in the addition
reaction. Phenyl N-sulfonylimines possessing an electron-donating
group on the aromatic ring, such as a dimethylamino or methyl
group, gave slightly lower yields (entries 3 and 5). In contrast, sub-
stitution of an electron-withdrawing group on the aromatic ring,
such as a nitro or chloro, led to higher yields (entries 7 and 8).
While 2d bearing methoxy afforded the addition product in good
yields (entry 4), this result may be from the strong electron-with-
drawing induction effect of methoxy. We conclude that, in general,
electron-withdrawing to the phenyl substituent accelerates the
reaction and leads to an improved yield, while an electron-dona-
tion group totally suppresses the reaction, aryl N-sulfonylimines
possessing an electron-withdrawing group gave a better yield than
those having an electron-donating group. In addition, N-sul-
fonylimines 2i and 2j containing an electron-rich heterocyclic ring,
the furyl and thienyl, could also react with carbamoylsilane 1 to
afford excellent yields of desired addition products 3i and 3j
(entries 9 and 10). Reaction rate was similar to the rate of phenyl
N-sulfonylimine 2f. The less sterically demanding cinnamoyl
N-sulfonylimine has proved more reactive toward reaction of 1
than most aryl N-sulfonylimines, since the reaction proceeded with
faster rate in case of 2k than in case of 2c–g, and compound 3k
S
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Scheme 4. The formation of a-(N-sulfonyl)amino secondary amide 5 by acid
hydrolysis of 3.
corresponding to 1,2-addition product was exclusively obtained
in good yield.

The a-(N-sulfonyl)aminoamides 3 can be easily hydrolyzed in a
mixture of concentrated hydrochloric acid and dichloromethane at
room temperature, led to the a-(N-sulfonyl)amino secondary
amides 5 (Scheme 4). For example, a-(N-sulfonyl)aminoamide 3k
could be readily converted into a-(N-sulfonyl)amino-N-methyl
amide 5k in 97% yield.

Proposed reaction mechanism

A possible route to addition products 5 is presented in Scheme 5.
Carbamoylsilane 1 can rearrange to its nucleophilic carbene form
C,11 which attacked the N-sulfonyl imines to produce an unstable
intermediate D, followed by silyl group 1,4-migration to give the
adducts E. The latter can be hydrolyzed in the separation process
to form a-(N-sulfonyl)aminoamides 3, which were hydrolyzed
under acidic condition at room temperature to afford a-(N-sul-
fonyl)amino secondary amides 5.

General procedure for the synthesis of a-(N-sulfonyl)amino-N-
methoxymethyl-N-methyl amides 3

A Schlenk tube fitted with a Teflon vacuum stopcock and micro
stirbar was flame heated under vacuum and refilled with Ar. N-Sul-
fonylimines 2 (0.50 mmol) and anhydrous benzene (1.5 mL) were
added at ice bath temperature. After 20 min, carbamoylsilane 1
(0.55 mmol) was added. The sealed reaction mixture was stirred
at 60 �C until no carbamoylsilane 1 could be detected by TLC. Vola-
tiles were removed in vacuo to afford the crude product which was
purified by column chromatography on silica gel (petroleum ether/
ethyl acetate combination) to give amides 3. 3c: mp 151.5–
153.0 �C. IR: 3194, 1652, 1614, 1379, 1169, 1094, 569 cm�1. 1H
NMR (600 MHz, CDCl3): d 6.55–7.65 (m, 8H), 6.21, 6.19 (dd,
J = 8.4 Hz, 1H), 5.23, 5.13 (dd, J = 8.4 Hz, 1H), 4.65, 4.64, 4.24, 4.22
(ssss, 2H), 3.07, 3.03 (ss, 3H), 2.93, 2.92 (ss, 6H), 2.85, 2.78 (ss,
3H), 2.38, 2.37 (ss, 3H). 13C NMR (151 MHz, CDCl3): d 170.8,
170.9, 150.5, 148.8, 137.6, 137.5, 129.3, 129.3, 128.8, 128.6, 128.4,
127.3, 127.2, 123.3, 122.9, 112.5, 112.4, 80.5, 78.1, 57.4, 57.3,
55.7, 55.4, 40.4, 34.1, 32.8, 20.5, 20.4. Anal. Calcd for C20H27N3O4S:
C, 59.24; H, 6.71; N, 10.36. Found: C, 59.43; H, 6.80; N, 10.41.

Procedure for acid hydrolysis of a-(N-sulfonyl)amino-N-
methoxymethyl-N-methyl amides 3

Concentrated hydrochloric acid (15 mL) is added dropwise to
a solution of 3 (100 mg) in dichloromethane (15 mL). After 24 h
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stirring at room temperature, the organic layer was decanted and
washed with sodium bicarbonate solution (45 mL). The aqueous
phase was extracted with dichloromethane (3 � 15 mL). The com-
bined organic layers were dried over MgSO4 and evaporated to
afford the crude product which was purified by column
chromatography on silica gel (petroleum ether/ethyl acetate com-
bination) to afford a-(N-sulfonyl)amino amides 5.12 5k: IR: 3334,
3255, 1646, 1450, 1342, 1169, 1089, 690 cm�1. 1H NMR
(600 MHz, CDCl3): d 7.21–7.89 (m, 10H), 6.49 (d, J = 14.4 Hz, 1H),
6.04 (s, 1H), 5.96, 5.93 (dd, J = 7.8 Hz, 1H), 5.87 (d, J = 4.2 Hz, 1H),
2.80, 2.79 (ss, 3H). 13C NMR (151 MHz, CDCl3): d 170.1, 169.9,
140.6, 140.4, 135.5, 135.3, 135.0, 134.3, 132.6, 132.5, 129.0,
128.9, 128.8, 128.6, 128.5, 128.4, 127.3, 127.2, 126.7, 123.6,
122.6, 80.6, 78.2, 34.5, 33.0. Anal. Calcd for C17H18N2O3S: C,
61.80; H, 5.49; N, 8.48. Found: C, 61.88; H, 5.56; N, 8.60.

Conclusions

We have successfully developed a novel and highly efficient
synthetic method toward a-(N-sulfonyl)amino-N-methoxy-
methyl-N-methylamides by the additions of N-methoxymethyl-
N-methylcarbamoyl(trimethyl)silane to N-sulfonylimines. The
reaction in general provides good yields of the products under mild
reaction conditions. This approach is an efficient synthesis method
of a-(N-sulfonyl)amino secondary amides because of the acid
hydrolysis of a-(N-sulfonyl)amino-N-methoxymethyl-N-methy-
lamides 3 at room temperature leading to corresponding a-(N-sul-
fonyl)amino secondary amides 5. The mild and no catalyst
conditions, simple procedure, and impressive yield provide a valu-
able method for the preparation of various a-(N-sulfonyl)amino
secondary amides. We believe that the current methodology will
find applications in organic and medicinal chemistry.
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2H), 3.24, 3.20 (ss, 3H), 2.93, 2.87 (ss, 3H). 13C NMR: d 163.3, 162.7, 81.1, 74.4,
55.3, 54.2, 32.5, 28.3. 5b: mp 196.0–197.0 �C. IR: 3443, 3204, 1644, 1401, 1333,
1160, 1072 cm�1. 1H NMR: d 7.77 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H),
5.39 (d, J = 9.0 Hz, 1H), 5.28 (s, 1H), 3.29 (d, J = 9.6 Hz, 1H), 2.52, 2.51 (ss, 3H),
2.43(s, 3H), 0.96 (s, 9H). 13C NMR: d 170.0, 143.6, 136.6, 129.5, 127.5, 65.4, 53.5,
34.4, 26.5, 26.0, 21.5. Anal. Calcd for C14H22N2O3S: C, 56.35; H, 7.43; N, 9.39.
Found: C, 56.48; H, 7.24; N, 9.52. 5c: mp 218.5–220.0 �C. IR: 3340, 3257, 1644,
1327, 1167, 1088 cm�1. 1H NMR: d 7.62 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz,
2H), 6.70 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.4 Hz, 2H), 5.81 (d, J = 3.6 Hz, 1H), 5.75
(d, J = 3.6 Hz, 1H), 4.61, 4.60 (ss, 1H), 2.94 (s, 6H), 2.76, 2.75 (ss, 3H), 2.41 (s,
3H). 13C NMR: d 170.2, 150.7, 143.2, 136.6, 129.4, 128.7, 127.4, 123.7, 112.5,
60.4, 40.4, 26.7, 21.5. Anal. Calcd for C18H23N3O3S: C, 59.81; H, 6.41; N, 11.63.
Found: C, 59.62; H, 6.13; N, 11.45. 5d: mp 113.0–114.0 �C. IR: 3340, 3265,
1651, 1509, 1333, 1156, 1088 cm�1. 1H NMR: d 7.72–7.41 (m, 5H), 7.05 (d,
J = 8.4 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 5.98 (s, 1H), 5.67 (s, 1H), 4.72, 4.71 (ss,
1H), 3.86, 3.78 (ss, 3H), 2.76, 2.75 (ss, 3H). 13C NMR: d 169.7, 159.8, 139.7,
132.6, 128.9, 128.4, 127.2, 114.4, 60.1, 55.3, 26.7. Anal. Calcd for C16H18N2O4S:
C, 57.47; H, 5.43; N, 8.38. Found: C, 57.50; H, 5.26; N, 8.10. 5e: mp 174.0–
175.5 �C. IR: 3423, 3256, 1656, 1401, 1342, 1167, 1088 cm�1. 1H NMR: d 7.62
(d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 7.02 (d,
J = 8.4 Hz, 2H), 5.93 (d, J = 3.6 Hz, 1H), 5.79 (d, J = 3.6 Hz, 1H), 4.68, 4.67 (ss, 1H),
2.74, 2.73 (ss, 3H), 2.42 (s, 3H), 2.32 (s, 3H). 13C NMR: d 169.6, 143.5, 138.7,
136.5, 133.7, 129.7, 129.5, 127.6, 127.3, 60.4, 26.7, 21.5, 21.1. Anal. Calcd for
C17H20N2O3S: C, 61.42; H, 6.06; N, 8.43. Found: C, 61.15; H, 6.13; N, 8.18. 5f:
mp 182.0–183.0 �C. IR: 3434, 3276, 1640, 1401, 1342, 1171, 1076 cm�1. 1H
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NMR: d 7.72–7.13 (m, 10H), 6.07 (s, 1H), 5.74 (s, 1H), 4.79 (s, 1H), 2.75, 2.74 (ss,
3H). 13C NMR: d 169.3, 139.6, 136.4, 132.7, 129.1, 128.9, 128.8, 127.7, 127.2,
60.6, 26.8. Anal. Calcd for C15H16N2O3S: C, 59.19; H, 5.30; N, 9.20. Found: C,
59.12; H, 5.34; N, 9.11. 5g: mp 160.5–162.0 �C. IR: 3434, 3250, 1640, 1446,
1327, 1160, 1083 cm�1. 1H NMR: d 7.71–7.08 (m, 9H), 6.08 (s, 1H), 5.66 (s, 1H),
4.77, 4.76 (ss, 1H), 2.76, 2.75 (ss, 3H). 13C NMR: d 169.1, 139.6, 134.9, 134.7,
132.8, 129.1, 129.0, 127.1, 59.9, 26.7. Anal. Calcd for C15H15ClN2O3S: C, 53.17;
H, 4.46; N, 8.27. Found: C, 53.02; H, 4.35; N, 8.14. 5h: mp 168.5–170.0 �C. IR:
3439, 3235, 1645, 1401, 1342, 1167, 1025 cm�1. 1H NMR: d 8.11 (d, J = 8.4 Hz,
2H), 7.73 (d, J = 8.4 Hz, 2H), 7.56–7.28 (m, 5H), 6.22 (s, 1H), 5.72 (s, 1H), 4.91 (s,
1H), 2.77, 2.76 (ss, 3H). 13C NMR: d 167.9, 148.0, 143.4, 139.4, 133.1, 129.1,
128.6, 127.1, 124.1, 59.8, 27.0. Anal. Calcd for C15H15N3O5S: C, 51.57; H, 4.33;
N, 12.03. Found: C, 51.36; H, 4.13; N, 11.94. 5i: mp 78.5–80.0 �C. IR: 3393,
3313, 1634, 1401, 1254, 1160, 1072 cm�1. 1H NMR: d 8.16–7.54 (m, 8H), 6.29
(d, J = 3.0 Hz, 1H), 4.84 (s, 1H), 2.97, 2.96 (ss, 3H). 13C NMR: d 172.5, 161.6,
161.2, 148.6, 132.8, 129.3, 129.2, 126.6, 110.5, 25.9, 14.3. Anal. Calcd for
C13H14N2O4S: C, 53.05; H, 4.79; N, 9.52. Found: C, 53.24; H, 4.59; N, 9.77%. 5j:
mp 116.5–118.0 �C. IR: 3412, 3250, 1660, 1401, 1333, 1160, 1092 cm�1. 1H
NMR: d 7.77–6.82 (m, 8H), 6.38 (s, 1H), 6.33 (d, J = 6.0 Hz, 1H), 5.19 (d,
J = 6.0 Hz, 1H), 2.72, 2.71 (ss, 3H). 13C NMR: d 168.8, 139.5, 138.9, 132.8, 129.0,
127.2, 127.1, 126.8, 126.7, 56.2, 26.7. Anal. Calcd for C13H14N2O3S2: C, 50.30; H,
4.55; N, 9.03. Found: C, 50.18; H, 4.29; N, 8.86.
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