Tetrahedron Letters 56 (2015) 5747-5751

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Addition of a carbamoylsilane to *N*-sulfonylimines: direct synthesis of α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*-methylamides

Hui Liu, Qilin Guo, Jianxin Chen*

College of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 29 June 2015 Revised 3 September 2015 Accepted 7 September 2015 Available online 8 September 2015

*Keywords: N-*Sulfonylimines Carbamoylsilane Amides Addition Synthetic methods

Introduction

 α -Aminoamides are representatives of the smallest subunit of peptides and proteins, and found in a wide range of natural products and pharmaceuticals.¹ They have also been used as intermediates for the synthesis of different heterocycles.² Due to such interests, numerous methods for the synthesis of α -aminoamides have been developed. Among them, the Ugi reaction has been intensively studied over the past decades,³ in which a multicomponent mixture of primary amine, carboxylic acid, aldehyde, and isocyanide affords an α -(*N*-acyl-*N*-alkyl amino)amide, whose various limitations are under continual improvement.⁴ Recently, Mita et al. reported that the catalytic silvlation of N-benzenesulfonylimines using a Cu-secondary diamine complex as catalyst, then carboxylation under a CO₂ atmosphere can afford α -aminoacids.⁵ We have also used sulfonylimines as the reaction substrates to react with N,N-dimethylcarbamoyl(trimethyl)silane under catalyst-free conditions, successfully realized the formation of the α -(*N*-sulfonyl)aminoamides in a single step.⁶ However, these results specifically address the formation of (tertiary) N,Ndimethylamides, for efficient application within these areas, the synthesis of α -amino secondary amides is required. To the best of our knowledge, carbamoylsilane has never been reported for the synthesis of α -amino secondary amides. We have tested this process using *N*-methoxymethyl-*N*-methylcarbamoyl(trimethyl)

silane as a secondary amide source and reported here our results about the synthesis of α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*methyl amides (Scheme 1). *N*-Methoxymethyl group of α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*-methyl amides **3** could be easily converted into hydrogen atom by acid hydrolysis, so this approach is an efficient method for synthesizing α -(*N*-sulfonyl)amino secondary amides.⁷

Results and discussion

N-Methoxymethyl-*N*-methylcarbamoyl(trimethyl)silane reacted with *N*-sulfonylimines in anhydrous

benzene under catalyst-free conditions to afford α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*-methyl-

amides in good to excellent yields (71-95%). Furthermore, after acid hydrolysis at room temperature,

the corresponding α -(*N*-sulfonyl)amino secondary amides can be formed.

N-Sulfonylimines **2** were easily prepared by the reaction of aldehydes and benzene sulfonicamide or *p*-methylbenzene sulfonicamide,⁸ which reacted with *N*-methoxymethyl-*N*-methyl-carbamoyl(trimethyl)silane **1** in a benzene solution under anhydrous conditions, good to excellent yields of α -(*N*-sulfonyl) aminoamides **3** were obtained. Results are displayed in Table 1. However, *N*-sulfinylimines as the C=N substrates did not react with carbamoylsilane **1**. This result may be from the weaker electron-withdrawing ability of sulfinyl, and may reflect that the electronic property of the substituents on the C=N bond plays a significant role.

In an initial attempt, we selected aliphatic *N*-sulfonylimines, such as propyl or isopropyl *N*-sulfonylimine to react with equimolar amounts of carbamoylsilane **1**. It was found that no desired products were obtained, and carbamoylsilane **1** was completely consumed. To our surprise, when *N*-sulfonylimine **2a** reacted with carbamoylsilane **1**, the compound **4**, an isomer of **2a**, was isolated in 94% yield after 16 h at 25 °C (Scheme 2). We speculate that the

© 2015 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. *E-mail address: jjxxcc2002@yahoo.com* (J. Chen).

Scheme 2. The isomerization of *N*-sulfonylimine 2a.

Scheme 1. The reaction of *N*-methoxymethyl-*N*-methylcarbamoyl(trimethyl)silane **1** with *N*-sulfonylimines **2**.

Table 1	
α -(N-Sulfonyl)aminoamides 3 from N-sulfonylimines 2 and carbamoyle	silane 1

Entry	<i>N</i> -Sulfonylimine	Product	Time ^a (h)	Yield ^{b,c} (%)
1			16	0
2			14	71
3	2c		18	71
4	2d	3d OCH3	23	84
5	2e N N		24	77
6			20	81
7	2g 0 0 CI		21	86
8	2h	O O N N O N N O N N N O N	14	95
9			20	83
10			23	84
11			15	79

^a To complete consumption of carbamoylsilane 1 in benzene at 60 °C.
^b Isolated yield based on *N*-sulfonylimines. Characterization data are given.¹²
^c 1:1.1 mol ratio of *N*-sulfonylimines and carbamoylsilane.

5748

Scheme 3. The plausible mechanism of isomerization of N-sulfonylimine 2a.

competitive protonolysis of carbamoylsilane **1** has occurred because the *N*-sulfonylimine **2a** contained enolizable α -hydrogens, led to the desilylative protonolysis of **1** into *N*-methoxymethyl-*N*-methylformamide **A** (Scheme 3), which have been isolated in reaction mixture.¹² Similar phenomenon was previously observed when iminium salts with enolizable α -hydrogens were used as substrates, where no products were obtained.⁹ While *N*-sulfonylimine **2a** was converted to *N*-trimethylsilyl-*N*-sulfonyl-2-methyl-2-acrylic amine **B**, which was hydrolyzed in the separation process to give compound **4**.¹⁰ However, the protonolysis of carbamoylsilane was not observed when isopropyl sulfonylimine reacted with *N*,*N*-dimethylcarbamoyl(trimethyl)silane.⁶ **2b** possessing tertiary butyl in which there is not enolizable α -hydrogens gave desired addition products **3b** in good yields (Table 1, entry 2).

The common feature of all successful runs is the absence of 'alpha' hydrogens in the N-sulfonylimines, and the substituent on the C=N bond being either benzene sulfonyl or p-methylbenzene sulfonyl. To explore the scope of this reaction system, we tested the representative N-sulfonylimines bearing aryl, heteroaryl, and tertiary aliphatic substituents on the C=N bond (Table 1, entries 2-11). A comparison of the results obtained from **2c-h** indicates that the electronic consideration is an important factor in the addition reaction. Phenyl N-sulfonylimines possessing an electron-donating group on the aromatic ring, such as a dimethylamino or methyl group, gave slightly lower yields (entries 3 and 5). In contrast, substitution of an electron-withdrawing group on the aromatic ring, such as a nitro or chloro, led to higher yields (entries 7 and 8). While 2d bearing methoxy afforded the addition product in good yields (entry 4), this result may be from the strong electron-withdrawing induction effect of methoxy. We conclude that, in general, electron-withdrawing to the phenyl substituent accelerates the reaction and leads to an improved yield, while an electron-donation group totally suppresses the reaction, aryl N-sulfonylimines possessing an electron-withdrawing group gave a better yield than those having an electron-donating group. In addition, N-sulfonylimines 2i and 2j containing an electron-rich heterocyclic ring, the furyl and thienyl, could also react with carbamoylsilane 1 to afford excellent yields of desired addition products 3i and 3j (entries 9 and 10). Reaction rate was similar to the rate of phenyl N-sulfonylimine 2f. The less sterically demanding cinnamoyl *N*-sulfonylimine has proved more reactive toward reaction of **1** than most aryl N-sulfonylimines, since the reaction proceeded with faster rate in case of 2k than in case of 2c-g, and compound 3k

Scheme 4. The formation of α -(*N*-sulfonyl)amino secondary amide **5** by acid hydrolysis of **3**.

Scheme 5. The proposed mechanism of the reaction.

corresponding to 1,2-addition product was exclusively obtained in good yield.

The α -(*N*-sulfonyl)aminoamides **3** can be easily hydrolyzed in a mixture of concentrated hydrochloric acid and dichloromethane at room temperature, led to the α -(*N*-sulfonyl)amino secondary amides **5** (Scheme 4). For example, α -(*N*-sulfonyl)aminoamide **3k** could be readily converted into α -(*N*-sulfonyl)amino-*N*-methyl amide **5k** in 97% yield.

Proposed reaction mechanism

A possible route to addition products **5** is presented in Scheme 5. Carbamoylsilane **1** can rearrange to its nucleophilic carbene form **C**,¹¹ which attacked the *N*-sulfonyl imines to produce an unstable intermediate **D**, followed by silyl group 1,4-migration to give the adducts **E**. The latter can be hydrolyzed in the separation process to form α -(*N*-sulfonyl)aminoamides **3**, which were hydrolyzed under acidic condition at room temperature to afford α -(*N*-sulfonyl)amino secondary amides **5**.

General procedure for the synthesis of α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*-methyl amides 3

A Schlenk tube fitted with a Teflon vacuum stopcock and micro stirbar was flame heated under vacuum and refilled with Ar. N-Sulfonylimines 2 (0.50 mmol) and anhydrous benzene (1.5 mL) were added at ice bath temperature. After 20 min, carbamoylsilane 1 (0.55 mmol) was added. The sealed reaction mixture was stirred at 60 °C until no carbamoylsilane 1 could be detected by TLC. Volatiles were removed in vacuo to afford the crude product which was purified by column chromatography on silica gel (petroleum ether/ ethyl acetate combination) to give amides 3. 3c: mp 151.5-153.0 °C. IR: 3194, 1652, 1614, 1379, 1169, 1094, 569 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ 6.55–7.65 (m, 8H), 6.21, 6.19 (dd, *J* = 8.4 Hz, 1H), 5.23, 5.13 (dd, *J* = 8.4 Hz, 1H), 4.65, 4.64, 4.24, 4.22 (ssss, 2H), 3.07, 3.03 (ss, 3H), 2.93, 2.92 (ss, 6H), 2.85, 2.78 (ss, 3H), 2.38, 2.37 (ss, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.8, 170.9, 150.5, 148.8, 137.6, 137.5, 129.3, 129.3, 128.8, 128.6, 128.4, 127.3, 127.2, 123.3, 122.9, 112.5, 112.4, 80.5, 78.1, 57.4, 57.3, 55.7, 55.4, 40.4, 34.1, 32.8, 20.5, 20.4. Anal. Calcd for C₂₀H₂₇N₃O₄S: C, 59.24; H, 6.71; N, 10.36. Found: C, 59.43; H, 6.80; N, 10.41.

Procedure for acid hydrolysis of α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*-methyl amides 3

Concentrated hydrochloric acid (15 mL) is added dropwise to a solution of **3** (100 mg) in dichloromethane (15 mL). After 24 h

stirring at room temperature, the organic layer was decanted and washed with sodium bicarbonate solution (45 mL). The aqueous phase was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over MgSO₄ and evaporated to afford the crude product which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate combination) to afford α -(*N*-sulfonyl)amino amides **5**.¹² **5k**: IR: 3334, 3255, 1646, 1450, 1342, 1169, 1089, 690 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): δ 7.21–7.89 (m, 10H), 6.49 (d, *J* = 14.4 Hz, 1H), 6.04 (s, 1H), 5.96, 5.93 (dd, *J* = 7.8 Hz, 1H), 5.87 (d, *J* = 4.2 Hz, 1H), 2.80, 2.79 (ss, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 170.1, 169.9, 140.6, 140.4, 135.5, 135.3, 135.0, 134.3, 132.6, 132.5, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 127.3, 127.2, 126.7, 123.6, 122.6, 80.6, 78.2, 34.5, 33.0. Anal. Calcd for C₁₇H₁₈N₂O₃S: C, 61.80; H, 5.49; N, 8.48. Found: C, 61.88; H, 5.56; N, 8.60.

Conclusions

We have successfully developed a novel and highly efficient synthetic method toward α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*-methylamides by the additions of *N*-methoxymethyl-*N*-methylcarbamoyl(trimethyl)silane to *N*-sulfonylimines. The reaction in general provides good yields of the products under mild reaction conditions. This approach is an efficient synthesis method of α -(*N*-sulfonyl)amino secondary amides because of the acid hydrolysis of α -(*N*-sulfonyl)amino-*N*-methoxymethyl-*N*-methylamides **3** at room temperature leading to corresponding α -(*N*-sulfonyl)amino secondary amides **5**. The mild and no catalyst conditions, simple procedure, and impressive yield provide a valuable method for the preparation of various α -(*N*-sulfonyl)amino secondary amides. We believe that the current methodology will find applications in organic and medicinal chemistry.

Acknowledgments

This research was supported by Shanxi Province Foundation for Returness (No. 0713), the Natural Science Foundation of Shanxi Province (No. 2012011046-9) and Foundation of Shanxi Normal University (No. SD2015CXXM-83), China.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2015.09. 022.

References and notes

- (a) Amstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. ACC. Chem. Rev. **1996**, 29, 123–131; (b) Katritzky, A. R.; Kirichenko, N.; Rogovoy, B. V.; He, H.-Y. J. Org. Chem. **2003**, 68, 9088–9092; (c) Najera, C.; Sansano, J. M. Chem. Rev. **2007**, 107, 4584–4671; (d) Chatel-Chaix, L.; Germain, M. A.; Gotte, M.; Lamarre, D. Curr. Opin. Virol. **2012**, 2, 588–594.
- (a) Cuny, G.; Bois-Choussy, M.; Zhu, J.-P. J. Am. Chem. Soc. 2014, 126, 14475– 14484; (b) Erb, W.; Neuville, L.; Zhu, J.-P. J. Org. Chem. 2009, 74, 3109– 3113.
- (a) Ugi, I.; Steinbruckner, C. Angew. Chem. 1960, 72, 267–268; (b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210; (c) Domling, A. Chem. Rev. 2006, 106, 17–89.
- (a) Pick, R.; Bauer, M.; Kazmaier, U.; Hebach, C. Synlett 2005, 757–760; (b) Basso, A.; Banfi, L.; Riva, R.; Guanti, G. J. Org. Chem. 2005, 70, 575–579; (c) Rueping, M.; Vila, C. Org. Lett. 2013, 15, 2092–2095.
- 5. Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. **2014**, 16, 3028–3031.
- 6. Tong, W.-T.; Liu, H.; Chen, J.-X. Tetrahedron Lett. 2015, 56, 1335–1337.
- 7. Schollkopf, U.; Beckhaus, H. Angew. Chem., Int. Ed. Engl. **1976**, 15, 293.
- (a) Ram, R. N.; Kham, A. A. Synth. Commun. 2001, 31, 841–846; (b) Lee, K.-Y.; Lee, C.-G.; Kim, J. N. Tetrahedron Lett. 2003, 44, 1231–1234.
- 9. Chen, J.-X.; Cunico, R. F. Tetrahedron Lett. 2002, 43, 8595–8597.
- 10. Characterization data are reported to see: Onistschenko, A.; Buchholz, B.; Stamm, H. *Tetrahedron* **1987**, 43, 565–576.
- 11. Cunico, R. F.; Motta, A. R. Org. Lett. 2005, 7, 771-774.

12. Characterization data for compounds 3, 4, A, and 5. All NMR spectra were obtained in CDCl3 unless otherwise indicated. 3b: mp 126.5-128.0 °C. IR: 3245, 1656, 1390, 1338, 1160, 1092, 566 cm⁻¹. ¹H NMR: δ 7.27-7.23 (m, 4H), 5.53-5.58 (m, 1H), 3.90–4.65 (m, 3H), 3.16, 3.08 (ss, 3H), 2.79, 2.73 (ss, 3H), 2.42 (s, 3H), 1.00, 0.96 (ss, 9H). 13 C NMR: δ 172.0, 171.5, 143.7, 143.4, 136.9, 129.4, 129.3, 127.3, 127.2, 81.2, 77.8, 59.4, 59.3, 56.1, 55.6, 35.7, 35.6, 34.0, 33.4, 26.5, 26.3, 21.5. Anal. Calcd for $C_{16}H_{26}N_2O_4S$: C, 56.12; H, 7.65; N, 8.18. Found: C, 56.35; H, 7.46; N, 8.16. **3d**: mp 111.5–113.0 °C. IR: 3222, 1656, 1510, 1164, 1084, 1023, 578 cm⁻¹. ¹H NMR: δ 6.73–7.73 (m, 9H), 6.54, 6.49 (dd, *J* = 8.4 Hz, 1H), 5.28, 5.19 (dd, J = 8.4 Hz, 1H), 4.22-4.66 (m, 2H), 3.73 (s, 3H), 3.03, 2.99 (ss, 3H), 2.82, 2.74 (ss, 3H). $^{13}\mathrm{C}$ NMR: δ 170.4, 170.0, 159.7, 140.5, 140.3, 132.3, 132.2, 129.1, 129.0, 128.7, 128.1, 127.2, 127.1, 127.0, 114.4, 80.5, 78.1, 57.3, 57.1, 55.8, 55.4, 55.3, 34.3, 32.9. Anal. Calcd for C18H22N2O5S: C, 57.13; H, 5.86; N, 7.40. Found: C, 57.34; H, 5.93; N, 7.14. **3e**: mp 133.0–134.0 °C. IR: 3264, 1652, 1347, 1164, 1098, 681 cm⁻¹. ¹H NMR: δ 7.04–7.7.64 (m, 8H), 6.34, 6.30 (dd, J = 8.4 Hz, 1H), 5.27, 5.17 (dd, J = 8.4 Hz, 1H), 4.22–4.66 (m, 2H), 3.05, 3.00 (ss, 3H), 2.85, 2.75 (ss, 3H), 2.38, 2.36 (ss, 3H), 2.29 (s, 3H). ¹³C NMR: δ 170.4, 170.0, 143.1, 143.0, 138.6, 138.5, 137.4, 137.3, 133.2, 132.4, 129.7, 129.3, 129.2, 127.8, 127.6, 127.3, 127.1, 80.5, 78.1, 57.5, 57.3, 55.7, 55.4, 34.3, 32.9, 21.5, 21.4, 21.1. Anal. Calcd for C19H24N2O4S: C, 60.61; H, 6.43; N, 7.44. Found: C, 60.52; H, 6.68; N, 7.47. 3f: IR: 3235, 1656, 1450, 1333, 1159, 1093, 723 cm⁻ ¹H NMR: δ 7.24–7.95 (m, 10H), 6.44, 6.40 (dd, J = 7.8 Hz, 1H), 5.40, 5.25 (dd, J = 7.8 Hz, 1H), 4.24–4.68 (m, 2H), 3.06, 3.02 (ss, 3H), 2.86, 2.77 (ss, 3H). ¹³C NMR: δ 170.2, 169.8, 140.3, 140.2, 136.0, 135.2, 132.6, 132.4, 132.3, 129.1, 128.7, 128.6, 127.9, 127.7, 127.2, 127.0, 126.4, 80.5, 78.2, 57.8, 57.6, 55.9, 55.5, 34.3, 32.9. Anal. Calcd for C17H20N2O4S: C, 58.60; H, 5.79; N, 8.04. Found: C, 58.71; H, 5.74; N, 8.25. 3g: IR: 3231, 1656, 1445, 1333, 1164, 1093, 723 cm⁻¹ ¹H NMR: δ 7.16–7.73 (m, 9H), 6.75, 6.70 (dd, J = 8.4 Hz, 1H), 5.33, 5.24 (dd, J = 8.4 Hz, 1H), 4.29-4.66 (m, 2H), 3.05, 3.04, 2.99, 2.98 (ssss, 3H), 2.84, 2.75 (ss, 3H). ¹³C NMR: δ 169.9, 169.7, 140.3, 140.2, 134.7, 134.6, 134.5, 133.9, 132.5, 132.4, 129.3, 129.2, 129.1, 128.8, 127.1, 126.9, 126.3, 80.6, 78.2, 57.0, 56.8, 55.9, 55.5, 34.7, 33.0. Anal. Calcd for C17H19N2O4SCI: C, 53.33; H, 5.00; N, 7.32. Found: C, 53.42; H, 5.11; N, 7.38. **3h**: mp 114.5–116.0 °C. IR: 3264, 1652, 1515, 1352, 1169, 1098, 719 cm⁻¹. ¹H NMR: δ 7.35–8.07 (m, 9H), 6.74, 6.72 (dd, J = 7.8 Hz, 1H), 5.47, 5.37 (dd, J = 7.8 Hz, 1H), 4.43–4.66 (m, 2H), 3.10, 3.02 (ss, 3H), 2.90, 2.80 (ss, 3H). ¹³C NMR: δ 169.2, 169.1, 150.6, 147.8, 147.7, 143.1, 142.3, 140.0, 139.9, 132.8, 128.9, 128.8, 128.7, 127.1, 126.9, 124.2, 124.0, 122.9, 80.9, 76.4, 56.9, 56.6, 56.0, 55.7, 35.2, 35.1. Anal. Calcd for C17H19N3O6S: C, 51.90; H, 4.87; N, 10.68. Found: C, 51.84; H, 4.91; N, 10.74. 31; R: 3226, 1665, 1450, 1337, 1164, 1089, 752 cm⁻¹. ¹H NMR: δ 7.19–7.77 (m, 6H), 6.54, 6.52 (dd, 148.1, 143.0, 142.9, 140.1, 140.0, 132.5, 128.8, 128.7, 127.1, 127.0, 110.7, 109.4, 109.1, 80.5, 78.2, 55.8, 55.4, 51.7, 51.5, 34.4, 32.8. Anal. Calcd for C15H18N2O5S: C, 53.24; H, 5.36; N, 8.28. Found: C, 53.33; H, 5.49; N, 8.33. **3**j: IR: 3230, 1660, 1445, 1333, 1164, 1088, 723 cm⁻¹. ¹H NMR: δ 6.84–7.79 (m, 8H), 6.51, 6.46 (dd, 1 = 8,4 H2, 1H), 5,62, 5,54 (dd, J = 8,4 H2, 1H), 4,36-4,72 (m, 2H), 3,11, 3,06 (ss, 3H), 2,87, 2,86 (ss, 3H). ¹³C NMR: δ 169.6, 169.3, 140.3, 140.2, 138.7, 137.9, 132.6, 128.9, 128.8, 127.3, 127.2, 127.0, 126.9, 126.8, 126.7, 80.8, 78.2, 56.0, 55.5, 53.0, 52.8, 34.5, 33.0. Anal. Calcd for C15H18N2O4S2: C, 50.83; H, 5.12; N, 7.90. Found: C, 50.97; H, 5.22; N, 7.99. 3k: IR: 3222, 1656, 1445, 1333, 1164, 1094, 691 cm⁻¹. ¹H NMR: δ 7.21–7.86 (m, 10H), 6.62, 6.56 (dd, *J* = 15.6 Hz, 1H), 6.27, 5.24 (dd, *J* = 8.4 Hz, 1H), 6.00, 5.97, 5.93, 5.90 (dddd, *J* = 7.2 Hz, 1H), 5.03, 4.95 (tt, J = 7.2 Hz, 1H), 4.52-4.94 (m, 2H), 3.19, 3.09 (ss, 3H), 2.98, 2.90 (ss, 3H). ¹³C NMR: δ 170.1, 169.9, 140.6, 140.4, 135.5, 135.3, 135.0, 134.3, 132.6, 132.5, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 127.3, 127.2, 126.7, 123.6, 122.6, 80.6, 78.2, 55.9, 55.8, 55.6, 55.5, 34.5, 33.0. Anal. Calcd for $C_{19}H_{22}N_2O_4S$: C, 60.94; H, 5.92; N, 7.48. Found: C, 60.83; H, 5.99; N, 7.61. **4**:¹⁰ mp 114.0– 115.5 °C. ¹H NMR: δ 7.28–7.77 (m, 4H), 6.31 (d, J = 9.6 Hz, 1H), 5.81–5.83 (m, 1H), 2.44 (s, 3H), 1.63 (s, 3H), 1.47 (s, 3H). ¹³C NMR: δ 143.5, 137.2, 129.7, 126.9, 120.3, 116.7, 22.2, 21.6, 16.2. **A**: ¹H NMR: δ 8.14 (s, 1H), 4.72, 4.58 (ss, 2H), 3.24, 3.20 (ss, 3H), 2.93, 2.87 (ss, 3H). ¹³C NMR: δ 163.3, 162.7, 81.1, 74.4, 55.3, 54.2, 32.5, 28.3. **5b**: mp 196.0–197.0 °C. IR: 3443, 3204, 1644, 1401, 1333, 1160, 1072 cm⁻¹. ¹H NMR: δ 7.77 (d, J = 7.8 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 5.39 (d, J = 9.0 Hz, 1H), 5.28 (s, 1H), 3.29 (d, J = 9.6 Hz, 1H), 2.52, 2.51 (ss, 3H), 2.43(s, 3H), 0.96 (s, 9H). ¹³C NMR: δ 170.0, 143.6, 136.6, 129.5, 127.5, 65.4, 53.5, 34.4, 26.5, 26.0, 21.5. Anal. Calcd for $C_{14}H_{22}N_2O_3S$: C, 56.35; H, 7.43; N, 9.39. Found: C, 56.48; H, 7.24; N, 9.52. **5c**: mp 218.5–220.0 °C. IR: 3340, 3257, 1644, 1327, 1167, 1088 cm⁻¹, ¹H NMR: δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.28 (d, J 2H), 6.70 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.4 Hz, 2H), 5.81 (d, J = 3.6 Hz, 1H), 5.75 (d, J = 3.6 Hz, 1H), 4.61, 4.60 (ss, 1H), 2.94 (s, 6H), 2.76, 2.75 (ss, 3H), 2.41 (s, 3H). ¹³C NMR: δ 170.2, 150.7, 143.2, 136.6, 129.4, 128.7, 127.4, 123.7, 112.5, 60.4, 40.4, 26.7, 21.5. Anal. Calcd for C₁₈H₂₃N₃O₃S: C, 59.81; H, 6.41; N, 11.63. Found: C, 59.62; H, 6.13; N, 11.45. **54** mp 113.0–114.0 °C. IR: 3340, 3265, 1651, 1509, 1333, 1156, 1088 cm⁻¹. ¹H NMR: δ 7.72–7.41 (m, 5H), 7.05 (d, 19.1, 19.5, 19.5, 19.6, 19.6, 19.6, 19.6, 19.7, 132.6, 128.9, 128.4, 127.2, 114.4, 60.1, 55.3, 26.7. Anal. Calcd for $C_{16}H_{18}N_2O_4S$: C, 57.47; H, 5.43; N, 8.38. Found: C, 57.50; H, 5.26; N, 8.10. 5e: mp 174.0-175.5 °C. IR: 3423, 3256, 1656, 1401, 1342, 1167, 1088 cm $^{-1}$. $^{1}\mathrm{H}$ NMR: δ 7.62 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 5.93 (d, J = 3.6 Hz, 1H), 5.79 (d, J = 3.6 Hz, 1H), 4.68, 4.67 (ss, 1H), 2.74, 2.73 (ss, 3H), 2.42 (s, 3H), 2.32 (s, 3H). ¹³C NMR: δ 169.6, 143.5, 138.7, 136.5, 133.7, 129.7, 129.5, 127.6, 127.3, 60.4, 26.7, 21.5, 21.1. Anal. Calcd for C₁₇H₂₀N₂O₃S: C, 61.42; H, 6.06; N, 8.43. Found: C, 61.15; H, 6.13; N, 8.18. 5f: mp 182.0–183.0 °C. IR: 3434, 3276, 1640, 1401, 1342, 1171, 1076 cm⁻¹. ¹H NMR: δ 7.72–7.13 (m, 10H), 6.07 (s, 1H), 5.74 (s, 1H), 4.79 (s, 1H), 2.75, 2.74 (ss, 3H). 13 C NMR: δ 169.3, 139.6, 136.4, 132.7, 129.1, 128.9, 128.8, 127.7, 127.2, 60.6, 26.8. Anal. Calcd for $C_{15}H_{16}N_{2}O_{3}S$: C, 59.19; H, 5.30; N, 9.20. Found: C, 59.12; H, 5.34; N, 9.11. **5g**: mp 160.5–162.0 °C. IR: 3434, 3250, 1640, 1446, 1327, 1160, 1083 cm $^{-1}$, ^{11}H NMR: δ 7.71–7.08 (m, 9H), 6.08 (s, 1H), 5.66 (s, 1H), 4.77, 4.76 (ss, 1H), 2.76, 2.75 (ss, 3H). 13 C NMR: δ 169.1, 139.6, 134.9, 134.7, 132.8, 129.1, 129.0, 127.1, 59.9, 26.7. Anal. Calcd for $C_{15}H_{15}CIN_{2}O_{3}S$: C, 53.17; H, 4.46; N, 8.27. Found: C, 53.02; H, 4.35; N, 8.14. **5h**: mp 168.5–170.0 °C. IR: 3439, 3235, 1645, 1401, 1342, 1167, 1025 cm $^{-1}$. ^{11}H NMR: δ 8.11 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.56–7.28 (m, 5H), 6.22 (s, 1H), 5.72 (s, 1H), 4.91 (s, 1H), 2.77, 2.76 (ss, 3H). 13 C NMR: δ 167.9, 148.0, 143.4, 139.4, 133.1, 129.1,

128.6, 127.1, 124.1, 59.8, 27.0. Anal. Calcd for $C_{15}H_{15}N_{3}O_{5}S$: C, 51.57; H, 4.33; N, 12.03. Found: C, 51.36; H, 4.13; N, 11.94. **5i**: mp 78.5-80.0 °C. IR: 3393, 3313, 1634, 1401, 1254, 1160, 1072 cm⁻¹. ¹H NMR: δ 8.16-7.54 (m, 8H), 6.29 (d, J = 3.0 Hz, 1H), 4.84 (s, 1H), 2.97, 2.96 (ss, 3H). ¹³C NMR: δ 172.5, 161.6, 161.2, 148.6, 132.8, 129.3, 129.2, 126.6, 110.5, 25.9, 14.3. Anal. Calcd for $C_{13}H_{14}N_2O_4S$: C, 53.05; H, 4.79; N, 9.52. Found: C, 53.24; H, 4.59; N, 9.77%. **5j**: mp 116.5-118.0 °C. IR: 3412, 3250, 1660, 1401, 1333, 1160, 1092 cm⁻¹. ¹H NMR: δ 7.77-6.82 (m, 8H), 6.38 (s, 1H), 6.33 (d, J = 6.0 Hz, 1H), 5.19 (d, J = 6.0 Hz, 1H), 2.72, 2.71 (ss, 3H). ¹³C NMR: δ 168.8, 139.5, 138.9, 132.8, 129.0, 127.2, 127.1, 126.8, 126.7, 56.2, 26.7. Anal. Calcd for $C_{13}H_{14}N_2O_3S_2$: C, 50.30; H, 4.55; N, 9.03. Found: C, 50.18; H, 4.29; N, 8.86.