View Article Online View Journal

# Journal of Materials Chemistry C

# Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: W. Cho, G. Sarada, A. Maheshwaran, Y. Gal, Y. Nam, J. Y. Lee and S. Jin, *J. Mater. Chem. C*, 2017, DOI: 10.1039/C7TC02557B.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/materials-c

# Solution-Processable Highly Efficient Deep-Red and Orange Organic Light-Emitting Diodes Based on Multi-functional Ir(III) Complexes

Woosum Cho, <sup>‡a</sup> Ganguri Sarada, <sup>‡a</sup> Athithan Maheshwaran,<sup>a</sup> Yeong-Soon Gal,<sup>b</sup> Yeonsig Nam,<sup>c</sup> Jin Yong Lee\*<sup>c</sup>, and Sung-Ho Jin<sup>\*a</sup>

<sup>a</sup>Department of Chemistry Education, Graduate Department of Chemical Materials and Institute for Plastic Information and Energy Materials, Pusan National University, Busan, 46241, Republic of Korea, \*E-mail: <u>shjin@pusan.ac.kr</u>

<sup>a</sup>Department of Fire Safety, Kyungil University, Gyeongsangbuk-do 38428, Republic of Korea

<sup>c</sup>Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea, \*Email: jinylee@skku.edu

<sup>‡</sup> These authors contributed equally to this work

Abstract: The heteroleptic deep-red iridium(III) complex, TPQIr-HT based on thiophenephenylquinoline (TPQ), and orange Ir(III) complexes, *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET based on diphenylquinoline (DPQ), were designed by attaching a carbazole-based hole transporting (HT) group and an oxadiazole (OXD)-based electron transporting (ET) group to the parent Ir(III) complexes, TPQIr and *m*-CF<sub>3</sub>DPQIr. The Ir(III) complexes TPQIr-HT showed a deep-red emission peak at 612 nm, similar to that of TPQIr, whereas *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET showed an orange emission peak at 567±1 nm, which is similar to that of *m*-CF<sub>3</sub>DPQIr. The newly functionalized Ir(III) complexes showed improved device performance compared to the Ir(III) complexes, TPQIr and *m*-CF<sub>3</sub>DPQIr, without the additional functional groups. The phosphorescent organic light-emitting diodes (PhOLEDs) fabricated using the deep-red Ir(III) complex, TPQIr-ET, achieved a maximum external quantum efficiency (EQE) of 17.47% using GraHIL as the hole injection layer (HIL). Similarly, the orange Ir(III) complex, *m*-CF<sub>3</sub>DPQIr-HT, achieved a maximum EQE of 21.61%.

# Published on 01 September 2017. Downloaded by Fudan University on 02/09/2017 03:13:15.

# 1. Introduction

Solution-processed phosphorescent organic light-emitting diodes (PhOLEDs) have attracted great interest for cost effective and large-area manufacturing of solid-state lighting and displays sources.<sup>1-5</sup> Ir(III) complexes are considered most promising emitters in OLEDs due to their high quantum yields, strong spin-orbit couplings, short triplet lifetimes, and emission color tunability from blue to deep-red.<sup>6,7</sup> Deep-red phosphorescent emitters and PhOLEDs with Commission International de L'Eclairage (CIE)  $\geq$  0.67 are still rare, despite extensive efforts applying novel dopant and host materials to attain high performance solution-processed deep-red PhOLEDs.<sup>8-11</sup> Recently, deep-red and orange PhOLEDs using Ir(III) complex emitters achieved a high external quantum efficiency (EQE) of about 26 and 28%, respectively, through vapor deposition processes.<sup>12-17</sup> The performance of solution-processed PhOLEDs is still inferior to the vacuum-deposited counterparts in terms of efficiency, turn-on voltages (V<sub>on</sub>) and efficiency roll-off at high current densities.<sup>18-22</sup> Highly efficient orange phosphorescent emitters are indispensable for the fabrication of two-component white OLEDs.<sup>23-27</sup>

Many research groups have focused on the design and synthesis of novel solutionprocessable deep-red and orange emitting phosphors with different design strategies. For example, Cao et al. reported a series of Ir(III) complexes through the incorporation of hole transporting (HT) triphenylamine units and/or electron transporting (ET) phosphine oxide groups to the cyclometalating (C^N) ligand phenylisoquinoline. Among them, one phosphor (R2) showed a maximum EQE of 7.6% with CIE coordinates of (0.68, 0.30).<sup>28</sup> Xie et al. synthesized Ir(ht-5ht-py)<sub>2</sub>(acac), by introducing hexyl side chain on the ligand to improve

miscibility with the host materials to form a homogeneous emissive layer, which exhibited a decent EQE of 8.2% with satisfactory CIE coordinates of (0.68, 0.31) for saturated red emission.<sup>29</sup>

In our previous works, we reported deep-red emitting solution-processable Ir(III) complexes *o*-CF<sub>3</sub>DPQIrtmd based on diphenylquinoline (DPQ),<sup>30</sup> (FPQ)<sub>2</sub>Ir(pic-N-O) based on fluorenyl-phenylquinoline (FPQ),<sup>31</sup> and (EO-Cz-PQ)<sub>2</sub>Ir(acac) based on carbazolyl (Cz)-phenylquinoline (PQ)<sup>32</sup> ligands. Their PhOLEDs exhibited EQEs of 3.7, 8.9 and 4.74% with CIE coordinates of (0.663, 0.336), (0.660, 0.338) and (0.65, 0.34), respectively. We also reported a thiophene-phenylquinoline (TPQ)-based highly efficient solution-processable homoleptic Ir(III) complex, Ir(Th-PQ)<sub>3</sub>, with deep-red CIE coordinates (0.64, 0.34).<sup>33</sup> Using the same C^N ligand (TPQ), we have also reported a deep-red emitting heteroleptic Ir(III) complex, TPQIr-ET,<sup>34</sup> by incorporating an ET functional moiety, oxadiazole (OXD) unit, onto the ancillary ligand. TPQIr-ET achieved a high EQE of 20.59% in solution-processable PhOLEDs with CIE coordinates (0.673, 0.323) due to the balanced charge carrier injection by the ET functional group. In addition, we reported the orange emitting solution-processable Ir(III) complexes *m*-CF<sub>3</sub>DPQIrpic, *p*-CF<sub>3</sub>DPQIrpic and (DPQ)<sub>2</sub>Ir(pic-N-O) using DPQ-based C^N ligands and their PhOLEDs exhibited EQEs of 17.1, 12.8 and 14.2%, respectively.<sup>30,31</sup>

Here, we synthesized a new deep-red heteroleptic Ir(III) complex, TPQIr-HT (Scheme 2), suitable for solution process, by incorporating an HT functional group, (9-(3-(9H-carbazol-9-yl)phenyl)-3-ethyl-9H-carbazol) (mCP), onto the ancillary ligand to facilitate charge balance in the emitting layer (EML). We also synthesized new orange emitting heteroleptic Ir(III) complexes, *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET (Scheme 3), for solution process by incorporating ET and HT functional groups on the ancillary ligand. The PhOLED of TPQIr-HT furnished deep-red CIE coordinates of (0.67, 0.32) and a high EQE of 17.47%. Also, the

PhOLEDs of m-CF<sub>3</sub>DPQIr-HT and m-CF<sub>3</sub>DPQIr-ET exhibited common orange CIE coordinates of (0.54, 0.46) and a high EQE of 21.61 and 18.39%, respectively.

# 2. Experimental

### 2.1 General information

All chemicals and reagents were purchased from Aldrich Chemical Co. and used without further purification. Compound 1, TPQIr-Cl in Scheme 2<sup>34,35</sup>; compound 6, mCPCH<sub>2</sub>Br and OXDCH<sub>2</sub>Br in Scheme 3 were synthesized using the reported procedures.<sup>35,36</sup> <sup>1</sup>H NMR spectra were recorded on a Varian Mercury Plus 300 MHz spectrometer in CDCl<sub>3</sub> using tetramethylsilane as an internal standard. Thermal gravimetric analysis (TGA) was carried out by Mettler Toledo TGA/SDTA 851e under N<sub>2</sub> atmosphere at a heating rate of 10 °C/min. The UV-vis absorption and the fluorescence spectra were recorded with JASCO V-570 and Hitachi F-4500 fluorescence spectrophotometers at room temperature (RT), respectively. Cyclic voltammetry (CV) measurements were performed with a CHI 600C potentiostat (CH Instruments) at a scan rate of 100 mV/s using anhydrous dichloromethane ( $CH_2Cl_2$ ) and 0.1 M tetrabutylammonium tetrafluoroborate (TBABF<sub>4</sub>) as the solvent and electrolyte, respectively, at RT. A platinum disc was used as the working electrode, a platinum wire as the counter electrode, and a Ag/AgCl as the reference electrode. The potentials were referenced to the ferrocene/ferrocenium redox couple (Fc/Fc+). A sublimated grade of 4,4',4"-tris(Ncarbazolyl)-triphenylamine (TCTA), 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi), 4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC), and 2,6-bis(3-(9H-Carbazol-9-yl)phenyl)pyridine (26DCzPPy) were purchased from OSM and used as the host materials for the EMLs of the orange and deep-red emitting PhOLEDs. A sublimated grade of 1,3,5-tri[(3-pytidyl)-phen-3-yl]benzene (TmPyPB) purchased from OSM was used as an ET layer (ETL). The process of fabrication and characterizations of PhOLEDs are described in

supporting information (SI).

Published on 01 September 2017. Downloaded by Fudan University on 02/09/2017 03:13:15.

### 2.2 Synthesis of 9-(3-(9H-carbazol-9-yl)phenyl)-9H-carbazole-3-carbaldehyde (2).

Phosphoryl chloride (200 mmol) was added dropwise into N,N-dimethylformamide (DMF, 200 mmol) in an ice bath. The mixture was stirred at RT for 1 h and a solution of 1,3-di(9H-carbazol-9-yl)benzene (1, 3.27 g, 8 mmol) in 10 mL of DMF was added. The reaction mixture was heated at 130 °C with stirring for 24 h and then poured into ice water. After neutralizing with a base, the mixture was extracted with chloroform (CHCl<sub>3</sub>). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed by distillation under vacuum. The solid residue was purified by column chromatography on silica gel (hexane:ethyl acetate (EtOAc), 4:1 v/v) to obtain a whitish-yellow solid, 2 (1.92 g, 55%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 10.13 (s, 1H), 8.69 (s, 1H), 8.24-8.21 (d, 1H), 8.17-8.15 (d, 2H), 8.00-7.98 (d, 1H), 7.90-7.87 (m, 1H), 7.80 (m, 2H), 7.70-7.68 (d, 2H), 7.60-7.56 (m, 4H), 7.47-7.42 (m, 3H), 7.35-7.30 (t, 2H).

### 2.3 Synthesis of (9-(3-(9H-carbazol-9-yl)-9H-carbazol-3-yl)methanol (mCPCH<sub>2</sub>OH).

To a solution of compound 2 (1.92 g 4.34 mmol) in ethanol (40 mL) and CH<sub>2</sub>Cl<sub>2</sub> (40 mL), NaBH<sub>4</sub> was added slowly at RT. The reaction mixture was stirred for 3 h at RT and then poured into water (70 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed with water, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum to get the crude product. The desired product, mCPCH<sub>2</sub>OH, was obtained as a colorless solid (1.8 g, 94%) upon recrystallization in toluene. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.15 (s, 4H), 7.85-7.78 (m, 2H), 7.70-7.69 (m, 2H), 7.53-7.44 (m, 8H), 7.34-7.26 (m, 3H), 4.88 (d, 2H), 1.78 (s, 1H).

# 2.4 Synthesis of bis[4-phenyl-2-(thiophen-2-yl)quinoline]iridium (9-(3-(9H-carbazol-9-yl)-9H-carbazol-3-yl) piconlinate (TPQIr-HT).

A mixture of TPQIr-Cl (1.50 g, 1.63 mmol), mCPCH<sub>2</sub>OH (1.07 g, 2.45 mmol), and K<sub>2</sub>CO<sub>3</sub>

(2.18 g, 16.3 mmol) in DMF (20 mL) was stirred at 80 °C under N<sub>2</sub> atmosphere for 12 h. The resulting mixture was cooled to RT followed by the addition of cold water and further extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and then the solvent was evaporated under reduced pressure. The solid crude product was purified by column chromatography on silica gel (EtOAc:CH<sub>2</sub>Cl<sub>2</sub>:hexane, 3:5:2 v/v/v) to furnish a red powder, TPQIr-HT (0.78 g, 36%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.15 (s, 4H), 7.85-7.78 (m, 2H), 7.70-7.69 (m, 2H), 7.53-7.44 (m, 8H), 7.34-7.26 (m, 3H), 4.88 (s, 2H), 1.78 (s, 1H). Anal. calcd for C<sub>75</sub>H<sub>48</sub>IrN<sub>5</sub>O<sub>3</sub>S<sub>2</sub>: C, 68.06; H, 3.66; N, 5.29; found C, 67.91; H, 3.60; N, 5.23.

# 2.5 Synthesis of bi[4-phenyl-2-(3-(trifluoromethyl)phenyl)quinoline]iridium piconlinate hydroxyl (*m*-CF<sub>3</sub>DPQIr-OH) (7).

The dimer (2 g, 1.08 mmol) and 3-hydroxypicolinic acid (0.752 g, 5.41 mmol) were mixed with Na<sub>2</sub>CO<sub>3</sub> (1.14 g, 10.92 mmol) in 2-ethoxyethanol (50 mL). The mixture was stirred for 12 h at RT under N<sub>2</sub> atmosphere. After completion of the reaction, the mixture was poured into water and extracted with CH<sub>2</sub>Cl<sub>2</sub>, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and the solvent was evaporated under vacuum. The residue was then purified by column chromatography on silica gel (hexane:EtOAc, 6:4 v/v) to furnish compound *m*-CF<sub>3</sub>DPQIr-OH (7) as a dark orange solid (0.66 g, 60%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 13.28 (s, 1H), 8.70-8.67 (d, J=9.3 Hz, 1H), 8.16 (s, 1H), 8.08 (m, 3H), 7.89-7.86 (d, J=7.5 Hz, 2H), 7.63 (s, 11H), 7.48-7.34 (m, 4H), 7.26-7.22 (m, 2H), 7.03-7.01 (m, 3H), 6.93-6.90 (d, J=8.7 Hz, 1H), 6.50-6.47 (d, 1H).

# 2.6 Synthesis of bi[4-phenyl-2-(3-(trifluoromethyl)phenyl)quinoline]iridium (9-(3-(9H-carbazol-9-yl)-9H-carbazol-3-yl) piconlinate (*m*-CF<sub>3</sub>DPQIr-HT).

A mixture of *m*-CF<sub>3</sub>DPQIr-OH (0.5 g, 0.486 mmol), mCPCH<sub>2</sub>Br and Cs<sub>2</sub>CO<sub>3</sub> (0.32 g,

0.973 mmol) in acetone (25 mL) was refluxed for 8 h under N<sub>2</sub> atmosphere. After cooling to RT, the solvent was evaporated and the residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub>. The organic phase was washed with water, dried with Na<sub>2</sub>SO<sub>4</sub> and purified using flash chromatography on silica gel (hexane:EtOAc, 3:2 v/v) to afford *m*-CF<sub>3</sub>DPQIr-HT as a dark orange solid (0.42 g, 60%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.99-8.96 (d, J=8.7 Hz, 1H), 8.17-8.08 (q, J=27 Hz, 6H), 8.03-8.01 (d, J=6 Hz, 2H), 7.78-7.70 (m, 3H), 7.66-7.58 (m, 15H), 7.45-7.36 (m, 10H), 7.30-7.28 (m, 5H), 7.05-6.96 (q, J=26.4 Hz, 2H), 6.88-6.86 (d, J=6.9 Hz, 1H), 6.80-6.75 (t, J=14.7 Hz, 1H), 6.65-6.60 (t, J=14.7 Hz, 1H), 6.41-6.39 (d, J=7.8 Hz, 1H), 5.22 (s, 2H). Anal. calcd for C<sub>81</sub>H<sub>50</sub>F<sub>6</sub>IrN<sub>5</sub>O<sub>3</sub>: C, 67.21; H, 3.48; N, 4.84; found C, 67.30; H, 3.42; N, 4.79.

# 2.7 Synthesis of bi[4-phenyl-2-(3-(trifluoromethyl)phenyl)quinoline]iridium 4-(4-(5-phenyl-1,3,4- oxadiazol-2-yl)phenoxy)picolinate (*m*-CF<sub>3</sub>DPQIr-ET).

A mixture of *m*-CF<sub>3</sub>DPQIr-OH (0.5 g, 0.486 mmol), OXDCH<sub>2</sub>Br, and Cs<sub>2</sub>CO<sub>3</sub> (0.32 g, 0.973mmol) in acetone (25 mL) was refluxed for 8 h under N<sub>2</sub> atmosphere. After cooling to RT, the solvent was evaporated and the residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub>. The organic phase was washed with water, dried over Na<sub>2</sub>SO<sub>4</sub> and purified using flash chromatography on silica gel (hexane:EtOAc, 4:2 v/v) to afford *m*-CF<sub>3</sub>DPQIr-ET as an orange solid (0.43 g, 70%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 9.02-8.99 (d, J=9.3 Hz, 1H), 8.16-8.01 (m, 8H), 7.92-7.89 (t, J =17.4 Hz, 2H), 7.67-7.55 (m, 16H), 7.41-7.48 (m, 4H), 7.19 (m, 2H), 7.05-7.00 (q, 2H), 6.91 (m, 2H), 6.45-6.42 (d, J=9 Hz, 1H), 5.18 (s, 2H). Anal. calcd for C<sub>65</sub>H<sub>40</sub>F<sub>6</sub>IrN<sub>5</sub>O<sub>4</sub>: C, 61.90; H, 3.20; N, 5.55; found C, 61.81; H, 3.16; N, 5.63.

# 3. Results and discussion

The three Ir(III) complexes, TPQIr-HT, m-CF<sub>3</sub>DPQIr-HT and m-CF<sub>3</sub>DPQIr-ET, were successfully synthesized according to the routes shown in Schemes 2 and 3. The molecular

structures were thoroughly characterized by <sup>1</sup>H NMR spectroscopy and elemental analysis. TPQIr-HT, *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET showed moderate thermal stability with decomposition temperatures ( $\Delta T_{5\%}$ , corresponding to 5% weight loss) comparable to those of TPQIr and m-CF<sub>3</sub>DPQIr (Fig. S1). As shown in Fig. 1, UV-vis absorption and photoluminance (PL) spectra of TPQIr, TPQIr-HT, TPQIr-ET, m-CF3DPQIr, m-CF3DPQIr-HT and m-CF3DPQIr-ET measured at RT in CHCl3 solution (10-5 M) and in film state, resemble the UV-vis absorption and PL spectrum of the parent Ir(III) complexes, TPQIr and m-CF3DPQIr. The introduction of mCP and OXD groups on picolinic acid did not affect the ground or emissive excited state energies of the Ir(III) complexes. The strong absorption peaks at 300 and 350 nm can be assigned to the spin-allowed  ${}^{1}\pi - \pi^{*}$  bands of the C^N ligands. The low-energy broad bands between 430 and 560 nm were attributed to the metalto-ligand charge transfer excitations, <sup>1</sup>MLCT and <sup>3</sup>MLCT, representing the strong spin-orbit coupling effects induced by the heavy metal center. Upon irradiation, TPQIr-HT emitted bright red light at the maximum PL (PL<sub>max</sub>) of 612 nm, which was slightly red shifted from TPQIr and TPQIr-ET (Fig. 1a). Also *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET emitted bright orange light at the PL<sub>max</sub> of 567-568 nm, which was slightly red shifted from m-CF<sub>3</sub>DPQIr (Fig. 1b). Thermal, photophysical and electrochemical properties of the new Ir(III) complexes are presented in Table 1.

The PL quantum yield ( $\Phi_{PL}$ ) of TPQIr-HT, *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET were measured in degassed CHCl<sub>3</sub> solution at RT using Ir(pic)<sub>2</sub>(acac) ( $\Phi_{PL} = 0.20$  in CHCl<sub>3</sub>) as standard. TPQIr-HT exhibited  $\Phi_{PL}$  of 0.20, compared to 0.68 and 0.66 for *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET, respectively. CV analysis was carried out for TPQIr-HT, *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET to find the highest occupied molecular orbital (HOMO) energy level and the lowest unoccupied molecular orbital (LUMO) energy level. The experimental HOMO energies were -5.24, -5.41 and -5.42 eV and the LUMO were -3.29, -3.11 and -3.10 eV for TPQIr-HT, *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET (Fig. S2), respectively. Both the HOMO and LUMO levels of TPQIr-HT were very close to the corresponding energy levels of TPQIr and TPQIr-ET.<sup>34</sup> HOMO and LUMO of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET were almost the same as the corresponding energy levels of *m*-CF<sub>3</sub>DPQIr<sup>30</sup>, indicating that the introduction of either an carbazole-based HT or OXD-based ET group on the ancillary ligand did not greatly influence the frontier orbital energy levels of these Ir(III) complexes, similar to their photophysical properties.

Published on 01 September 2017. Downloaded by Fudan University on 02/09/2017 03:13:15.

The density functional theory (DFT) analysis for Ir(III) complexes was performed with the suite of Gaussian09 programs using B3LYP functional with 6-31G(d) basis set for C, H, N, O, F, and S, and LANL2DZ for Ir atom.<sup>37</sup> The HOMO electron density of TPQIr-HT was majorly distributed over the Ir(III) metal and on the thiophene-quinoline rings of TPQ, while the LUMO was located on the phenylquinoline of TPQ (Fig. S3). This shows that MLCT probably contributed to the transition properties. To clearly understand the spatial distribution of the frontier molecular orbitals, the contour plots of HOMO to HOMO-2 and LUMO to LUMO+2 of *m*-CF<sub>3</sub>DPOIr, *m*-CF<sub>3</sub>DPOIr-HT and *m*-CF<sub>3</sub>DPOIr-ET are given in Fig. S4, Fig. S5 and Fig. S6, respectively, and the calculated energies are summarized in Table S1. In general, for the three orange Ir(III) complexes, the LUMOs were mainly located on picolinic acid and the *m*-CF<sub>3</sub>DPQ main ligand. The HOMOs and HOMO-1 of *m*-CF<sub>3</sub>DPQIr and *m*-CF<sub>3</sub>DPQIr-ET were located largely on the metal center and the -CF<sub>3</sub> substituted phenyl ring of the cyclometalating ligands. Conversely, the HOMO and HOMO-1 of m-CF<sub>3</sub>DPQIr-HT were located entirely on mCP, which reveals the intramolecular energy transfer from mCP to the Ir(III) complex unit.<sup>33,36</sup> Noticeably, the metal atom contributed HOMO and HOMO-1 for m-CF<sub>3</sub>DPQIr and m-CF<sub>3</sub>DPQIr-ET (Fig. 4 and 6), whereas it contributed HOMO-2 for m-

CF<sub>3</sub>DPQIr-HT. Hence, this in depth analysis of the molecular orbitals (HOMO to HOMO-2 and LUMO to LUMO+2) implies the MLCT character of the transitions.

The electron and hole mobilities of TPOIr-HT were measured by using the space-charge limited current (SCLC)<sup>39</sup> method with a device configuration of ITO/LiF (10 nm)/Ir(III) complex (100 nm)/LiF (1 nm)/Al (100 nm) for the electron-only device and an ITO/PEDOT:PSS (40 nm)/Ir(III) complex (100 nm)/MoO<sub>3</sub> (5 nm)/Al (100 nm) for the holeonly device. The electron and hole mobilities of TPQIr and TPQIr-ET were also measured by the same method (Table S2). The current density versus voltage  $(J-V^2)$  plots for the devices are shown in Fig. S7. The electron and hole mobilities of TPOIr-HT were  $8.72 \times 10^{-5}$  and  $2.84 \times 10^{-4} \text{ cm}^2/\text{V}$  s, respectively. This result clearly shows that tethering an mCP unit to the Ir(III) complex not only improved the hole mobility but also the electron mobility, as compared with TPQIr. The mobility results of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET also followed the same trend of TPQIr-HT and TPQIr-ET, i.e., the electron and hole mobilities of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET were 3.22 x  $10^{-5}$  and 6.02 x  $10^{-4}$  cm<sup>2</sup>/V s and 4.73 x  $10^{-4}$  and 8.32 x  $10^{-5}$  cm<sup>2</sup>/V s, respectively. S. -W. Lin et al. reported that hole and electron mobilities of mCP are in the order of  $10^{-4}$  cm<sup>2</sup>/V s and also reported that mCP's hole mobility is higher than electron mobility.<sup>40</sup> However, the carrier mobilities of TPQIr and m-CF3DPQIr is lower compared to mCP. Thus by the attachment of mCP-based HT unit, the carrier mobilities of both electron and hole is improved.

In order to evaluate the PhOLEDs performance of TPQIr-HT as an emitter, we fabricated deep-red PhOLEDs with a simple device structure containing a solution-processed hole injection layer (HIL) and EML (Fig. 2a). The device configuration adopted in this study was an ITO/GraHIL/TCTA:TPBi:Ir(III) complex (10 wt %)/TmPyPB/LiF/Al, where TCTA:TPBi acts as the mixed cohost for the EML. Here, GraHIL, a self-organized polymeric gradient

HIL, composed of PEDOT:PSS and a perfluorinated oligomer with a low surface energy tetrafluorethylene-perfluoro-3,6-dioxa-4-methyl-7-octene-sulfonic acid oligomer (PFI) in 2:1 weight ratio,<sup>41-43</sup> was used as HIL. GraHIL has a gradient work function, which gradually increases from ~4.8 to ~5.63 eV due to the self-organization of PFI. This phenomenon is very important to realize an efficient hole injection into the EML by reducing the injection barrier at the HIL/EML interface.<sup>41</sup> Therefore, the deep-red PhOLEDs do not require an additional layer for hole injection between HIL and EML. TmPyPB was used as ETL. We also fabricated control devices using TPQIr and TPQIr-ET as dopants to compare the effect of the mCP group on the device performance.

Published on 01 September 2017. Downloaded by Fudan University on 02/09/2017 03:13:15.

As anticipated, GraHIL-based deep-red PhOLEDs showed better performance than did the deep-red PhOLEDs, where PEDOT:PSS was used as HIL (Table 2 and Table S3), due to the reduced injection barrier for the former one resulting in low  $V_{on}$ . For instance, the turn-on voltage ( $V_{on}$ ) of the GraHIL-based deep-red PhOLEDs was about 4.2 V, while the  $V_{on}$  of the PEDOT:PSS-based deep-red PhOLEDs was in the range of 6.7-7.0 V (Fig. S8). Data of the deep-red PhOLEDs containing PEDOT:PSS are provided in Table S3. Fig. 2b and 2c shows the current density-voltage-luminance (J-V-L) and current efficiency-J-power efficiency (CE-J-PE) characteristics of the deep-red PhOLEDs using GraHIL. The CE and PE of the optimized deep-red PhOLED of TPQIr-HT were 15.87 cd/A and 5.05 lm/W, respectively, which were higher than those of CE (11.53 cd/A) and PE (4.26 lm/W) of TPQIr. Similarly, the deep-red PhOLED of TPQIr-HT exhibited a maximum EQE of 17.47%, compared to 13.70% for TPQIr (Fig. 3a). This is one of the best EQEs reported for solution-processed red/deep-red PhOLEDs (see Table S4, which summarizes the reported device performances). The high hole and electron mobility of TPQIr-HT relative to TPQIr resulted in good charge balance in EML, which enhanced the performance of TPQIr-HT in PhOLEDs. However, the

deep-red PhOLED of TPQIr-ET showed better performance (EQE: 21.48%) than did TPQIr-HT in the similar device structure. Mobility study revealed that TPQIr-ET-based deep-red PhOLED had better electron mobility than hole mobility, which was reversed from the case of the TPQIr-HT-based device. Actually, the mobility of electron-carriers is several orders of magnitude lower than that of hole-carriers in organic materials.<sup>44</sup> Therefore, the introduction of the ET group into the Ir(III) complex enhanced the mobility of the low mobile electron carriers, and thus balanced the injected charge carriers in the EML.

The orange PhOLEDs exhibited a similar trend to the deep-red PhOLEDs as shown in Table 3. The device configuration adopted in this study was ITO/PEDOT:PSS/TAPC:26DCzPPy:Ir(III) complex (10 wt%)/TmPyPB/LiF/Al, where TAPC:26DCzPPy acts as the mixed cohost for the EML. We also fabricated a control device using *m*-CF<sub>3</sub>DPQIr as the dopant to compare the effect of mCP and OXD groups on device performance.

The J-V-L and CE-J-PE characteristics of the orange PhOLEDs doped with *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET are summarized in Fig. 2e and 2f. The CE and PE of the optimized orange PhOLEDs of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET were 52.16 cd/A and 24.56 lm/W and 46.59 cd/A and 21.03 lm/W, respectively, which were higher than those of the CE (44.23 cd/A) and PE (19.85 lm/W) of *m*-CF<sub>3</sub>DPQIr. Also, the orange PhOLEDs of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET exhibited maximum EQEs of 21.61 and 18.39%, compared to 17.34% for *m*-CF<sub>3</sub>DPQIr (Fig. 3d). This is one of the highest EQEs reported for solution-processed orange PhOLEDs (see Table S5, which summarizes the reported device performances). The improvement in performance of the orange PhOLEDs of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET compared to the PhOLED of *m*-CF<sub>3</sub>DPQIr was attributed to the good charge balance in EML.

In addition, good solubility and thin film formability of the EML materials are also important factors for the fabrication of high performance solution-processed PhOLEDs. Therefore, we analyzed the surface morphology of the EML films consisting of TPQIr, TPQIr-HT, TPQIr-ET, *m*-CF<sub>3</sub>DPQIr, *m*-CF<sub>3</sub>DPQIr-HT, and *m*-CF<sub>3</sub>DPQIr-ET using atomic force microscopy (AFM). The root-mean-square (RMS) surface roughness values were 0.30, 0.34, 0.40, 0.41, 0.40, and 0.43 nm for TPQIr, TPQIr-HT, TPQIr-ET, *m*-CF<sub>3</sub>DPQIr, *m*-CF<sub>3</sub>DPQIr-HT, and *m*-CF<sub>3</sub>DPQIr-ET, respectively (Fig. S9). This suggests that the thin film formability of TPQIr-HT and *m*-CF<sub>3</sub>DPQIr-HT is better than that of TPQIr-ET and *m*-CF<sub>3</sub>DPQIr-ET, respectively, in EML due to the better solubility of the carbazole (mCP) than the OXD moiety in chlorobenzene. The deep-red PhOLEDs, irrespective of the dopant, HIL and luminance range, exhibited the same electroluminescence (EL) peak at 624 nm (Fig. 3b) and the CIE coordinates of (0.67, 0.32) (Fig. 3c) representing the saturated deep-red emission, which is highly sought after for deep-blue emission.

The CIE coordinates and the efficiency of TPQIr-HT were better than our previously reported solution-processed PhOLEDs containing phenylquinoline-based deep-red emitting heteroleptic Ir(III) complexes such as o-LIrtmd,<sup>30</sup> (FPQ)<sub>2</sub>Ir(pic-N-O)<sup>31</sup> and (EO-CVz-PhQ)<sub>2</sub>Ir(acac).<sup>32</sup> Similarly, the orange PhOLEDs exhibited the same EL peak at 575 nm (Fig. 3e) and the same CIE coordinates of (0.54, 0.46) (Fig. 3f), irrespective of the dopant and luminance range.

# 4. Conclusion

In summary, we attached an mCP-based HT unit and an OXD-based ET unit to the heteroleptic Ir(III) complexes, TPQIr and m-CF<sub>3</sub>DPQIr, to achieve a good charge balance in EML by improving the HT and ET properties of TPQIr-HT, m-CF<sub>3</sub>DPQIr-HT and m-CF<sub>3</sub>DPQIr-ET as compared with the parent Ir(III) complexes, TPQIr and m-CF<sub>3</sub>DPQIr. As a

dopant, the new Ir(III) complex, TPQIr-HT, showed deep-red EL in solution-processed PhOLEDs. Introduction of the mCP moiety improved the carrier mobilities and device performance relative to TPQIr, without affecting the deep-red CIE coordinates (0.67, 0.32). We achieved a high EQE of 17.47% for the deep-red PhOLED of TPQIr-HT, which is superior to the performance of TPQIr (EQE: 13.70%). As dopants, the new Ir(III) complexes, m-CF<sub>3</sub>DPQIr-HT and m-CF<sub>3</sub>DPQIr-ET, also showed orange EL in solution-processed PhOLEDs. We achieved high EQEs of 21.64% and 18.39% for the orange PhOLED of m-CF<sub>3</sub>DPQIr-HT and m-CF<sub>3</sub>DPQIr-ET, respectively, which is higher than that of m-CF<sub>3</sub>DPQIr (EQE: 17.34%). The overall results of these PhOLEDs with multi-functional Ir(III) complexes show that the introduction of new functional units (HT/ET) is an effective method to improve the device performance.

# Acknowledgment

W. Cho and G. Sarada contributed equally to this work. This work was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea (NRF-2013M3C1A3065522).

# References

- T. Qin, J. Ding, M. Baumgarten, L. Wang and K. Mullen, *Macromol. Rapid* Commun., 2012, 33, 1036.
- 2. C.-L. Ho, H. Li and W.-Y. Wong, J. Organomet. Chem., 2014, 751, 261.
- X. Xu, X. Yang, J. Zhao, G. Zhou and W.-Y. Wong, Asian J. Org. Chem. 2015, 4, 394.

- 4. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang and X. Peng, Nature, 2014, 515, 96.
- J. Ding, J. Lu, Y. Cheng, Z. Xie, L. Wang, X. Jing and F. Wang, *Adv. Funct. Mater.*, 2008, 18, 2754.
- 6. Y. You, S. Y. Park, Dalton Trans., 2009, 1267.

- 7. G. J. Hedley, A. Ruseckas, I. D.W. Samuel, Chem. Phys. Lett., 2008, 450, 292.
- 8. R. Wang, D. Liu, R. Zhang, L. Deng and J. Li, J. Mater. Chem., 2012, 22, 1411.
- Y.-L. Deng, L.-S. Cui, Y. Liu, Z.-K. Wang, Z.-Q. Jiang and L.-S. Liao, J. Mater. Chem. C, 2016, 4, 1250.
- S. Cao, L. Hao, W.-Y. Lai, H. Zhang, Z. Yu, X. Zhang, X. Liu and W. Huang, J. Mater. Chem. C, 2016, DOI: 10.1039/c6tc00856a.
- M. Zhu, Y. Li, S. Hu, C. Li, C. Yang, H. Wu, J. Qin and Y. Cao, Chem. Commun., 2012, 48, 2695.
- B. Jiang, Y. Gu, J. Qin, X. Ning, S. Gong, G. Xie and C. Yang, *J. Mater. Chem. C*, 2016, 4, 3492.
- X. Liu, B. Yao, Z. Zhang, X. Zhao, B. Zhang, W.-Y. Wong, Y. Cheng and Z. Xie, J. Mater. Chem. C, 2016, 4, 5787.
- 14. G. Li, Y. Feng, T. Peng, K. Ye, Y. Liu and Y. Wang, J. Mater. Chem. C, 2015, 3, 1452.
- G. Li, D. Zhu, T. Peng, Y. Liu, Y. Wang and M. R. Bryee, *Adv. Funct. Mater.*, 2014, 24, 7420.
- R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu and J. Li, *Adv. Mater.*, 2011, 23, 2823.
- 17. H.-H. Chou, Y.-K. Li, Y.-H. Chen, C.-C. Chang, C.-Y. Liao and C.-H. Cheng, ACS

Appl. Mater. Interfaces, 2013, 5, 6168.

- H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, H. Fujikake, *Adv. Mater.*, 2012, 24, 5099.
- K.-H. Kim, J.-L. Liao, S. W. Lee, B. Sim, C.-K. Moon, G.-H. Lee, H. J. Kim, Y. Chi, J.-J. Kim, *Adv. Mater.*, 2016, 28, 2526.
- M.-C. Tang, C. K.-M. Chan, D. P.-K. Tsang, Y.-C. Wong, M. M.-Y. Chan, K. M.-C.
   Wong and V. W.-W. Yam, *Chem. Eur. J*, 2014, 20, 15233.
- 21. X. Yang, X. Xu, J. Zhao, J. Dang, Z. Huang, X. Yan, G. Zhou and D. Wang, *Inorg. Chem.*, 2014, **53**, 12986.
- 22. H. J. Bae, J. Chung, H. Kim, J. Park, K. M. Lee, T.-W. Koh, Y. S. Lee, S. Yoo, Y. Do and M. H. Lee, *Inorg. Chem.*, 2014, 53, 128.
- S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Watzer, B. Lussem and K. Leo, *Nature*, 2009, 459, 234.
- 24. C. Fan, L. Zhu, B. Jiang, Y. Li, F. Zhao, D. Ma, J. Qin and C. Yang, J. Phys. Chem. C, 2013, 117, 19134.
- 25. C.-C. Chen, H.-Y. Lin, C.-H. Li, J.-H. Wu, Z.-Y. Yu, L.-L. Lee, M.-S. Jeng, C.-C. Lin, J.-H. Jou and H.-C. Kuo, *Int. J. Photoenergy*, 2014, 6. article ID 851371.
- 26. H. Wu, G. Zhou, J. Zou, C. -L. Ho, W. -Y. Wong, W. Yang, J. Peng and Y. Cao, Adv. Mater., 2009, 21, 4181.
- 27. B. Zhang, G. Tan, C. -S. Lam, B. Yao, C. -Lam. Ho, L. Liu, Z. Xie, W. -Y. Wong, J. Ding and L. Wang, *Adv. Mater.*, 2012, **24**, 1873.
- M. Zhu, Y. Li, B. Jiang, S. Gong, H. Wu, J. Qin, Y. Cao and C. Yang, Org. Electron., 2015, 26, 400.
- 29. X. Liu, S. Wang, B. Yao, B. Zhang, C.-L. Ho, W.-Y. Wong, Y. Cheng and Z. Xie

Org. Electron., 2015, 21, 1.

- 30. G. Sarada, J. Yoon, W. Cho, M. Cho, D. W. Cho, S. O. Kang, Y. Nam, J. Y. Lee and S.-H. Jin, *J. Mater. Chem. C*, 2016, 4, 113.
- 31. J. Park, J. S. Park, Y. G. Park, J. Y. Lee, J. W. Kang, J. Liu, L. Dai and S.-H. Jin, Org. *Electron.*, 2013, 14, 2114.
- S.-J. Lee, J.-S. Park, M. Song, I. A. Shin, Y.-I. Kim, J. W. Lee, J.-W. Kang, Y.-S. Gal,
   S. Kang, J. Y. Lee, S.-H. Jung, H.-S. Kim, M.-Y. Chae and S.-H. Jin, *Adv. Funct. Mater.*, 2009, 19, 2205.
- T. Giridhar, T.-H. Han, W. Cho, C. Saravanan, T.-W. Lee and S.-H. Jin, *Chem. –Eur. J.*, 2014, **20**, 8260.
- 34. T. Giridhar, C. Saravanan, W. Cho, Y. G. Park, J. Y. Lee and S.-H. Jin, *Chem. Commun.*, 2014, **50**, 4000.
- 35. T.-H. Kwon, M. K. Kim, J. Kwon, D.-Y. Shin, S. J. Park, C.-L. Lee, J.-J. Kim and J.-I. Hong, *Chem. Mater.*, 2007, **19**. 3673.
- 36. Z. Si, J. Li, B. Li, F. Zhao, S. Liu and W. Li, Inorg. Chem., 2007, 46, 6155.
- M. J. Frisch, et al., Al, Gaussian 09, Revision A. 1, Gaussian Inc, Wallingford, CT, 2009.
- 38. C. Yao, J. Li, J. Wang, X. Xu, R. Liu, L. Li, J. Mater. Chem. C, 2015, 3, 8675.
- 39. C. -G. Zhen, Y. -F. Dai, W. -J. Zeng, Z. Ma, Z. -K. Chen, J. Kieffer, Adv. Funct. Mater., 2011, 21, 699.
- 40. J.-H. Jou, W.-B. Wang, S.-Z. Chen, J.-J. Shyue, M.-F. Hsu, C.-W. Lin, S.-M. Shen, C.-J. Wang, C.-P. Liu, C.-T. Chen, M.-F. Wu and S.-W. Liu, *J. Mater. Chem.*, 2010, 20, 8411.
- 41. T. -W. Lee, Y. Chung, O. Kwon, J. -J. Park, Adv. Funct. Mater., 2007, 17, 390.

- 42. T. -H. Han, M. -R. Choi, S. -Y. Woo, S. -Y. Min, C. -L. Lee, T. -W. Lee, *Adv. Mater.*, 2012, **24**, 1487.
- 43. T. -H. Han, Y. Lee, M. -R. Choi, S. -H. Woo, S. -H. Bae, B. H. Hong, J. -H. Ahn, T. -W. Lee, *Nat. Photonics*, 2012, 6, 105.
- 44. H. Yersin, Highly efficient OLEDs with Phosphorescent Materials, WILEY-VCH Verlag GmbH & Co., 2008, p. 395.



Our previous work



**Scheme 1.** Molecular structures of TPQIr-HT, TPQIr, TPQIr-ET, *m*-CF<sub>3</sub>DPQIr-HT, *m*-CF<sub>3</sub>DPQIr-ET, and *m*-CF<sub>3</sub>DPQIr.



Scheme 2. Synthetic route of TPQIr-HT.



m-CF3DPQIr-ET

Scheme 3. Synthetic route of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET.



**Fig. 1** (a) UV-visible absorption and PL spectra of TPQIr-HT in comparison with TPQIr and TPQIr-ET and (b) UV-visible absorption and PL spectra of *m*-CF<sub>3</sub>DPQIr-HT, *m*-CF<sub>3</sub>DPQIr-ET in comparison with *m*-CF<sub>3</sub>DPQIr.



**Fig. 2.** (a) Energy level diagram, (b) J-V-L characteristics, and (c) CE-J-PE of TPQIr-HT in comparison with TPQIr and TPQIr-ET and (d) energy level diagram, (e) J-V-L characteristics, and (f) CE-J-PE of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET in comparison with *m*-CF<sub>3</sub>DPQIr.



**Fig. 3** (a) EQE vs. luminance, (b) EL spectra, and (c) CIE coordinates (at 30 mA/cm<sup>2</sup>) of TPQIr-HT in comparison with TPQIr and TPQIr-ET and (d) EQE vs. luminance, (e) EL spectra, and (f) CIE coordinates (at 30 mA/cm<sup>2</sup>) of *m*-CF<sub>3</sub>DPQIr-HT and *m*-CF<sub>3</sub>DPQIr-ET in comparison with *m*-CF<sub>3</sub>DPQIr.

| Ir(III) complex                    | $T_d^a$ | $\lambda_{abs}{}^{b}$ | $\lambda_{em}^{c}$ | $\lambda_{em}^{ d}$ | $\Phi_{	extsf{PL}}{}^{	extsf{e}}$ | HOMO/LUMO <sup>f</sup> | Eg <sup>g</sup> |
|------------------------------------|---------|-----------------------|--------------------|---------------------|-----------------------------------|------------------------|-----------------|
|                                    | (°C)    | (nm)                  | (nm)               | (nm)                | (%)                               | (eV)                   | (eV)            |
| TPQIr                              | 338     | 302, 350, 480         | 610                | 625                 | 0.22                              | -5.23/-3.24            | 1.95            |
| TPQIr-HT                           | 327     | 295, 344, 473         | 612                | 626                 | 0.18                              | -5.24/-3.29            | 1.93            |
| TPQIr-ET                           | 350     | 299, 349, 480         | 610                | 625                 | 0.20                              | -5.25/-3.27            | 1.96            |
| <i>m</i> -CF <sub>3</sub> DPQIr    | 362     | 274, 340, 455         | 566                | 583                 | 0.65                              | -5.39/-3.11            | 2.13            |
| <i>m</i> -CF <sub>3</sub> DPQIr-HT | 320     | 280, 339, 457         | 568                | 584                 | 0.68                              | -5.41/-3.11            | 2.13            |
| <i>m</i> -CF <sub>3</sub> DPQIr-ET | 321     | 281, 341, 453         | 567                | 583                 | 0.66                              | -5.42/-3.10            | 2.14            |

**Table 1.** Thermal, photophysical and electrochemical data of Ir(III) complexes.

<sup>a</sup> Temperature with 5% mass loss measured by TGA with a heating rate of 10 °C/min under N<sub>2</sub>. <sup>b</sup> Measured in CHCl<sub>3</sub> solution at 1.0 x 10<sup>-5</sup> M concentration. <sup>c</sup> Maximum emission wavelength measured in CHCl<sub>3</sub> solution at 1.0 x 10<sup>-5</sup> M concentration. <sup>d</sup> Maximum emission wavelength measured in a film state. <sup>e</sup> Measured in 1.0 x 10<sup>-5</sup> M CHCl<sub>3</sub> solution relative to Ir(piq)<sub>2</sub>(acac) ( $\Phi_{PL} = 0.20$ ) with 420 nm excitation. <sup>f</sup> Determined from the onset of CV oxidation and reduction calculated HOMO and LUMO level. <sup>g</sup> Optical band gap determined from the film state of UV-vis absorption edge value.

| ∰ <b>age 27 of</b> 2<br>₽<br>21 00 11 | 28                      | Journal of Materials Chemistry C |                      |                  |                 |                 |                        |                              |  |  |
|---------------------------------------|-------------------------|----------------------------------|----------------------|------------------|-----------------|-----------------|------------------------|------------------------------|--|--|
| University on 02/09/20                | Table 2. Device perform | ances of deep-red                | PhOLEDs with         | Ir(III) comple   | exes.           |                 |                        |                              |  |  |
| Fudan                                 | Doping concentration    | Dopant                           | Turn on <sup>a</sup> | EQE <sup>b</sup> | CE <sup>b</sup> | PE <sup>b</sup> | Luminance <sup>b</sup> | CIE at 100 cd/m <sup>2</sup> |  |  |
| oaded by                              | (%)                     |                                  | (V)                  | (%)              | (cd/A)          | (lm/W)          | $(cd/m^2)$             | (x, y)                       |  |  |
| . Downle                              | 8                       | TPQIr                            | 4.28                 | 11.89            | 11.51           | 4.02            | 1907                   | (0.67, 0.32)                 |  |  |
| oer 2017                              | 8                       | TPQIr-HT                         | 4.31                 | 14.20            | 14.04           | 4.41            | 1860                   | (0.67, 0.32)                 |  |  |
| Septemt                               | 8                       | TPQIr-ET                         | 4.35                 | 18.38            | 17.44           | 5.17            | 2092                   | (0.67, 0.32)                 |  |  |
| d on 01                               | 10                      | TPQIr                            | 4.27                 | 13.70            | 11.53           | 4.26            | 2521                   | (0.67, 0.32)                 |  |  |
| Publishe                              | 10                      | TPQIr-HT                         | 4.28                 | 17.47            | 15.87           | 5.05            | 1901                   | (0.67, 0.32)                 |  |  |
|                                       | 10                      | TPQIr-ET                         | 4.25                 | 21.48            | 19.70           | 5.62            | 2345                   | (0.67, 0.32)                 |  |  |
|                                       | 12                      | TPQIr                            | 4.22                 | 11.52            | 10.70           | 3.96            | 2422                   | (0.67, 0.32)                 |  |  |
|                                       | 12                      | TPQIr-HT                         | 4.34                 | 14.51            | 13.68           | 4.60            | 2118                   | (0.67, 0.32)                 |  |  |
|                                       | 12                      | TPQIr-ET                         | 4.28                 | 17.63            | 15.99           | 5.08            | 2355                   | (0.67, 0.32)                 |  |  |

<sup>a</sup> At 1 cd/m<sup>2</sup>. <sup>b</sup> Maximum efficiency.

# Journal of Materials Chemistry C

(0.54, 0.46)

(0.54, 0.46)

(0.54, 0.46)

| S                   |  |
|---------------------|--|
| $\overline{\ldots}$ |  |
| 8                   |  |
| ŝ                   |  |
| 0                   |  |
| 17                  |  |
| 0                   |  |
| 2                   |  |
| 5                   |  |
| 6                   |  |
| 0                   |  |
| on                  |  |
| t                   |  |
| .isi                |  |
| ē                   |  |
| ÷                   |  |
| 5                   |  |
|                     |  |
| lai                 |  |
| ă                   |  |
| щ                   |  |
| ą                   |  |
| Ч,                  |  |
| qe                  |  |
| 0a                  |  |
| Ĕ                   |  |
| - S                 |  |
| Ó                   |  |
| Д                   |  |
| 5                   |  |
| 01                  |  |
| ñ                   |  |
| er                  |  |
| q                   |  |
| en                  |  |
| bt                  |  |
| je.                 |  |
| -                   |  |
| 0                   |  |
| n                   |  |
| ž                   |  |
| ĭĕ                  |  |
| ist.                |  |
| PI:                 |  |
| Ľ,                  |  |
| Ц                   |  |
|                     |  |

| Doping concentration | Dopant                             | Turn on <sup>a</sup> | EQE <sup>b</sup> | CE <sup>b</sup> | PE <sup>b</sup> | Luminance <sup>b</sup> | CIE at 100 $cd/m^2$ |
|----------------------|------------------------------------|----------------------|------------------|-----------------|-----------------|------------------------|---------------------|
| (wt%)                |                                    | (V)                  | (%)              | (cd/A)          | (lm/W)          | $(cd/m^2)$             | (x, y)              |
| 8                    | <i>m</i> -CF <sub>3</sub> DPQIr    | 4.52                 | 15.73            | 41.16           | 16.30           | 10015                  | (0.54, 0.46)        |
| 8                    | <i>m</i> -CF <sub>3</sub> DPQIr-HT | 4.58                 | 17.52            | 44.89           | 18.85           | 9132                   | (0.54, 0.46)        |
| 8                    | <i>m</i> -CF <sub>3</sub> DPQIr-ET | 4.56                 | 16.68            | 42.51           | 16.45           | 8780                   | (0.54, 0.46)        |
| 10                   | <i>m</i> -CF <sub>3</sub> DPQIr    | 4.54                 | 17.34            | 44.23           | 19.85           | 10820                  | (0.54, 0.46)        |
| 10                   | <i>m</i> -CF <sub>3</sub> DPQIr-HT | 4.63                 | 21.64            | 52.16           | 24.56           | 9137                   | (0.54, 0.46)        |
| 10                   | <i>m</i> -CF <sub>3</sub> DPQIr-ET | 4.55                 | 18.39            | 46.59           | 21.03           | 9427                   | (0.54, 0.46)        |

16.17

19.53

17.71

4.60

4.69

4.61

40.57

48.36

44.83

18.28

22.79

20.17

9464

8924

8890

Table 3. Device performances of orange PhOLEDs with Ir(III) complexes.

*m*-CF<sub>3</sub>DPQIr

*m*-CF<sub>3</sub>DPQIr-HT

*m*-CF<sub>3</sub>DPQIr-ET

<sup>a</sup> At 1 cd/m<sup>2</sup>. <sup>b</sup> Maximum efficiency.

12

12

12