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N-heterocyclic olefins (NHOs), IPrCH; (1) and SIPrCH; (2) (IPrCH, =
{N(2,6-iPr,CH3)CH}L,CCH, and SIPrCH, = {N(2,6-iPr,CsHs)CH,},CCH,),
react with HSiCl; and afford IPrCH(SiHCI,) (3) and SIPrCH(SiHCI,) (4),
respectively. Compounds 3 and 4 have been isolated in almost quanti-
tative yield. Interestingly, treatment of the silylene IPr-SiCl, with 1 also
affords 3, where silylene insertion into a C-H bond is observed.
Computational analysis shows a high energy barrier for silylene inser-
tion, therefore a protonation-deprotonation mechanism is more likely.

Investigation of intriguing properties, reactivity and applica-
tions of the compounds with low-valent main group elements is
an active area of current research.’* Among group 14 elements,
carbenes and silylenes are the most studied reactive species.’
They insert into o-bonds or undergo oxidative cycloaddition
reactions with unsaturated organic compounds to form tetra-
valent derivatives of carbon and silicon.>”® Carbenes were
believed to be non-isolable highly reactive intermediates. This
situation changed when Bertrand et al. reported a phosphino
stabilized carbene’ in 1989. In 1991, Arduengo and co-workers
reported the first thermally stable carbene as a N-heterocyclic
carbene (NHC) (Scheme 1A).® However, it took almost three
years to isolate a silicon analogue of a NHC. In 1994, West and
co-workers succeeded in isolating the first stable N-heterocyclic
silylene (NHSi) (Scheme 1B).° Now, a number of stable carbenes
and silylenes with variable structural motifs are known and can
be readily synthesized.>™

The electron richness and structure of the NHCs provide a
unique class of c-donor ligands. NHCs have found widespread

“ Institut fiir Anorganische Chemie, Georg-August-Universitdt Gottingen,
Tammannstrasse 4, 37077 Géttingen, Germany.
E-mail: rghadwal@uni-goettingen.de
b Fachbereich Chemie, Philipps-Universitit Marburg, Hans-Meerwein-StrafSe,
35032 Marburg, Germany
T Electronic supplementary information (ESI) available: General experimental
procedures, X-ray crystallographic information on compound 3, cartesian coor-
dinates (in A) and total BP86/def2-TZVP energies (in au, noncorrected zero-point
vibrational energies included) of all stationary points discussed. CCDC 951884.
For ESI and crystallographic data in CIF or other electronic format see DOI:
10.1039/c3cc45652h

9440 | Chem. Commun., 2013, 49, 9440-9442

olefins with HSICl;T

Rajendra S. Ghadwal,*® Sven O. Reichmann,? Felix Engelhardt,® Diego M. Andrada®

/R /R /R R
N N\ N N/
E > : [ /> E > 1 [ >= -
’///
N N N ‘ 6% N
\ \ \ X \
R R R R
A B Cc D
Arduengo, 1991  West, 1994 X = Cl; Roesky, 2009 Kuhn, 1994
X = Br; Filippou, 2009 Rivard, 2011

(R is an alkyl or aryl group)
Scheme 1 NHC (A), NHSi (B), NHC stabilized silylenes (C), and NHO (D).

applications not only as ligands in transition-metal catalysis
and organometallic chemistry, but also as organocatalysts in
their own right."®"" Furthermore, NHCs have been found to be
very efficient neutral ligands in stabilizing highly reactive main
group species.>*'> Among dihalosilylenes, some trapping reac-
tions of condensed SiCl, with acetylene and benzene were
already carried out by Timms in 1968."> In 2009, the first
monomeric dihalosilylenes were reported, which were stabi-
lized by a NHC (Scheme 1C)."*"® Besides the classical method
for preparing compounds with low-valent main group elements
using alkali metals, a novel route was also disclosed to prepare
NHC-stabilized dichlorosilylene (Scheme 1C; X = CI).** Reduc-
tive dehydrochlorination of HSiCl; with a NHC affords a NHC
stabilized dichlorosilylene.* Silylene C (X = Cl) has been found
to be a strong c-donor ligand for transition metals.'®” Silylene
C (X = Cl) behaves as a Lewis base and some Lewis acid-base
adducts of C with boranes have also been isolated."®"°
N-heterocyclic olefin (NHO) (Schemes 1D and 2) and its Lewis
acid-base adducts were reported by Kuhn et al in 1994.%°
Scheme 2 illustrates various mesomeric forms (a, b, and ¢) of a
NHO. Therefore, NHO (D) can be considered as a lighter con-
gener of C. Interest in this seemingly unusual molecule aroused
very recently. Rivard and co-workers have used NHOs (Scheme 2)
with sterically demanding substituents and have isolated inter-
esting compounds with low-valent Ge and Sn.>'* Recently, NHOs
have been shown to stabilize interesting boron compounds.?**“
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Scheme 3 Synthesis of compounds 3 and 4.

Surprisingly, the chemistry of NHOs with silicon has not been
explored so far.

Here, we report on the facile formation of silyl-functiona-
lized NHOs 3 and 4 (Scheme 3) by the reaction of NHOs 1 and 2
with HSiCl;. Compound 3 can also be prepared by the reaction
of NHC stabilized dichlorosilylene IPr-SiCl, with 1 (Scheme 4).

Compounds 3 and 4 have been prepared in almost quantitative
yield by the reaction of a NHO (1 or 2) with HSiCl; (Scheme 3). The
insoluble side products 5 and 6 can be readily isolated by filtration
and can be recycled to form NHOs 1 and 2. Compounds 3 and 4
crystallize as colourless crystals and are soluble in common organic
solvents. Formation of compounds 3 and 4 can be readily observed
from their NMR spectra.”* The "H NMR spectrum of each of the
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Scheme 4 Proposed mechanism for the formation of 3.
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compounds 3 and 4 shows a doublet for the SiH proton accom-
panied by silicon satellite signals (Jsi = 291.13 Hz (3) and Jsi-ps =
295.67 Hz (4)). Imidazoline ring NCH protons in 3 are magnetically
non-equivalent, and each appears as a doublet. Similarly, NCH,
protons of 4 exhibit a multiplet. Olefinic CH proton each in
compounds 3 and 4 appears as a doublet due to coupling with
the SiH proton. *C NMR spectra of the compounds 3 and 4 show
resonances consistent with their 'H NMR spectral data.?* The
resonances are shifted downfield when compared with those of
respective NHO 1 or 2. Each of the compounds 3 (6 —9.83 ppm)
and 4 (6 —7.15 ppm) shows a signal in the *°Si NMR spectrum,
which is consistent with those observed for four-coordinate orga-
nosilicon compounds.”™ The El-mass spectrum of 3 exhibits the
molecular ion peak at 500 (m/2).

Base induced disproportionation of HSiCl; to generate
dichlorosilylene is well known.'*?* Use of NHO as a Lewis base
has been shown by Kuhn, Rivard and others.?>*" We decided to
use NHO as a base to generate silylene with HSiCl;."* In analogy
with the reaction of NHCs and HSiCl;,"* dehydrochlorination of
HSiCl; with a NHO base and subsequent silylene insertion into
a C-H bond of NHO to afford 3 or 4 were assumed. However,
computational analysis shows a high energy barrier for SiCl,
insertion (Fig. 1).”* Therefore, formation of adducts I and Il and
subsequent deprotonation with the second molecule of the
NHO base to afford 3 and 4 seem more plausible (Scheme 3).

We also carried out the reaction of IPr-SiCl, (IPr = {(N(2,6-
iPr,CsH3)CH},C:)) with 1. Formation of compound 3 with the
liberation of free IPr was readily observed from the 'H and *°Si
NMR spectral studies (Scheme 4). However, in this case, high
solubility of 3 and IPr in common organic solvents impedes their
separation. In general, silylenes insert into the O-H, Si-H, S-H,
C-Cl, and metal-hydrogen bonds.** Insertion of a thermally
stable silylene into a C-H bond is rather rare.>® Irrespective of
the mechanism involved, reaction of IPr-SiCl, with 1 to afford 3 is
a clear silylene insertion into a C-H bond (Scheme 4). In this
case, formation of an intermediate (III) and subsequent 1,2-
hydrogen migration to give 3 are plausible. However, the role of
IPr as a proton transfer agent via protonation-deprotonation
cannot be ruled out.

Suitable single crystals of 3 for X-ray diffraction studies were
grown from a saturated benzene solution at room temperature
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Fig. 1 Calculated energy profiles at BP86/def2-TZVP for the silylene insertion
into a C—H bond. Values are the electronic energy (corrected with the ZPVE) given
in kcal mol~".22
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Fig. 2 Thermal ellipsoid representation of the molecular structure of 3; aniso-
tropic displacement parameters are depicted at the 50% probability level.
Hydrogen atoms (except the CHSiH part) and isopropyl groups on phenyl rings
are omitted for clarity. Selected bond lengths [Aland angles [°]: Si1-Cl1 2.082(1),
Si1-Cl2 2.081 (1), Si1-C1 1.776(2), C1-C2 1.379(2); Cl1-Si1-Cl2 101.66(3),
Cl1-Si1-C1 107.59(6), CI2-Si1-C1 115.66(6).

by the slow diffusion of n-hexane. Compound 3 crystallizes in
the triclinic space group P1. The molecular structure of 3 is
shown in Fig. 2. Solid state structure of compound 3 reveals the
formation of a silyl-functionalized NHO with a SiHCI, group.
Silyl-functionalized-NHO 3 features a distorted tetrahedral geo-
metry at the four-fold coordinated silicon atom. The average
Si-Cl bond length of 2.08 A is consistent with those measured
for the compounds with four-coordinate silicon.>®

In this communication, we have presented direct access to
silyl-functionalized NHOs 3 and 4 in almost quantitative yield by
the reaction of 1 and 2 with HSiCl;. The only side products 5 and 6
are insoluble and can be easily separated. Computational analysis
shows a high energy barrier for silylene insertion, therefore a
protonation-deprotonation mechanism is more likely. Reaction
of IPr-SiCl, with 1 to yield 3 shows formal silylene insertion into a
C-H bond. Easy separation of the products and the use of
commercially available HSICl; instead of silylene IPr-SiCl, and
facile access to silyl-functionalized NHOs 3 and 4 by the reaction
of 1 and 2 with HSiCl; are more appealing. Further studies on the
chemistry of 3 and 4 are currently in progress and the results will
be published in due course.

The authors are grateful to Prof. Dietmar Stalke for his
generous support.
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