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Synopsis

A carbazole-based gold(I) complex was successfully synthesized. The complex is
AlE-active, and it can emit persistent room-temperature phosphorescence. Moreover,
the luminogen exhibits reversible mechanochromism and vapochromism

characteristics.
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ABSTRACT

A carbazole-based golid(complexl1 has been successfully synthesized. Its structure
was characterized by nuclear magnetic resonancdrepeopy, elemental analysis
and single crystal X-ray diffractometry. Its aggrggn-induced emission behavior
was studied by ultraviolet/visible, photoluminesoenspectroscopy and scanning
electron microscope. Its solid-state mechanochroamd thin-film vapochromic
luminescence behaviors were also investigated loyopiminescence spectroscopy.
The results demonstrated that luminodershowed obvious aggregation-induced
emission property. Furthermorel also exhibited reversible high-contrast

mechanochromic and vapochromic luminescence betsavidore interestinglyl



can emit persistent room-temperature phosphorescertb a solid-state emission
lifetime up to 86.84 ms, which is the highest life¢ value among all the reported
gold(l) complexes so far. To the best of our knalgks the gold] complex is the
first example of an AlE-active luminogen with petsnt room-temperature
phosphorescence, reversible mechanochromism armdiwagmism characteristics.
Keywords: Gold(l) complex; Carbazole; Aggregation-inducedission; Persistent

room-temperature phosphorescence; Mechanochroegpochromism

1. Introduction

The development of efficient luminescent materfads received a great deal of
attention both in fundamental science and practqgdlications [1-3]. Especially,
smart luminescent materials responding to extestuaduli have attracted increasing
interest due to their potential applications in fieéds of sensors, security inks and
optoelectronic devices [4-8]. Mechanochromic ereissnaterials, as a class of smart
luminescent materials, have aroused widespreadeconf9-12]. Vapochromic
materials, which involve luminescent changes upwposure to volatile organic
vapors, are also one promising type of smart lusdest materials [13-19]. High
aggregative-state emission and obvious color centrafore and after stimulating
are two extremely important factors for the highéfficient application of
stimuli-responsive smart materials [20]. Howevegsiconventional luminogens
commonly show poor aggregate state emission dffigidecause of the presence of
notorious aggregation caused quenching (ACQ) phenom [21]which blocks the

effective development of stimuli-responsive maltsriaFortunately, a new
2



photophysical process of aggregation-induced eoms$AIE) was discovered by
Tanget al. in 2001 [22].The luminogens possessing AIE effect can achieighbr
luminescence by the aggregate formation. Therefdrds very significant to

synthesize multistimuli-responsive AIE materialsthwimechanochromism and
vapochromism characteristics. Over the past twaoades, gold(l) chemistry has
aroused the interest of many researchers owindhéootcurrence of fascinating
aurophilic interactions between gold centers [2B-32o0 date, nevertheless,
AlE-active gold(l) complexes with mechanochromid aapochromic behaviors are

rather rare [28,30,33-35].

Carbazole-based luminescent materials are valuali@idates in the domain of
photoelectronic devices [36-39Unfortunately, the ACQ effect hinders the
high-efficiency application of these luminescentenials containing carbazole unit.
Thus, it is a meaningful research topic to desigd aynthesize carbazole-based
derivatives with AIE property. On the other handysthphosphorescence-emitting
metal complexes with mechanochromism behavior éxisitoort phosphorescence
lifetimes (< 1 ms) [40-42hnd metal complex simultaneously possessing pensist
room-temperature phosphorescence and reversibleamechromism characteristics
has yet to be reported, not to mention AlE-actigspochromic gold(l) complex with
these intriguing properties. In this work, we désed a carbazole-based
mononuclear goldf complex 1 (Chart 1). AIE, mechanochromism and
vapochromism characteristics of the luminogen vergematically investigated.

exhibited obvious AIE behavior, Furthermord, also showed reversible
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high-contrast mechanochromic and vapochromic lusteece. More importantly,
can emit persistent solid-state room-temperatucsjpimorescence with luminescence
lifetime up to 86.84 ms.

Insert Chart 1

2. Materialsand methods
2.1. Experimental

General: All manipulations were carried out underasgon atmosphere by using
standard Schlenk techniques, unless otherwisedstite starting material carbazole
purchased from Alfa Aesar was used as receivedCGHhvas dried with Caklthen
distilled. All other starting materials and reagemntere obtained as analytical-grade
from commercial suppliers and used without furierification. Compound-b [43]
andCgFsAu(tht) (tht = thiophane) [44] were prepared bygadures described in the
corresponding literature$H NMR (400 MHz) and*C NMR (100 MHz) spectra
were collected on American Varian Mercury Plus 4p@ctrometer (400 MHzJH
NMR spectra are reported as followed: chemicaltshifppm ¢) relative to the
chemical shift of TMS at 0.00 ppm, integration, tiplicities (s = singlet, d =
doublet, t = triplet, m = multiplet), and couplicgnstant (Hz)**C NMR chemical
shifts reported in ppno] relative to the central line of triplet for CDCAt 77 ppm.
% NMR chemical shifts are relative tasfs (5 = -163.00). EI-MS was obtained
using Thermo scientific DSQI. Elemental analyses (C, H, N) were carried oithw
a PE CHN 2400 analyzer. Ultraviolet/Visible speatrare obtained on U-3310 UV

Spectrophotometer. Fluorescence spectra were wtoamh a Hitachi-F-4500
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fluorescence spectrophotometer and Fluoromax-P ksuoénce spectrometer
(HORIBA JOBIN YVON INC.). Luminescent decay expednt was measured by
Edinburgh FLS980 spectrometer. XRD studies wereorted on a Shimadzu
XRD-6000 diffractometer using Ni-filtered and grapkhmonochromated Cu K
radiation { = 1.54 A, 40 kV, 30 mA). The N, N-dimethyl formatei (DMF)/water
mixtures with various water fractions were prepabgdslowly adding ultra-pure
water into the DMF solution of samples. Absoluteninbescence quantum yields
were measured by HAMAMATSU ABSOLUTE PL QUANTUM YIHL
SPECTROMETER C11347. Dynamic light scattering (DuBg¢asurements were
performed on the Zetasizer instrument ZEN3600 (Mady UK) with a 173° back
scattering angle and He-Ne laser £ 633 nm). The X-ray crystal-structure
determination of complek was obtained on a Bruker APEX DUO CCD system. The
aggregate behavior and the solid-state surface hmbogy of1 were investigated by
scanning electron microscopy (SEM, Zeiss, Sigmajplu@n chromatographic
separations were carried out on silica gel (200-8@3h). TLC was performed by
using commercially prepared 100-400 mesh silica pkltes (GF254) and

visualization was effected at 254 nm.
2.2 Synthesis
2.2.1 Synthesis of monoisocyano ligand 1-d

Synthesis ofl-c: A mixture of compound-b (3.0 g, 11.6 mmol), formic acid

(30 ml) were stirred for overnight at 00 After completion of present reaction,



formic acid was removed from reaction system byiliison, the residual mixture
was extracted with dichloromethane (3 x 30 mL),¢bmbined organic layers were
washed with brine, dried (N&0O,), and concentrated in vacuo. The residues were
purified by column chromatography, affording thepeated pale solid product in a
yield of 83%.'H NMR (400 MHz, CDCJ): § (ppm) = 8.83-8.46 (m, 1H), 8.16-8.13
(m, 2H), 7.77 (dJ = 8 Hz, 1H), 7.58-7.52 (m, 2H), 7.44-7.27 (m, 8K NMR
(100 MHz, CDC4): & (ppm) = 162.5, 159.1, 140.8, 140.8, 135.9, 13534,8, 134.0,
128.5, 127.8, 126.0, 126.0, 123.3, 123.3, 121.P,412120.3, 120.1, 120.0, 109.6,
109.5. EI-MS: m/z = 286.16[M] Anal. Calcd. for GgH14N,O: C, 79.70; H, 4.93; N,

9.78. Found: C, 79.74; H, 4.95; N, 9.75.

Synthesis ofl-d: A CH,CI, suspension (15 ml) df-c (1.0 g, 3.5 mmol) and
triethylamine (5 ml) was cooled to@. To the mixture was added dropwise a
CH.CI; solution (10 ml) of triphosgene (1.16 g, 3.9 mma®he mixture was refluxed
under an argon atmosphere for 3 h, then 10% agC®a(50 ml) was added
dropwise at room temperature. the mixture was et@chwith dichloromethane (3 x
30 mL). The combined organic layers were washed tine, dried (Ng50O;), and
concentrated in vacuo. The residues were purifigdclumn chromatography,
affording the expected gray solid product in adief 77%."H NMR (400 MHz,
CDCL): & (ppm) = 8.14 (dJ = 8 Hz, 2H), 7.63 (s, 4H), 7.45-7.30 (m, 6HfC NMR
(100 MHz, CDC4): & (ppm) = 165.3, 140.2, 138.7, 128.0, 127.7, 12822,7, 120.6,
120.4, 109.4. EI-MS: m/z = 268.14[M]Anal. Calcd. for GH1-N»: C, 85.05; H,

4.51; N, 10.44. Found: C, 85.02; H, 4.55; N, 10.41.
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2.2.2 Synthesis of complex 1 containing mononuclear gold(l) unit

Synthesis ofl: A mixture of GFsAu(tht) (0.26 g, 0.57 mmol) antid (0.15 g,
0.56 mmol) was stirred in G&l, (20 ml) over night under an argon atmosphere at
room temperature. After completion of present lieacthe solvent was evaporated.
A small amount of CbCl, was added, and then a lot nfhexane was added.
Collecting the white solid product by suction fifion. Yield = 93%H NMR (400
MHz, CDCh): § (ppm) = 8.15 (dJ = 8 Hz, 2H), 7.80 (s, 4H), 7.46-7.34 (m, 68
NMR (CDChk): 6 (ppm) =-116.60, -157.80, -162.87. Anal. Calcd.@asH1,AuFsNy:
C,47.49; H, 1.91; N, 4.43. Found: C, 47.56; H51 19, 4.38.

Insert Scheme 1
3. Results and discussion
3.1. Synthesis

The carbazole-based mononuclear gold(l) complesas prepared according to
the corresponding synthetic strategy presented dhei®e 1. The intermediate
productl-d as starting material reacted witgFgAu(tht) (tht = thiophane) to afford

the target gold(l) complekin 93% yield.
3.2. Crystallographic details

Single crystals of complek suitable for X-ray analysis were obtained by slow
diffusion of n-hexane into its dilute solution of dichloromethaAecrystal ofl with
approximate dimensions of 0.30 x 0.05 x 0.02°nfion 1 was mounted on a glass

fiber for diffraction experiment. Intensity data nmeecollected on a Nonius Kappa
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CCD diffractometer with Mo K radiation (0.71073 A) at room temperature. The
structures were solved by a combination of direethbnds (SHELXS-97) [45] and
Fourier difference techniques and refined by fultnx least-squares (SHELXL-97)
[46]. All non-H atoms were refined anisotropicallfie hydrogen atoms were placed
in the ideal positions and refined as riding atofmsther crystal data are provided in
Table S1 (Supporting Information). The selectivandbdengths and angles can be
found in Table S2 (Supporting Information). Crykigtaphic data for the structure
in this paper have been deposited with the Camériystallographic Data Centre

as supplemental publication CCDC 1516083.
3.3. Aggregation Induced Emission (AIE)

To investigate the aggregation-induced propertiuofinogenl, the ultraviolet
(UV)/visible-absorbance spectra {10 uM) in DMF-HO mixtures with different
water fractions f(,) were studied (Supporting Information: Fig. S1heTresult
demonstrated that the absorption pealt at around 336 nm was red-shifted as the
water content was increased. Meanwhile, the alsorgpectra exhibited level-off
tails in the long-wavelength region as thevalues were increased. Such spectral
tails are caused by the Mie scattering effect, tvitiemmonlyimplies the generation
of nanoscopic aggregates [47,48]. As shown in Ejgone emission bandith a
maximum {may) at 395 nm was observed when a dilute DMF solubbri was
excited at 330 nm, and almost no luminescence whased under 365 nm UV light.
However, when the water volume fraction in the DBIBlution was increased to

50%, 1 showed faint blue luminescence, likely due to thstricted intramolecular
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rotation of carbazole unit [49]. When tRevalue was 60%, two new emission bands
were observed withnaxat 425 nm and 530 nm, adddisplayed faint yellow-green
light emission under 365 nm UV light. A} = 90%, the mixture exhibited a strong
yellow-green emission. This is because water i®m@saolvent of luminogerd and
thus aggregation will happen as the increase offghealue. Clearly, the bright
yellow-green luminescence tfcan be attributed to the aggregate formation.ddde
the nano-aggregates obtained were confirmed usingmic light scattering (DLS).
The DLS experimental results indicated the realstexice of nano-aggregates.
Meanwhile, the size of nano-aggregates became emaiith the f, increased
(Supporting Information: Fig. S2). Furthermore, tggregate behavior df was
also explored via scanning electron microscope (FEMe SEM image indicated
that 1 molecules tended to aggregate in the DMEHmixture withf, = 90%
(Supporting Information: Fig. S3). Obviously, comyll is AlE-active, and its AIE
behavior is possibly triggered by the synergistiffeas of the restricted
intramolecular rotation and the formation of intetecular gold-gold interactions
[50].

InsertFigure 1

34. Reversible Mechanochromism and persistent  room-temperature

phosphorescence characteristics of complex 1

The reversible mechanochromic effect of compléxwas surveyed by
solid-state photoluminescence (PL) spectroscopy. pfessented in Fig. 2, the

as-synthesized solid sample béxhibited strong yellow emission with an absolute
9



luminescence quantum vyield up to 22.5% at 462 nB0Q Bm and 598 nm.
Intriguingly, a persistent yellow room-temperatuphosphorescence could be
observed when the 365 nm UV light was turned ad&(Movie S1). As evident from
Fig. 3, the emission lifetime df was as high as 86.84 ms, which is the highest
lifetime value among all the reported gold(l) coexgs. In addition, upon gentle
grinding of solid samplé& using a pestle or a spatula, a new emission battdtke
Jmax @t 538 nm was visible, and the yellow-green ligiitting powder was formed.
Its absolute luminescence quantum yield was 19a&%, its emission lifetime was
1.44 us (Supporting Information: Fig. S4). The emissioealp at 538 nm is
correspond to those observed in DMF/water mixtused high f,, values. After
fuming with dichloromethane solvent vapor for 30t original yellow emitting
condition was completely restored. Furthermore, fiéeersible mechanochromic
conversion between yellow and yellow-green emissiotors could be repeated
many times without fatigue (Fig. 4). The experinamesults of SEM showed that
the crystal packing of solid samplemay readily collapse upon gentle grinding.
(Supporting Information: Fig. S5). To gain insightto the mechanochromic
mechanism of compleg, X-ray diffraction (XRD) measurements of various solid
states ofl were performed. As can be seen in Fig. 5, theregaped solid sample
showed a lot of sharp and intense diffraction peaksch indicated its crystalline
nature. In contrast, the XRD diffractogram of thheugnd sample did not exhibit any
noticeable reflection peaks, indicative of its apkwus nature. When the
yellow-green light-emitting sample was fumigatedthwdichloromethane solvent

10



vapor, thesharp and intense diffraction peaks coinciding wlithse in the untreated
sample was attained again, suggesting the recafeitye ordered crystalline state.
Therefore, the mechanochromic phenomenon obsenvedardination compounil
is associated with the morphological transitionNsstn the ordered crystalline phase
and the disordered amorphous phase. As shown ir6Fige shortest intermolecular
Au---Au distances are 4.699 A, indicating lack tobrsy intermolecular aurophilic
interactions [51]. In addition, the distances be&wéux are 2.056 A and 2.049 A,
and the distances between Au-CN are 1.931 A ar@R120 Furthermore, multiple
weak intermolecular C-H=- interactions 4 = 2.566 A) as well as C-H---F
interactionsdy...r= 2.514 A, 2.586 A, 2.617 A) exist in the crystaldich facilitate
the molecular packing, suppress free rotation oflemdar structure and then
promote the formation of long lifetime phosphoresee[52-55]. The emission color
of the single crystal is bright yellow, and its ssion spectrum is shown in Fig. S6
(Supporting Information). Meanwhile, the absencea aftrong intermolecular acting
force will allow slipping of the molecular stacksgpan exposure to external
mechanical stimulus. When solid powdeis ground, a metastable amorphous state
is formed, and changes in weak intermolecular GaHnd C-H- - - F interactions and
the formation of intermolecular aurophilic intelacis are responsible for the
significative mechanochromism behaviorl{33].

InsertFigure 2

InsertFigure 3

InsertFigure 4
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InsertFigure 5

InsertFigure 6

3.5. Reversible thin-film vapochromic luminescence behavior of complex 1

The thin-film vapochromic luminescence propertycofnplex1 was evaluated
by PL spectroscopy. Luminogehis highly soluble in common solvents, which
allows convenient solution processing and the foionaof thin film. The PL
spectral changes df in response to vapors of frequently-used volatitganic
compounds (VOCs) are shown in Fig. 7. The thin fibh 1 showed bright
yellow-green luminescence with thgax at 530 nm. However, when the thin film
was exposed tovapors of different VOCs, including dichloromethane
trichloromethane, tetrahydrofuran, 1,4-dioxane, Zese, acetone, toluene,
acetonitrile, diethyl ether, ethyl acetatts., the yellow emission with th&n. at
around 578 nm was observed. This red-shifted eamssirelated to that observed in
the solid state emission (Fig. 2). The existencedifferent solvents molecules
possibly resulted in the formation of intermolecuating force, which altered the
molecular stacking and intermolecular distance betwthe shortest Au atoms, and
then changed the emission color from green to we]k9]. Furthermore, the initial
yellow-green emission reappeared when the thin fidms removed from the
different VOCs vapors. Thus, luminogénalso exhibited reversible vapochromic
luminescence behavior.

InsertFigure 7
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4. Conclusions

We report a carbazole-based mononuclear ota({mplex. The complex is an
interesting luminophor as it exhibits obvious AlEhavior, and its solid sample can
emit persistent room-temperature phosphorescenteluvninescence lifetime up to
86.84 ms, which is the highest lifetime value amaip the reported gold(l)
complexes so far. In addition, the luminogen alkows reversible high-contrast
mechanochromism and vapochromism characteristacghd best of our knowledge,
this mononuclear golé) complex is the first example of an AlE-active laogen
with persistent room-temperature phosphoresceeeersible mechanochromic and
vapochromic behaviors. It is believed that the rfurittional gold(l) complex will
be outstanding candidate in the field of multistirnesponsive materials.
Furthermore, this work will also be beneficial teetdesign of new AIE-active
metal-bearing luminogens with multistimuli-respasibehaviors and persistent
room-temperature phosphorescence characteristicthdf explorations of goldy

complexes with other significative properties ar@iogress.
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Chart 1. (a) The structure of complex (b) The configuration of a gold(l) complex

molecule taken form the single crystal structure.
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Figure 1. (a) Photoluminescence (PL) spectra of the diluttutems of
luminogen1 (1.0 x 10° mol L") in a mixture of DMF-HO with different water
contents (0-60%). Excitation wavelength = 330 nrhe Tnset shows the emission
images ofl (1.0 x 10° mol L) in pure DMF, 50% water fraction and 60% water
fraction under irradiation with UV light at 365 nnb) PL spectra of the dilute
solutions of luminoger (1.0 x 10° mol L) in a mixture of DMF-HO with various
water contents (60-90%). Excitation wavelength  38n. The inset shows the
emission images df (1.0 x 10° mol L) in 60% water fraction as well as 90% water

fraction under irradiation with UV light at 365 nm.
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Figure 2. (a) Solid-state PL spectra of complekefore grinding, after grinding,
and after treatment with dichloromethane solvemovaExcitation wavelength: 365
nm. Photographic images @funder 365 nm UV light: (b) the as-synthesized solid
sample. (c) the ground solid sample. (d) the sghanple after treatment with

dichloromethane solvent vapor.
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Figure 3. Decay curve of the gold(l) complex at the peak srrs wavelength

of 550 nm. Excitation wavelength: 365 nm.
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Figure 4. Reversible change in PL peak intensity (538 nm)thef gold(l)

complex recorded for several grinding-fuming preess
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Figure 5. X-ray diffraction (XRD) patterns of gold(l) complek in different
solid states: the as-prepared solid, the grounddpowand the solid after treating the

ground sample with dichloromethane vapor.

Figure 6. The molecular packing of the coordination compodnith a single
crystal cell. The dashed lines are showing theadcsts between the correlation atoms
in the crystal. The H, C, N, F, and Au atoms atereal in light grey, dark grey, blue,

yellow and pink, respectively.
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Highlights

*

A carbazole-based mononuclear gold(I) complex was synthesized.

*

The gold(I) complex exhibits obvious aggregation-induced emission (AIE) property.

*

The gold(I) complex can emit persistent room-temperature phosphorescence with a
solid-state emission lifetime up to 86.84 ms.

*

The gold(I) complex shows reversible mechanochromic luminescence behavior.

*

The gold(I) complex shows reversible vapochromic luminescence behavior.



