Tetrahedron 67 (2011) 5304-5318

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of carbazoles and 1,2-dihydrocarbazoles by domino 'twofold Heck/ 6π -electrocyclization' reactions of di-, tri- and tetrabromoindoles

Munawar Hussain^a, Serge-Mithérand Tengho Toguem^a, Rasheed Ahmad^{a,b}, Đặng Thanh Tùng^a, Ingo Knepper^a, Alexander Villinger^a, Peter Langer^{a,c,*}

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^b Department of Petroleum Technology, University of Karachi, University Road, Karachi 75270, Pakistan ^c Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

Article history: Received 18 March 2011 Received in revised form 3 May 2011 Accepted 5 May 2011 Available online 14 May 2011

Keywords: Carbazoles Catalysis Cyclizations Indoles Heck reaction Palladium

ABSTRACT

Di-, tri- and tetra-alkenylindoles were prepared by palladium(0)-catalyzed Heck cross-coupling reactions of di-, tri- and tetrabromo-*N*-methylindoles. The reactions were carried out at 90 °C using a novel biaryl monophosphine ligand developed by Buchwald and co-workers. 1,2-Dihydrocarbazoles were formed by a domino 'twofold Heck/ 6π -electrocyclization' when the reaction was carried out at higher temperature. The regioselectivity of the Heck reaction of 2,3,6-tribromo-*N*-methylindoles was in favour of carbon atoms C-2 and C-3. The 1,2-dihydrocarbazoles were transformed, by Pd/C-catalyzed dehydrogenation, into the corresponding carbazoles in high yield.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Carbazole is a natural product isolated for the first time from coal tar in 1872 by Graebe and Glaser. Carbazole derivatives are of significant pharmacological relevance because of their antifungal, antibiotic and antitumour activities. Simple carbazole alkaloids were isolated in the 1960s as natural products from plant sources. Murrayafoline A and murrayaquinone B are examples of naturally occurring carbazoles and carbazolequinones isolated from the root bark of *Murraya euchrestifolia Hayata* (Fig. 1).^{1,2}

Fig. 1. Carbazoles isolated from the root bark of Murraya euchrestifolia Hayata.

A number of synthetic approaches to carbazoles have been reported. In recent years, transition metal catalyzed reactions have been extensively used for the synthesis of carbazoles. For example, a general approach to carbazoles relies on iron-mediated cvclization reactions (stoichiometric use of iron complexes).^{1d} Later, a catalytic approach to carbazoles has been developed, which is based on Buchwald-Hartwig reactions of aryl halides with anilines and subsequent oxidative cyclizations.³ Carbazoles have been also prepared by palladium-catalyzed cyclization of anilines with 1,2-dihaloalkenes, a domino reactions recently developed by Ackermann and Althammer.⁴ Classic syntheses of carbazoles include, for example, Diels-Alder reactions of 2- or 3-vinylindoles with various dienophiles.⁵ Carbazoles have also been prepared by thermal 6π -electrocyclization reactions of 2,3-di(alkenyl)indoles.^{6,7} The scope of this method was severely limited by the fact that the synthesis of the precursors, 2,3-di(alkenyl)indoles, was complicated and required many steps. Acceptor-substituted 2,3di(alkenyl)indoles were prepared by Pd(II)-catalyzed reactions of carbon atom C-3 of 2-formylindoles with alkenes to form 2-formyl-3-vinylindoles. The aldehyde group was subsequently transformed into an alkenyl group by means of a Wittig reaction. Attempts to prepare 2,3-di(alkenyl)indoles by double Wittig reaction of 2,3diformyl-N-methylindole proved to be unsuccessful, due to the unstable nature of the bis-aldehvde and low vields.

^{*} Corresponding author. Fax: +49 381 4986412; e-mail address: peter.langer@ uni-rostock.de (P. Langer).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.05.014

De Meijere and co-workers described an efficient annulations process based on twofold Heck reactions of 1,2-dibromocycloalk-1enes and subsequent 6π -electrocyclizations.⁸ In recent years, we have applied this approach to a variety of heterocyclic substrates.⁹ Recently, we have reported preliminary results related to the synthesis of carbazoles by domino twofold Heck/electrocyclization/ dehydrogenation reactions.^{9a} Herein, we wish to report full details and a significant extension of the preparative scope. With regard to our preliminary communication, we also report, for the first time, Heck reactions of 2,3,5,6-tetrabromo-N-methylindole. Bis-Sonogashira reactions proved to be not general, due to the highly unstable nature of the 2,3-bis(alkynyl)indoles. The chemistry reported herein is of considerable synthetic usefulness because positions 2 and 3 of the carbazole system cannot be directly accessed by functionalization reactions of carbazole derivatives. In fact, the substituted carbazole derivatives reported herein are not readily available by other methods.

2. Results and discussion

Our starting point was the synthesis of various brominated indole derivatives. The reaction of *N*-methylindole (1) with copper(II) bromide has been reported to afford 2,3-dibromo-N-methylindole (2a) in 64% yield.¹⁰ We were able to increase the yield of 2a to 90% by reaction of N-methylindole (1) with NBS (2.1 equiv) in THF $(-78 \circ C, 4 h)$ (Scheme 1). During the optimization, it proved to be important to add NBS portionwise. Dibromide 2a and 2,3,6tribromo-*N*-methylindole (**2b**) are natural products^{11–14} and **2a** has been previously converted into **2b** by bromination (Br₂, CHCl₃) in 70–80% yield.¹⁴ Our goal was to develop a direct synthesis of **2b**. After some experimentation, we have found that **2b** can be prepared in 94% vield by reaction of **1** with NBS (3.1 equiv) in THF $(-78 \,^{\circ}\text{C}, 4 \,\text{h})$. During the optimization, it proved to be mandatory to carry out the reaction at low temperature and to add NBS in small portions. A complex mixture was obtained when NBS was added at room temperature. The reaction of 1 with NBS (5.0 equiv) in THF (-78 °C, 1 h, then reflux for 4 h) afforded 2,3,5,6-tetrabromo-Nmethylindole (2c) in 78% yield.

Scheme 1. Bromination of *N*-methylindole (1); conditions: *i*, NBS (2.1 equiv), THF, $-78 \degree C$, 4 h; *ii*, NBS (3.1 equiv), THF, $-78 \degree C$, 4 h, then 20 $\degree C$, 14 h; *iii*, NBS (5.0 equiv), THF, $-78 \degree C$, 1 h, then reflux, 4 h.

The Heck reaction of **2a** with acrylates **3a,c–g** afforded the 2,3di(alkenyl)indoles **4a,c–g** in good yields (Scheme 2, Tables 1 and 2). The best yields were obtained when the reactions were carried out using Pd(OAc)₂ (5 mol %) and SPhos (10 mol %) developed by Buchwald and Billingsley (Fig. 2).¹⁵ Lower catalyst loading resulted in complex mixtures (Table 1). The reactions were carried out in DMF at 90 °C for 36 h. Recently, Li and Wang reported¹⁶ that triethanolamine represents an efficient and reusable combined base, ligand, and solvent for palladium(0)-catalyzed Heck reactions. The application of these conditions to the reaction of **2a** with acrylate **3g** proved to be successful and resulted in the formation of **4g** in 63% yield.

Scheme 2. Synthesis of 4b–e and 5a–d,f. Conditions: *i*, for 4b–e: Pd(OAc)₂ (5 mol %), SPhos (10 mol %), NEt₃, DMF, 90 °C, 36 h; *ii*, for 4e: Pd(OAc)₂ (5 mol %), N(CH₂CH₂OH)₃ (3 mL), 90 °C, 36 h; *iii*, Pd(OAc)₂ (5 mol %), SPhos (10 mol %), NEt₃ (8.0 equiv), DMF, 120 °C, 48 h.

Table 1

Optimization of the reaction conditions for the synthesis of 4c,f

Entry	Catalyst	Temp (°C)	% (4c) ^a	% (4f) ^a
1	Pd(PPh ₃) ₄ (5 mol %)	90	Complex mixture	Complex mixture
2	Pd(OAc) ₂ (5 mol %), XPhos (10 mol %)	90	65	71
3	Pd(OAc) ₂ (5 mol %), SPhos (10 mol %)	90	72	78
4	Pd(OAc) ₂ (5 mol %), SPhos (10 mol %)	100	b	b
5	Pd(OAc) ₂ (3 mol %), SPhos (6 mol %)	90	Complex mixture	Complex mixture
6	Pd(OAc) ₂ (2 mol %), SPhos (4 mol %)	100	c	c
7	$Pd(OAc)_2$ (2 mol %), SPhos (4 mol %)	120	5c (77%)	5f (85%)

 $^{\rm a}$ Yields of isolated products; all reactions were carried out in DMF using NEt_3 as base (36 h).

^b Mixture of **4c**,**f** and **5c**,**f**, respectively (TLC).

^c Approx. 50% conversion (estimated by TLC).

able 2				
Synthesis	of 4a,c-g	and	5a-c	e,f,h

4,5	3	R	% (4) ^a	%(5) ^a
a	a	Me	77	69
b	b	Et	b	93
с	с	ⁿ Bu	72	77
d	d	ⁱ Bu	b	66
e	e	ⁿ Hex	77	81
f	f	^t Bu	78	85
g	g	ⁱ Oct	76	b
h	h	(CH ₂) ₂ NMe ₂	b	79

^a Yields of isolated products based on **2a**.

^b Experiment was not carried out.

-2 - 7.1.100

Fig. 2. Structures of ligands (L) SPhos and XPhos.

When the reaction of **2a** with acrylates **3a**–**c**,**e**,**f**,**h** was carried out at 120 °C instead of 90 °C, the 1,2-dihydrocarbazoles **5a**–**c**,**e**,**f**,**h** were formed by a domino 'twofold Heck/6 π -electrocyclization' cyclization. The initially formed 2,3-dihydrocarbazoles undergo a sigmatropic rearrangement into the more stable 1,2-dihydro carbazoles. The structure of **5b** was independently confirmed by an X-ray crystal structure analysis (Fig. 3).¹⁷

Fig. 3. Ortep plot of 5f.

The dehydrogenation of 1,2-dihydrocarbazoles to carbazoles was next studied. Pindur reported the synthesis of 2,3-di(methoxycarbonyl)-*N*-phenylsulfonylcarbazole by reaction of the corresponding 1,2-dihydrocarbazole with DDQ, albeit, in only 18% yield.⁵ We have obtained equally disappointing results. The reaction of 1,2-dihydrocarbazole **5b** with DDQ afforded carbazole **6b** in only 20% yield. After some optimization of the conditions, we have achieved a dramatic increase of the yield (100%) using Pd/C (10 mol %) as the catalyst (xylene, reflux) (Scheme 3, Table 3). The structure of carbazole **6a** was independently confirmed by X-ray crystal structure analysis (Fig. 4).

Scheme 3. Synthesis of carbazole 6a–d; conditions: *i*, Pd/C (10 mol %), xylene, reflux, 48 h.

Table 3 Synthesis of 6a–d

5	6	R	% (6) ^a
b	a	Et	100
с	b	ⁿ Bu	100
e	с	ⁿ Hex	100
f	d	^t Bu	100

^a Yields of isolated products based on **5a-d**.

The Pd(OAc)₂/SPhos-catalyzed reaction of **2a** with acrylonitrile (120 °C, 48 h) afforded the unexpected carbazole **7** in 49% yield (Scheme 4). The formation of **7** can be explained by twofold Heck reaction of **2a** to give intermediate **A**, electrocyclization

Fig. 4. Crystal structure of 6a.

(intermediate **B**), base-mediated conjugate addition to give intermediate **C**, and subsequent aromatization by elimination of HCN. The structure of **7** was independently confirmed by X-ray crystal structure analysis (Fig. 5).

Scheme 4. Possible mechanism of the formation of **7**. Conditions: *i*, $Pd(OAc)_2$ (5 mol %), SPhos (10 mol %), NEt₃, DMF, 120 °C, 48 h.

Fig. 5. Crystal structure of 7.

The reaction of 2,3,6-tribromo-*N*-methylindole (**2b**) with acrylate **3f** (90 °C, 36 h) afforded the di(alkenyl)indole **9** in 75% yield (Scheme 5). The structure was confirmed by 2D NMR experiments (NOESY, HMBC). The formation of **9** can be explained by Heck reaction of **2b** at carbon C-2, which is most electron-deficient. Due to the electron-withdrawing effect of the 2-(alkoxycarbonyl)alkenyl substituent, carbon C-3 becomes more electron-deficient and, as a consequence, more reactive than C-6. It was earlier noted¹⁸ that Suzuki reactions of N-TBDS-protected 3,6-dibromoindole proceeded by first attack on position C-6. This might also explain the observation that the reaction of 2,3-dibromoindole 2a with only 1 equiv of acrylate mainly results in the formation of 2.3-dil2-(alkoxycarbonyl)ethenyllindole **4** and starting material, except for the case of acrylate 3i where 8 was isolated in 35% yield along with 4i. Product 8 was an unstable compound and at room temperature it underwent decomposition within 24 h providing a dark brown coloured material, probably due to the loss of Br (Scheme 5). Therefore, pure compounds of type 8 could not be isolated. The Pd(OAc)₂/L-catalyzed reaction of **2b** with acrylate **3f**, carried out at 120 rather than 90 °C, afforded the 1,2-dihydrocarbazole 10 in 73% vield (Scheme 6).

Scheme 5. Synthesis of 8. Conditions: i, Pd(OAc)_2 (5 mol %), SPhos (10 mol %), NEt₃, DMF, 90 $^{\circ}$ C, 24 h.

 $\begin{array}{l} \textbf{Scheme 6. Synthesis of 9 and 10. Conditions: } \textit{i, Pd}(OAc)_2 \ (5 \ mol \ \%), \ SPhos \ (10 \ mol \ \%), \\ NEt_3, DMF, 90 \ ^\circC, 24 \ h; \ \textit{ii, Pd}(OAc)_2 \ (5 \ mol \ \%), \ SPhos \ (10 \ mol \ \%), \ NEt_3, \ DMF, 120 \ ^\circC, 48 \ h \ . \end{array}$

The Heck reaction of **2b** with an excess of acrylates **3** (90 °C, 36 h) afforded the 2,3,6-tris(alkenyl)indoles **11a,e**–**h** in good yields (Scheme 7, Table 4). 7-Alkenyl-1,2-dihydrocarbazoles **12a**–**g** were isolated when the cross-coupling reactions of **2b** with **3** were carried out at 120 instead of 90 °C. The structure of **12c** was independently confirmed by X-ray crystal structure analysis (Fig. 6). The dehydrogenation of **12a–c,e**, carried out using Pd/C (10 mol %) in refluxing xylene, afforded the carbazoles **13a–c,e**.

Scheme 7. Synthesis of **11a,e-h, 12a-g** and **13a-c,e**. Conditions: *i*, Pd(OAc)₂ (5 mol %), SPhos (10 mol %), NEt₃, DMF, 90 °C, 36 h; *ii*, Pd(OAc)₂ (5 mol %), SPhos (10 mol %), NEt₃, DMF, 120 °C, 48 h; *iii*, Pd/C (10 mol %), xylene, reflux, 48 h.

ladi	e 4	
Svnt	he	s

ynthesis of 11a,e—h, 12a—g and 13a—c	e
--	---

11,12,3	R	% (11) ^a	% (12) ^a	% (13) ^a
a	Me	69	79	100
b	Et	b	67+10 ^c	100
с	ⁿ Bu	b	95	100
d	ⁱ Bu	b	72	b
e	ⁿ Hex	74	74	100
f	^t Bu	76	79	b
g	ⁱ Oct	73	74	b
h	ⁿ Octadec	64	b	b

^a Yields of isolated products based on **2b**.

^b Experiment was not carried out.

^c Compound **14** was isolated as a by-product in 10%.

Fig. 6. Crystal structure of 12c.

Along with **12b**, a side product **14** was also isolated, which was formed by reduction of carbon atom C-2 or C-3 (Fig. 7). The structure of the product could not be unambigiously confirmed.

Fig. 7. Possible structures of side product 14 derived from 12b.

The Pd(OAc)₂/SPhos-catalyzed reaction of 2,3,5,6-tetrabromoindole **2c** with an excess of acrylates **3** (120 °C, 48 h) afforded the 6,7-di(alkenyl)-1,2-dihydrocarbazoles **15a**–**h** in good yields (Scheme 8, Table 5). The Pd/C-catalyzed dehydrogenation of

Scheme 8. Synthesis of **15a**–**h**, **16a**–**d**,**g** and **17b**,**c**,**e**,**g**. Conditions: *i*, Pd(OAc)₂ (5 mol %), SPhos (10 mol %), NEt₃, DMF, 120 °C, 48 h; *ii*, Pd/C (10 mol %), xylene, reflux, 2 d, *iii*, Pd(OAc)₂ (5 mol %), SPhos (10 mol %), NEt₃, DMF, 90 °C, 36 h.

Table 5

		-		
15,16,17	R	% (15) ^a	% (16) ^a	% (17) ^a
a	Me	68	100	b
b	Et	86	b	76
с	ⁿ Bu	71	100	71
d	ⁱ Bu	72	b	b
e	^t Bu	72	b	88
f	ⁿ Hex	80	b	b
g	2-Ethylhexyl	71	100	75
ĥ	ⁱ Oct	74	b	b

Synthesis of **15a**–**h**, **16a**–**d** and **1b**,**c**,**e**,**g**

^a Yields of isolated products.

^b Experiment was not carried out.

12a–d,g afforded the carbazoles **13a–d,g** in quantitative yield. An electrocyclization involving the alkenyl groups attached to carbon atoms C-5 and C-6 was not observed. This can be explained by the aromaticity of the benzene ring, which would be interrupted by the electrocyclization. Tetra-alkenylated indoles **17b,c,e,g** could be successfully prepared when the reaction was performed at 90 instead of 120 °C. Side-product **18** was isolated in 7% yield along with **17b**, due to reduction of carbon atoms C-2 and C-3 (Fig. 8).

Fig. 8. Structure of side product 18 derived from 17b.

An alternative synthetic approach to carbazoles based on twofold Sonogashira reactions of 2,3-dibromoindole **2a** with acetylenes and subsequent Bergman cyclization was next studied. The Sonogashira reaction of **2a** with phenylacetylene, in the presence of Pd(OAc)₂ (5 mol %) and XPhos (10 mol %), provided the unstable bis-alkynylated indole **19c** in 60% yield (Scheme 9). The product proved to be very unstable and rapidly decomposed. It was not possible to prepare other derivatives because they decomposed under the conditions of their preparation. All attempts to induce a thermal Bergman cyclization of **19** by heating in the presence of dihydrobenzene to prepare carbazole **20** failed (decomposition). All efforts to achieve a regioselective alkynylation of **2a** using 1.0 equiv of acetylene also failed.

Scheme 9. Bis-alkynylation of 2a. i, Pd(OAc)₂ (5 mol %), XPhos (10 mol %), phenylacetylene (2.5 equiv), Cul (10 mol %), (ⁱPr)₂NH, 120 °C, 36 h.

In conclusion, we have reported the synthesis of di-, tri- and tetra-alkenylindoles by palladium(0)-catalyzed Heck crosscoupling reactions of di-, tri- and tetrabromo-*N*-methylindoles. The reactions were carried out at 90 °C using a novel biaryl monophosphine ligand developed by Buchwald and co-workers. 1,2-Dihydrocarbazoles were formed by a domino 'twofold Heck/ 6π -electrocyclization' when the reaction was carried out at 120 rather than 90 °C. The regioselectivity of the Heck reaction of 2,3,6tribromo-*N*-methylindoles was in favour of carbon atoms C-2 and C-3. Some of the 1,2-dihydrocarbazoles prepared were transformed, by Pd/C-catalyzed dehydrogenation, into the corresponding carbazoles in high yield.

3. Experimental section

3.1. Synthesis of 2,3-dibromo-N-methylindole (2a)

To a THF solution (20 mL) of *N*-methylindole **1** (1.0 mL, 8.0 mmol) was portionwise added NBS (3.30 g, 18.4 mmol) at -78 °C and the solution was stirred at this temperature for 4 h. To the solution was added water (25 mL). The organic and the aqueous layer were separated and the latter was extracted with CH₂Cl₂ (3×25 mL). The combined organic layers were washed with a saturated aqueous solution of NaHCO₃, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield **2a** as a colourless solid (1.83 g, 90%).

3.2. Synthesis of 2,3,6-tribromo-N-methylindole (2b)

To a THF solution (50 mL) of *N*-methylindole (1) (2.0 mL, 16.0 mmol) was portionwise added NBS (9.40 g, 52.8 mmol) at -78 °C and the solution was stirred at this temperature for 4 h and then at 20 °C for 14 h. To the solution was added water (25 mL). The organic and the aqueous layer were separated and the latter was extracted with CH₂Cl₂ (3×30 mL). The combined organic layers were washed with a saturated aqueous solution of NaHCO₃, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield **2b** as a colourless solid (5.50 g, 94%).

3.3. Synthesis of 2,3,5,6-tetrabromo-N-methylindole (2c)

To a THF solution (100 mL) of *N*-methylindole (1) (4.9 mL, 38.0 mmol) was portionwise added NBS (33.80 g, 190.0 mmol) at -78 °C and the solution was stirred at this temperature for 1 h and then under reflux for 4 h. To the solution was added water (50 mL). The organic and the aqueous layer were separated and the latter was extracted with CH₂Cl₂ (3×50 mL). The combined organic layers were washed with a saturated aqueous solution of NaHCO₃, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was purified by flash silica column chromatography (pure heptanes) to yield **2c** as a colourless solid (13.20 g, 78%). ¹H NMR (250 MHz, CDCl₃): δ =3.70 (s, 3H, NCH₃), 7.60 (s, 1H, ArH), 7.70 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =32.7 (NCH₃), 91.9 (C), 114.4 (CH), 116.4, 117.2, 118.4 (C), 123.1 (CH), 127.4, 135.7 (C).

3.4. General procedure A for Heck cross-coupling reactions

In a pressure tube (glass bomb) a suspension of Pd(OAc)₂ (12 mg, 0.05 mmol, 5 mol %) and SPhos (L_1) (41 mg, 0.10 mmol) in DMF (5 mL) was purged with argon and stirred at 20 °C to get a yellowish or brownish transparent solution. To the stirred solution were added the brominated indole 2a-c (1.0 mmol), NEt₃ and the acrylate. The reaction mixture was stirred at 90 °C for 36 h. The solution was cooled to 20 °C, poured into H₂O and CH₂Cl₂ (25 mL each), and the organic and the aqueous layer were separated. The

latter was extracted with CH₂Cl₂ ($3 \times 25 \text{ mL}$). The combined organic layers were washed with H₂O ($3 \times 20 \text{ mL}$), dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).

3.5. Synthesis of 2,3-bis(alkenyl)-N-methylindoles 4

3.5.1. Dimethyl 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (**4a**). Starting with Pd(OAc)₂ (12 mg, 5 mol %) and SPhos (**L**₁) (41 mg, 10 mol %), brominated indole **2a** (288 mg, 1.0 mmol) **4a** was isolated as yellow oil (231 mg, 77%). ¹H NMR (250 MHz, CDCl₃): δ =3.53 (s, 3H, CH₃O), 3.75 (s, 3H, CH₃O), 3.78 (s, 3H, CH₃N), 6.25 (d, 1H, *J*=15.9 Hz), 6.49 (d, 1H, *J*=15.8 Hz), 6.8–7.3(m, 3H, ArH), 7.70 (d, 1H, ArH), 7.82 (d, 1H, *J*=16.6 Hz), 7.93 (d, 1H, *J*=16.6 Hz). ¹³C NMR (62 MHz, CDCl₃): δ =31.2 (CH₃CN), 51.3, 51.5 (CH₃O), 109.7 (C), 110.0, 116.1, 120.2, 120.8 (CH), 124.2 (C), 131.3, 135.6 (CH), 136.3, 137.1 (C), 143.2 (CH), 166.4, 168.2 (CO). IR (KBr): *v*=2948, 2841 (w), 1702, 1618, 1433 (s), 1410, 1372, 1341 (m), 1269, 1190, 1165, 1132 (s), 1035, 1013, 967 (m), 739 (s), 648, 560 (w) cm⁻¹. GC–MS (EI, 70 eV): *m/z* (%)= 299 (M⁺, 60), 240 (67), 209 (64), 181 (100), 120 (32), 77 (19), 41 (19). HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₈NO₄ [M+H]⁺: 300.12303; found: 383.12291.

3.5.2. Dibutyl 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (4c). Product 4c was prepared starting with 2a (289 mg, 1.0 mmol), butyl acrylate (3c) (0.36 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 24 h following general procedure A, as a brownish oil (276 mg, 72%). ¹H NMR (250 MHz, CDCl₃): δ =0.90 (t, 6H, *J*=7.1 Hz, 2CH₃), 1.30–1.40 (m, 4H, 2CH₂), 1.60-1.70 (m, 4H, 2CH₂), 3.70 (s, 3H, NCH₃), 4.10 (t, 2H. *I*=6.3 Hz, CH₂O), 4.20(t, 2H, *I*=6.3, 2CH₂O), 6.30(d, 1H, *I*=16.1 Hz, CH), 6.50 (d, 1H,, J=15.8 Hz, CH), 7.20-7.40 (m, 3H, ArH), 7.80 (d, 1H, J=16.1 Hz, CH), 7.80 (br d, 1H, J=8.0 Hz, ArH), 7.90 (d, 1H, J=15.8 Hz, CH). ¹³C NMR (62 MHz, CDCl₃): δ =13.7, 13.8 (CH₃), 19.2, 19.3 (CH₂), 30.8, 30.9 (CH₂), 31.2 (NCH₃), 64.2, 64.9 (CH₂O), 110.0 (CH), 114.1 (C), 116.6, 121.1, 122.0, 124.7, 124.8 (CH), 125.5 (C), 131.1, 136.5 (CH), 136.8, 139.0 (C), 166.2, 168.0 (CO). IR (KBr): v=2957, 2932, 2872 (m), 1706, 1616, 1466 (s), 1364, 1326 (w), 1274, 1235, 1165 (s), 1132, 1115, 1061, 1046, 1027, 968, 844, 8215 (m), 739 (s), 561 (w) cm⁻¹. MS (EI, 70 eV): m/z (%)=383 (M⁺, 3), 381 (62), 325 (13), 308 (06), 269 (09), 252 (100), 225 (08). HRMS (EI, 70 eV): calcd for C₂₃H₂₉NO₄ [M]⁺: 383.20911; found: 383.208695.

3.5.3. Dihexyl 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (4e). Product 4e was prepared starting with 2a (289 mg, 1.0 mmol), hexyl acrylate (3e) (0.44 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a deep yellow highly viscous oil (337 mg, 77%). ¹H NMR (250 MHz, CDCl₃): δ =0.80 (t, 6H, *J*=7.8 Hz, 2CH₃), 1.20-1.40 (m, 16H, 8CH₂), 3.70 (s, 3H, NCH₃), 4.20 (t, 4H, *I*=6.8 Hz, 2CH₂O), 6.20 (d, 1H, *I*=16.0 Hz, ArH), 6.50 (d, 1H, *I*=15.9 Hz, ArH), 7.10-7.30 (m, 3H, ArH), 7.70 (d, 1H, J=15.8 Hz, ArH), 7.80 (d, 2H, J=8.1 Hz, ArH), 7.90 (d, 1H, J=16.0 Hz, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=13.0 (2CH₃), 21.4, 21.5, 24.4, 24.8, 27.3, 27.7 (CH₂), 29.9 (NCH₃), 30.3, 30.5 (CH₂), 63.5, 64.2 (CH₂O), 109.7 (CH), 113.0 (C), 120.0, 120.2, 121.0, 123.2, 1236 (CH), 124.5 (C), 130.1, 134.2 (CH), 135.5, 138.0 (C), 165.2, 166.9 (CO). IR (KBr): v=2955, 2929, 2857 (m), 1712 (s), 1625, 1529, 1467, 1360, 1283, 1238 (w), 1170 (s), 1133, 1049, 972, 916 (w), 735 (s) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)=439 ([M]⁺, 44), 338 (06), 310 (28), 252 (11), 226 (100), 208 (68), 182 (84). HRMS (EI, 70 eV): calcd for C₂₇H₃₇NO₄ [M]⁺: 439.27171; found: 439.270972.

3.5.4. Di(tert-butyl) 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (**4f**). Product **4f** was synthesized starting with **2a** (289 mg, 1.0 mmol), tert-butyl acrylate (**3f**) (0.37 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF(5 mL) at 90 °C for 36 h

following general procedure A, as a yellowish highly viscous oil (299 mg, 78%, E/Z=7:3). ¹H NMR (250 MHz, CDCl₃): δ =1.50 (s, 18H, 6CH₃), 3.70 (s, 3H, NCH₃), 6.20 (d, 1H, *J*=16.0 Hz, ArH), 6.40 (d, 1H, *J*=16.0 Hz, ArH), 7.20–7.30 (m, 3H, ArH), 7.60 (d, 1H, *J*=15.8 Hz, ArH), 7.70 (d, 1H, *J*=16.0 Hz, ArH), 8.00 (d, 1H, *J*=7.9 Hz, ArH). ¹³C NMR (75 MHz, CDCl₃): δ =27.2, 27.3 (3CH₃), 30.1 (NCH₃), 79.0, 80.2 (C–O), 108.6 (CH), 112.8 (C), 117.2, 120.2, 120.6, 123.8 (CH), 124.5 (C), 125.4, 129.2, 134.7 (CH), 135.9, 137.2 (C), 164.4, 166.3 (C=O). IR (KBr): *v*=2964, 2930 (w), 1722, 1710, 1693, 1680, 1613, 1469, 1453, 1391, 1366 (m), 1281, 1258, 1144, 1090, 1017 (s), 845 (m), 797, 741 (s), 663, 563 (w) cm⁻¹. GC–MS (EI, 70 eV): *m*/*z* (%)=383 (M⁺, 39), 271 (13), 227 (84), 226 (100), 225 (52), 208 (31), 182 (69), 167 (54), 152 (21), 57 (79), 41 (42). HRMS (EI, 70 eV): calcd for C₂₃H₂₉NO₄ [M]⁺: 383.20911; found: 383.20905.

3.5.5. Bis(6-methylheptyl) 3,3'-(1-methyl-1H-indole-2,3-diyl)diacrylate (4g). Product 4g was prepared starting with 2a (289 mg, 1.0 mmol), isooctyl acrylate (3g) (0.52 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a yellow oil (377 mg, 76%). ¹H NMR (250 MHz, CDCl₃): δ =0.60–0.90 (m, 12H, 4CH₃), 1.00-1.40 (m, 12H, 6CH₂), 1.50-1.60 (m, 6H, aliphatic), 3.80 (s, 3H, NCH₃), 4.10 (t, 2H, J=6.7 Hz, CH₂O), 4.20 (t, 2H, J=6.8 Hz, CH₂O), 6.40 (d, 1H, J=16.1 Hz, ArH), 6.50 (d, 1H, J=16.0 Hz, ArH), 7.10-7.20 (m, 3H, ArH), 7.80 (d, 1H, J=15.7 Hz, ArH), 7.80 (br d, 1H, J=7.6 Hz, ArH), 7.90 (d, 1H, I=15.7 Hz, ArH). ¹³C NMR (62 MHz, CDCl₃): $\delta=13.0$, 14.6 (CH₃), 21.5, 24.5, 27.5 (CH₂) 29.5 (NCH₃), 45.5 (CH₂), 63.7, 63.8 (CH₂O), 108.1 (C), 108.7 (CH), 115.7, 120.0, 120.4, 123.2 (CH), 124.5, 125.0 (C), 127.6, 130.1, 134.3 (CH), 137.3 (C), 165.3, 167.0 (CO). IR (KBr): $\nu = 2955, 2927, 2871$ (m), 1709, 1620, 1465 (s), 1367, 1280, 1235 (m), 1164 (s), 1132, 1048, 969, 849, 818 (w), 740 (s), 662, 561 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%)=495 ([M]⁺, 32), 337 (16), 281 (14), 253 (10), 252 (22), 226 (100), 208 (75), 182 (45). HRMS (EI, 70 eV): calcd for C₃₁H₄₅NO₄ [M]⁺: 495.33431; found: 495.33390.

3.6. Synthesis of bis(2-ethylhexyl) 3,3'-(1-methyl-1*H*-indole-2,3-diyl)diacrylate (4i)

Product 4i was prepared starting with 2a (289 mg, 1.0 mmol), 2-ethylhexyl acrylate (0.27 mL, 1.25 mmol) (0.52 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 24 h following general procedure A, as a yellow oil (50 mg, 10%+35% 8). ¹H NMR (250 MHz, CDCl₃): δ=0.90 (t, 12H, J=7.5 Hz, 4CH₃), 1.20-1.40 (m, 16, 8CH₂), 1.20-1.60 (m, 2H, CH), 3.80 (s, 3H, NCH₃), 4.00-4.10 (m, 4H, CH₂O), 6.30 (d, 1H, J=16.0 Hz, ArH), 6.50 (d, 1H, J=16.0 Hz, ArH), 7.20-7.30 (m, 3H, ArH), 7.80 (d, 1H, J=16.0 Hz, ArH), 7.90 (d, 1H, J=8.1 Hz, ArH), 8.00 (d, 1H, *J*=15.9 Hz, ArH). ¹³C NMR (75 MHz, CDCl₃): δ=11.0, 11.1, 14.0 (CH₃), 22.9, 23.0, 23.8, 24.0, 28.9, 29.0, 30.4, 30.5 (CH₂), 31.2 (CH₃CN), 38.8, 38.9 (CH-aliphatic), 66.8, 67.6 (CH₂O), 109.0 (CH), 113 (C), 115.7, 121.2, 122.0, 123.5, 123.6 (CH), 124.5 (C), 131.1, 135.5 (CH), 135.8, 138.0 (C), 165.3, 167.0 (CO). IR (KBr): v=3052 (w), 2957, 2927, 2872, 2858 (m), 1706, 1620 (s), 1464 (m), 1411, 1378, 1352, 1339 (w), 1280, 1250, 1235 (m), 1165 (s), 1132, 1031, 1016, 1016, 968 (m), 850, 818, 766 (w), 740 (s), 655, 561 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z $(\%)=595 ([M]^+, 60), 367 (9), 337 (15), 269 (10), 253 (15), 226 (72),$ 208 (100), 151 (13). HRMS (EI, 70 eV): calcd for C₃₁H₄₅NO₄ [M]⁺: 495.33431; found: 495.33712.

3.6.1. (*E*)-2-*E*thylhexyl 3-(3-bromo-1-methyl-1H-indol-2-yl)acrylate (**8**). Product **8** (138 mg, 35%) was isolated along with **4i** (50 mg, 10%) as a light brown oil (138 mg, 35%+10% of **4i**). ¹H NMR (250 MHz, CDCl₃): δ =0.87 (t, *J*=7.3, 6H, 2CH₃), 1.18–1.45 (m, 8H), 1.53–1.66 (m, 1H), 3.75 (s, 3H, CH₃N), 4.08 (dd, *J*=0.8, 6.0 Hz, 2H, CH₂O), 6.80 (d, 1H, *J*=16.2 Hz, CH), 7.08–7.15 (m, 1H, ArH), 7.22–7.25 (m, 2H, ArH), 7.48–7.52 (m, 1H, ArH), 7.774 (d, 1H,

J=16.3 Hz, CH). ¹³C NMR (75.5 MHz, CDCl₃): δ =9.8, 13.1 (CH₃), 22.0, 22.9, 27.8, 29.5 (CH₂), 30.2 (CH), 37.9 (NCH₃), 66.2 (CH₂O), 95.0 (C), 108.8, 119.1, 119.4, 120.0, 124.0 (CH), 126.2, 129.8 (C), 130.0 (CH), 137.0 (C), 166.2 (CO). IR (KBr): ν =2956, 2926, 2871, 2858 (m), 1706 (s), 1625, 1462, 1372, 1325, 1260, 1233, 1207 (m), 1167 (s), 1014, 930, 767 (w), 738 (m) cm⁻¹. HRMS (ESI⁺): calcd for C₂₀H₂₆BrNO₂ (M⁺, [⁷⁹Br]): 391.11469; found: 391.11433, calcd for C₂₀H₂₆BrNO₂ (M⁺, [⁸¹Br]): 393.11263; found: 393.11453.

3.7. General procedure B for Heck cross-coupling reactions

In a pressure tube (glass bomb) a suspension of $Pd(OAc)_2$ (12 mg, 0.05 mmol) and SPhos (L₁) (41 mg, 0.10 mmol) in DMF (5 mL) was purged with argon and stirred at 20 °C to get a yellowish or brownish transparent solution. To the stirred solution were added the brominated indole **2a**–**c** (1.0 mmol), NEt₃ (1.1 mL, 8.0 mmol) and the acrylate (1.25 equiv per Br). The reaction mixture was stirred at 120 °C for 48 h. The solution was cooled to 20 °C, poured into H₂O and CH₂Cl₂ (25 mL each), and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3×25 mL). The combined organic layers were washed with H₂O (3×20 mL), dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by chromatography (flash silica gel, heptanes/EtOAc).

3.8. Synthesis of 2,3-dihydrocarbazoles 5

3.8.1. Dimethyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dic arboxylate (5a). Starting with Pd(OAc)₂ (12 mg, 5 mol %), SPhos (41 mg, 10 mol %), methyl acrylate (0.26 mL, 2.5 mmol), brominated indole 2a (288 mg, 1.0 mmol) 5a was isolated as yellow oil (206 mg, 69%). ¹H NMR (300 MHz, CDCl₃): δ =2.99 (dd, 1H, *J*=8.6, 17.0 Hz, C(1)); 3.50 (dd, 1H, J=2.6, 17.2 Hz, H-1), 3.52 (s, 3H, CH₃N), 3.63 (s, 3H, CH₃O); 3.76 (s, 3H, CH₃O), 4.01 (dd, 1H, J=2.4, 8.7 Hz, C(2)), 7.08–7.22 (m, 4H, ArH), 7.92 (s, 1H, C(4)). ¹³C NMR (62 MHz, CDCl₃): δ =23.9 (CH₂), 29.8 (C(4)H), 38.8 (CH₃N). 51.6 (CH₃O), 52.5 (CH₃O), 109.3, 109.6 (CH), 115.7, 117.9 (CH), 117.3, 121.0, 121.9 (CH), 125.1 (C), 132.7 (CH), 138.0, 139.8 (C), 167.7, 173.8 (CO). IR (KBr): v=2949, 2845 (w), 1720, 1692 (s), 1605, 1524, 1467, 1434, 1270 (m), 1234, 1241, 1191 (s), 1048, 750 (m) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)=299 (M⁺, 58), 268 (6), 240 (73), 208 (92), 181 (100), 152 (31), 104 (5), 76 (22). HRMS: m/z calcd for C₁₇H₁₈NO₄ [M+H]⁺ 300.12303; found: 300.122761.

3.8.2. Diethyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (5b). Product 5b was prepared starting with 2a (289 mg, 1.0 mmol), ethyl acrylate (0.27 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (mL) at 120 °C for 48 h according to general procedure B, as a yellow solid (303 mg, 93%), mp 100–103 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.10 (s, 3H, CH₃), 1.30 (s, 3H, CH₃), 2.90 (dd, 1H_a, *J*=8.8, 17.1 Hz, H-1), 3.50 (dd, 1H_β, *J*=2.6, 17.2 Hz, H-1), 3.60 (s, 3H, NCH₃), 3.90–4.10 (m, 3H, H_α and CH₂O), 4.20 (q, J=7.1, 13.5 Hz, 2H, CH₂O), 7.10-7.20 (m, 3H, ArH), 7.50–7.60 (m, 1H, ArH), 7.90 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ=13.0 (CH₃), 13.5 (CH₃), 22.8 (CH₂), 28.7 (CH, C-4), 37.7 (NCH₃), 59.3 (CH₂O), 60.1 (CH₂O), 108.3 (C), 108.6 (CH), 115.4 (C), 116.9, 120.0, 120.8 (CH), 124.1(C), 131.2 (CH), 137.0, 138.6 (C), 166.3, 172.3 (CO). IR (KBr): v=2981, 2928, 2854 (w), 1725(s), 1629, 1599 (w), 1470, 1454 (m), 1372, 1261, 1238 (s), 1109, 1079, 147 (m), 787, 747, 723, 608, 561 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)=325 ([M-2]⁺ (carbazole), 89), 280 (13), 252 (100), 208 (07), 179 (13). HRMS (ESI⁺): calcd for C₁₉H₁₉NO₄ [M–2]⁺ (carbazole): 325.13141; found: 325.13161.

3.8.3. *Dibutyl* 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (**5c**). Product **5c** was prepared starting with **2a** (289 mg,

1.0 mmol), butyl acrylate (0.36 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (mL) at 120 °C for 48 h according to general procedure B, as a yellow highly viscous oil (294 mg, 77%). ¹H NMR (250 MHz, CDCl₃): δ=0.80 (t, 3H, *I*=7.3 Hz, CH₃), 0.90 (t, 3H, *I*=7.4 Hz, CH₃), 1.10–1.30 (m, 2H, CH₂), 1.30-1.50 (m, 4H, 2CH₂), 1.60-1.70 (m, 2H, CH₂), 3.00 (dd, 1H_a, J=8.6, 17.0 Hz, H-1), 3.60 (dd, 1H_b, J=2.3, 17.0 Hz, H-1), 3.70 (s, 3H, NCH₃), 3.80–4.00 (m, 2H, CH₂O), 4.00 (dd, 1H_a, J=2.3, 8.3 Hz, H-2), 4.20 (t, 2H, *J*=6.6 Hz, CH₂O), 7.00–7.20 (m, 3H, ArH), 7.50–7.60 (m, 1H, ArH), 7.90 (s, 1H, H-4). ¹³C NMR (62 MHz, CDCl₃): δ =13.6 (CH₃), 13.8 (CH₃), 19.0, 19.3, 23.8 (CH₂), 29.8 (CH₃N), 30.5, 31.0 (CH₂), 39.0 (CH, C-2), 64.2, 65.0 (CH₂O), 109.4 (C), 109.6 (CH), 116.5 (C), 118.0, 121.0, 121.8 (CH), 125.2 (C), 132.1 (CH), 138.0, 139.7 (C), 167.4, 173.4 (CO). IR (KBr): v=2956, 2932, 2872 (m), 1709 (s), 1629, 1599, 1559, 1562 (w), 1500, 1464, 1387, 1362, 1340, 1325 (m), 1257, 1222 (s), 1131, 1106, 1077, 1045, 1015 (m), 950, 902, 843, 830, 783, 765 (w), 742, 720 (m), 632, 608, 561 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)= 383 ([M]⁺, 46), 310 (06), 282 (34), 226 (87), 208 (67), 182 (100), 152 (13). HRMS (EI, 70 eV): *m*/*z* calcd for C₂₃H₂₉NO₄ [M]⁺: 383.20911; found: 383.20824.

3.8.4. Diisobutyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dic arboxylate (5d). Starting with Pd(OAc)2 (12 mg, 0.05 mmol) and SPhos (41 mg, 0.10 mmol), isobutyl acrylate (0.36 mL, 2.5 mmol), brominated indole 2a (288 mg, 1.0 mmol) 5d was following general procedure B, and was isolated as yellow oil (252 mg, 66%). ¹H NMR (250 MHz, CDCl₃): δ=0.73 (d, 6H, *J*=7.6 Hz, 2CH₃), 0.76 (d, 6H, *I*=7.6 Hz, 2CH₃), 0.88–0.92 (m, 2H, CH), 3.01 (dd, 1H, *I*=8.5, 17.3 Hz, C(1)), 3.03 (dd, 1H, *J*=2.7, 17.2 Hz, C(1)), 3.68 (d, 2H, *J*=7.6 Hz, CH₂O), 3.72 (d, 2H, J=7.7 Hz, CH₂O), 3.96 (s, 3H, CH₃N), 4.05 (dd, 1H, J=2.4, 8.8 Hz C (2)), 7.09–7.21 (m, 4H, ArH), 7.92 (s, 1H, C(4)). ¹³C NMR (250 MHz, CDCl₃): δ=18.1, 18.3 (2CH₃), 23.2 (CH₂), 29.7 (C(2)H), 38.7 (CH₃N), 51.6 (CH₂O), 51.8 (CH₂O), 109.1 (C), 109.3, 118.0 (CH), 118.6 (C), 120.3, 121.5 (CH), 125.0 (C), 130.3 (CH), 137.8, 139.5 (C), 166.8, 172.6 (CO). IR (KBr): v=2958, 2927, 2872 (w), 1727, 1464, 1263, 1194, 1158 (m), 1029, 1010 (m), 737 (s), 711, 660, 573 (w) cm⁻¹. GC-MS (EI, 70 eV): m/z (%)=383 (M⁺, 60), 309 (21), 282 (54), 226 (100), 208 (80), 182 (77), 167 (22). HRMS: m/z calcd for $C_{23}H_{29}NO_4$ [M]⁺: 383.2098; found: 383.20933.

3.8.5. Dihexyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (5e). Compound 5e was synthesized starting with 2a (289 mg, 1.0 mmol), hexyl acrylate (0.44 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (mL) at 120 °C for 48 h following general procedure B, as a yellowish solid (357 mg, 81%), mp 107–109 °C. ¹H NMR (250 MHz, CDCl₃): δ =0.70 (t, 3H, J=7.0 Hz, CH₃), 0.80 (t, 3H, J=7.0 Hz, CH₃), 1.10-1.20 (m, 6H, 3CH₂), 1.20-1.50 (m, 8H, 4CH₂), 1.60-1.70 (m, 2H, CH₂), 3.00 (dd, 1H_α, *J*=8.8, 17.1 Hz, H-1), 3.50 (dd, 1H_β, *J*=2.3, 17.1 Hz, H-1), 3.60 (s, 3H, NCH₃), 3.80–4.00 (m, 2H, CH₂O), 4.00 (dd, 1H_a, *J*=2.4, 8.8 Hz, H-2), 4.10 (t, 2H, J=6.8 Hz, CH₂O), 7.00-7.20 (m, 3H, ArH), 7.50-7.60 (m, 1H, ArH), 7.90 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ =12.9, 13.0 (CH₃), 21.5, 21.6, 22.8, 24.4, 24.8, 27.4, 27.9 (CH₂), 28.7 (NCH₃), 30.3, 30.5 (CH₂), 38.0 (CH, C-4), 63.5, 64.2 (CH₂O), 108.3(C), 108.5 (CH), 115.5 (C), 116.9, 120.0, 121,0 (CH), 124.1 (C), 131.0 (CH), 137.0, 138.7 (C), 166.4, 172.3 (CO). IR (KBr): v=2953, 2928, 2857 (m), 1724, 1691 (s), 1615, 1605, 1526, 1465, 1392, 1311, 1307, 1268 (m), 1223, 1180 (s), 1086, 1046 (m), 915, 835, 767 (w), 738 (s), 653, 626, 546 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)=439 ([M]⁺, 41), 310 (30), 226 (100), 208 (68), 182 (84), 152(08). HRMS (EI, 70 eV): calcd for C₂₇H₃₇NO₄ [M]⁺: 439.27171; found: 439.27110.

3.8.6. Di-tert-butyl 9-methyl-2,9-dihydro-1H-carbazole-2,3-dic arboxylate (**5f**). Compound **5f** was prepared starting with **2a** (367 mg, 1.0 mmol), tert-butyl acrylate (0.37 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.1° mL, 8.0 mmol), DMF (mL) at 120 °C for 48 h according to general procedure B, as a light brown solid (325 mg, 85%), mp 105–107 °C. ¹H NMR (250 MHz, CDCl₃): *δ*=1.30 (s, 9H, 3CH₃), 1.50 (s, 9H, 3CH₃), 2.90 $(dd, 1H_{\alpha}, J=8.9, 17.1 \text{ Hz}, \text{H-1}), 3.50 (dd, 1H_{\beta}, J=2.5, 17.1 \text{ Hz}, \text{H-1}), 3.60$ (s, 3H, NCH₃), 3.90 (dd, 1H_a, J=2.1, 8.9 Hz, H-2), 7.00-7.10 (m, 2H, ArH), 7.10-7.20 (m, 1H, ArH), 7.50-7.60 (m, 1H, ArH), 7.80 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ =23.6 (CH₂), 27.9 (3CH₃), 28.4 (3CH₃), 29.7 (CH, C-4), 39.7 (CH₃N), 79.7 (C-0), 81.0 (C-0), 109.2 (C), 109.5 (CH), 118.0 (CH), 118.7 (C), 120.7, 121.5 (CH), 125.2 (C), 130.6 (CH), 137.9, 139.6 (C), 166.8, 172.5 (CO). IR (KBr): v=3049, 2973, 2930 (w), 1712 (s), 1614, 1598, 1470, 1455, 1390 (m), 1365, 1272, 1242, 1152, 1128, 1110 (s), 1046, 1014 (w), 872, 846, 836 (m), 747, 739 (s), 666, 597, 550 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)= 383 ([M]⁺, 7), 325 (54), 269 (100), 252 (86), 225 (80), 207 (44), 179 (82). HRMS (EI, 70 eV): calcd for C₂₃H₂₉NO₄ [M]⁺: 383.20966; found: 383.20855.

3.8.7. Bis[2-(dimethylamino)ethyl] 9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (5h). Compound 5h was synthesized starting with 2a (289 mg, 1.0 mmol), 2-(diethylamino)ethyl acrylate (0.38 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (mL) at 120 °C for 48 h following general procedure B, as a yellow highly viscous oil (326 mg, 79%). ¹H NMR (250 MHz, CDCl₃): δ=2.10 (s, 6H, 2CH₃), 2.30 (s, 6H, 2CH₃), 3.00 (dd, 1H_a, *J*=8.8, 17.1 Hz), 3.50–3.60 (m, 4H, NCH₃ and H_b-1), 4.00–4.10 (m, 5H, 2NCH₂ and H_a-2), 3.30 (t, 4H, J=6.3 Hz, 2CH₂O), 7.10-7.20 (m, 3H, ArH), 7.50 (dd, 1H, J=2.3, 8.5 Hz, ArH), 7.90 (s, 1H, H-4). ¹³C NMR (62 MHz, CDCl₃): δ =23.8 (CH₂, C-1), 29.8 (NCH₃), 38.9 (CH, C-2), 45.5, 45.8 (2CH₃), 57.3, 57.9 (NCH₂), 62.3, 63.2 (CH₂O), 109.3 (C), 109.6 (CH), 115.7 (C), 117.9, 121.1, 122.0 (CH), 125.1 (C), 132.8 (CH), 138.0, 139.8 (C), 167.2, 173.1 (CO). IR (KBr): v=2943, 2857, 2820, 2769 (w), 1691, 1614, 1525, 1455 (s), 1394, 1370, 1332, 1286 (m), 1225, 1166 (s), 1130, 1097 (m), 1031 (s), 954, 919, 835 (w), 739 (s), 627 (w) cm⁻¹. GC–MS (EI, 70 eV): *m/z* (%)=413 ([M]⁺, 13), 297 (98), 252 (06), 227 (04), 225 (13), 208 (56), 180 (17), 58 (100). HRMS (EI, 70 eV): calcd for C₂₃H₃₁N₃O₄ [M]⁺: 413.23091; found: 413.230881.

3.9. General procedure C for the transformation of 1,2dihydrocarbazoles to carbazoles

To solution of xylene (5 mL) were added the 1,2-dihy-drocarbazole (100 mg) and Pd/C (10 mg, 10 mol %). The solution was stirred under reflux for 48 h under argon atmosphere. The reaction mixture was filtered and the filtrate was concentrated in vacuo.

3.10. Synthesis of 3,4-di-substituted carbazoles 6

3.10.1. Diethyl 9-methyl-9H-carbazole-2,3-dicarboxylate (**6a**). Starting with 5b (100 mg) following general procedure C, 6a was prepared as a light yellow oil (99 mg, 100%). ¹H NMR (300 MHz, CDCl₃): *δ*=1.31 (t, 3H, *J*=7.1 Hz, CH₃), 1.33 (t, 3H, *J*=7.1 Hz, CH₃), 3.81 (s, 3H, CH₃N), 4.32 (q, 2H, J=7.2 Hz, CH₂O), 4.43 (q, 2H, J=7.2 Hz, CH₂O), 7.21–7.31 (m, 1H, ArH), 7.32–7.41 (m, 1H, ArH), 7.40–7.51 (m, 1H, ArH), 7.60 (s,1H, ArH), 8.00-8.11 (m, 1H, ArH), 8.51 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=13.2, 13.3 (CH₃), 28.4 (CH₃N), 60.3 (CH₂O), 60.7 (CH₂O), 108.0, 108.1, 119.2, 120.0 (CH) 120.6, 121.2 (C), 121.4 (CH), 122.7, (C), 126.1 (CH), 130.1, 140.5, 141.2 (C), 166.8, 168.2 (CO). IR (KBr): v=2916 (w), 1713, 1702, 1628, 1599, 1559, 1499, 1475, 1447, 1427 (m), 1392, 1372, 1339, 1328 (s), 1254, 1240, 1227 (w), 1124, 1106, 1080, 1047, 1030, 953, 913, 868, 835, 794, 781, 765, 748, 725, 664, 656, 626, 590, 556 (s) cm⁻¹. GC–MS (EI, 70 eV): *m*/*z* (%)=325 (M⁺, 95), 280 (12), 253 (21), 252 (100), 251 (5), 208 (7), 179 (12), 152 (9). HRMS: m/z calcd for $C_{19}H_{19}NO_4$ [M]⁺: 325.13141; found: 325.131001.

3.10.2. Dibutyl 9-methyl-9H-carbazole-2,3-dicarboxylate (6b). Product 6b was prepared starting with 5c (100 mg, 0.26 mmol), following general procedure C, as a light yellow solid (99 mg, 100%). ¹H NMR (250 MHz, CDCl₃): δ =0.90 (t, 3H, *J*=7.4 Hz, CH₃), 0.90 (t, 3H, *I*=7.3 Hz, CH₃), 1.30–1.50 (m, 4H, 2CH₂), 1.60–1.80 (m, 4H, 2CH₂), 3.80 (s, 3H, NCH₃), 4.30 (t, 2H, *J*=6.8 Hz, CH₂O), 4.30 (t, 2H, J=6.7 Hz, CH₂O), 7.20-7.30 (m, 1H, ArH), 7.30-7.40 (m, 1H, ArH), 7.40-7.50 (m, 1H, ArH), 7.60 (s, 1H, H-1), 8.00-8.10 (m, 1H, ArH), 8.40 (s, 1H, H-4). ¹³C NMR (62 MHz, CDCl₃): δ=13.7, 13.8 (CH₃), 19.2, 19.3 (CH₂), 29.4 (NCH₃), 30.6, 30.8 (CH₂), 65.3, 65.7 (CH₂O), 109.0, 109.1, 120.2, 121.0 (CH), 121.7, 122.2 (C), 122.4 (CH), 123.6 (C), 127.1 (CH), 131.1, 141.5, 142.1 (C), 167.9, 169.4 (CO). IR (KBr): v=2956, 2931, 2871 (w), 1709 (s), 1464, 1387, 1362, 1340, 1325 (m) 1255, 1221 (s), 1131, 1106, 1077, 1045 (m), 950, 902, 843, 829 (w), 784, 743, 721 (m), 632, 608, 561 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)=381(M⁺, 56), 308 (15), 280 (100), 224 (87), 212 (27), 206 (77), 180 (10), 152 (11). HRMS (EI, 70 eV): calcd for C₂₃H₂₇NO₄ [M]⁺: 381.19401; found: 381.19422.

9-methyl-9H-carbazole-2,3-dicarboxylate 3.10.3. Dihexyl (**6c**). Starting with 5e (100 mg) following general procedure C, as a yellow oil (99 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ =0.82 (t, 3H, J=7.1 Hz, CH₃), 0.83 (t, 3H, J=7.0 Hz, CH₃), 1.24–1.30 (m, 8H, 4CH₂), 1.33-1.40 (m, 4H, 2CH₂), 1.66-1.73 (m, 4H, 2CH₂), 3.75 (s, 3H, CH₃N), 4.26 (t, 2H, *I*=6.7 Hz, CH₂O), 4.28 (t, 2H, *I*=6.7 Hz, CH₂O), 7.17–7.23 (m. 1H, ArH), 7.32 (d. 1H, *I*=8.2 Hz, ArH), 7.42–7.47 (m. 1H, ArH), 7.53 (s, 1H, ArH), 8.01 (d, 1H, J=7.8 Hz, ArH), 8.42 (s, 1H, ArH). ¹³C NMR (62.9 MHz, CDCl₃): *δ*=14.0 (2CH₃), 22.6 (2CH₂), 25.7, 25.7, 28.6, 28.7 (CH₂), 28.7 (CH₃N), 31.5, 30.6 (CH₂) 65.6, 66.0 (CH₂O), 109.0, 109.1, 120.1, 120.9 (CH), 121.7, 122.2 (C), 122.3 (CH), 123.6 (C), 127.1 (CH), 131.1, 141.4, 142.1 (C), 167.8, 169.3 (CO). IR (KBr): v=3054, 2953, 2928, 2856 (w), 1712 (s), 1629, 1599, 1561, 1501 (w), 1466 (m), 1387 (w), 1363, 1340, 1325 (m), 1257, 1222 (s), 1132 (m), 1108 (s) 1079, 1046, 1015, 981, 907 (m), 867, 883 (w), 785, 766 (m), 729, 722 (s), 646 (m), 633, 609, 561 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)= 437 (M⁺, 41), 353 (10), 252 (100), 225 (10), 182 (84), 152(08). HRMS: *m*/*z* calcd for C₂₇H₃₅NO₄ [M]⁺: 437.25661; found: 437.25410.

3.10.4. Di-tert-butyl 9-methyl-9H-carbazole-2,3-dicarboxylate (6d). Starting with 5f (100 mg) following general procedure C, as a light yellow oil (99 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ =1.57 (s, 9H, 3CH₃), 1.58 (s, 9H, 3CH₃), 3.78 (s, 3H, CH₃N); 7.17-7.23 (m, 1H, ArH), 7.33 (d, 1H, J=8.2 Hz, ArH), 7.42-7.47 (m, 1H, ArH), 7.50 (s,1H, ArH), 8.03 (d, 1H, J=7.8 Hz, ArH), 8.33 (s,1H, ArH). ¹³C NMR (75 MHz, CDCl₃): δ=28.1 (3CH₃), 28.3 (3CH₃), 29.4 (CH₃N). 81.2 (C-O), 81.8 (C-O), 109.0, 109.1, 119.0, 120.9, 122.0 (CH), 122.4, 123.2, 123.8 (C), 126.8 (CH), 132.8, 141.3, 142.2 (C), 167.0, 168.4 (CO). IR (KBr): v=2975, 2929, 2849 (w), 1713 (s), 1702, 1628, 1596, 1562, 1530, 1503, 1475, 1455, 1390 (w), 1365, 1337, 1324, 1269, 1251, 1228, 1165, 1129, 1108 (s), 1079, 1046, 1014, 955, 895, 876, 863, 834, 800, 787, 777, 763, 756, 738, 718 (m), 666, 634, 598, 565, 555 (w) cm⁻¹. EI⁺ (70 eV): *m*/*z* (%)=381 ([M]⁺, 27), 325 (5), 270 (13), 269 (100), 251 (48), 252 (33), 225 (8), 207 (10), 179 (35). HRMS: m/z calcd for C₂₃H₂₈NO₄ [M+H]⁺: 382.20128; found: 382.20055.

3.11. Synthesis of 2-(2-cyanoethyl)-9-methyl-9*H*-carbazole-3-carbonitrile (7)

Product **7** was prepared, starting with **2a** (289 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), acrylonitrile (0.17 mL, 2.5 mmol), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h according to general procedure B, as a light yellow crystals (127 mg, 49%), mp 185–187 °C. ¹H NMR (300 MHz, CDCl₃): δ =2.80 (t, 2H, *J*=7.1 Hz, CH₂), 3.30 (t, 2H, *J*=7.1 Hz, CH₂), 3.80 (s, 3H, NCH₃), 7.20–7.30 (m, 1H, ArH), 7.30 (s, 1H, H-1), 7.40 (d, 1H, *J*=8.2 Hz, ArH), 7.40–7.50 (m, 1H, ArH), 8.00 (d, 1H, *J*=7.9 Hz, ArH), 8.30 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ =18.0 (CH₂), 28.4 (NCH₃), 30.0 (CH₂), 100.4 (C), 108.2, 108.9 (CH), 117.6, 118.1 (CN), 119.6, 119.7 (CH), 120.6, 121.2 (C), 125.1, 126.3 (CH), 137.1, 140.8, 141.9 (C). IR (KBr): *v*=2914, 2852 (w), 2206 (s), 1631, 1597, 1557, 1504, 1464, 1432, 1366, 1330, 1320, 1264, 1253 (m), 1112, 1153, 1014, 966, 898 (w), 844, 800, 767, 754 (s), 725, 666, 652, 550, 530 (w) cm⁻¹. GC–MS (EI, 70 eV): *m/z* (%)=259 ([M]⁺, 53), 243 (23), 198 (100), 152 (68), 112 (38). HRMS (EI, 70 eV): calcd for C₁₇H₁₃N₃ [M]⁺: 259.11095; found: 259.11041.

3.12. Synthesis of 6-bromo-2,3-bis(alkenyl)-N-methylindole 9

3.12.1. Di(tert-butyl) 3,3'-(6-bromo-1-methyl-1H-indole-2,3-diyl)diacrylate (9). Product 9 was prepared starting with 2b (368 mg, 1.0 mmol) and tert-butyl acrylate (0.37 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 24 h following general procedure A, as a yellow solid (276 mg, 75%), mp 148–152 °C. The structure was confirmed by 2D NMR analysis (NOESY, HMBC). ¹H NMR (250 MHz, CDCl₃): δ =1.50 (s, 18H, 6CH₃), 3.70 (s, 3H, NCH₃), 6.20 (d, 1H, J=16.1 Hz, ArH), 6.30 (d, 1H, J=16.1 Hz, ArH), 7.20 (d, 1H, J=8.4 Hz, ArH), 7.20 (dd, 1H, J=1.7, 8.6 Hz, ArH), 7.20 (d, J=1.5 Hz, 1H, ArH), 7.80 (d, 1H, J=16.1 Hz), 7.70 (d, 1H, J=15.9 Hz, ArH). ¹³C NMR (75 MHz, CDCl₃): δ=28.0 (2CH₃), 28.2 (2CH₃), 28.3 (2CH₃), 31.3 (NCH₃), 81.0, 81.3 (C-O), 113.0 (CH), 113.8, 118.0 (C), 118.9, 122.3 (CH), 124.3 (C), 124.9, 127.0, 129.8, 135.2 (CH), 137.0, 139.0 (C), 165.2, 167.0 (C=O). IR (KBr): v=3090, 2978, 2929 (w), 1709, 1674, 1633, 1615 (s), 1470, 1454 (m), 1365, 1278, 1252, 1147 (s), 1064, 1038 (w), 970, 948 (m), 843, 829, 805 (s), 772, 757, 737, 640, 589 (w) cm⁻¹. MS (EI, 70 eV): m/z (%)=461 ([M⁺, ⁷⁹Br] 13), 349 (16), 331 (17), 305 (46), 259 (35), 225 (100), 181 (97), 57 (38). HRMS (EI, 70 eV): calcd for C₂₃H₂₈BrNO₄ [M, ⁷⁹Br]⁺: 461.11962; found: 461.11828.

3.12.2. Di(isobutyl) 7-bromo-9-methyl-2,9-dihydro-1H-carbazole-2.3-dicarboxylate (10). Product 10 was synthesized starting with 2b (367 mg, 1.0 mmol), iso-butyl acrylate (0.36 mL, 2.5 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h according to general procedure A, as a yellowish highly viscous oil (335 mg, 73%). ¹H NMR (250 MHz, CDCl₃): δ=0.70 (d, 6H, *J*=6.7 Hz, 2CH₃), 0.80 (d, 6H, J=6.7 Hz, 2CH₃), 1.60–1.80 (m, 1H, CH), 1.90–2.00 (m, 1H, CH), 3.50 (dd, 1H_a, *J*=2.1, 17.2 Hz, H-1), 3.60 (s, 3H, NCH₃), 3.70 (dd, 2H, *J*=3.6, 6.6 Hz, CH₂O), 3.90 (dd, 2H, J=0.7, 6.5 Hz, CH₂O), 3.90 (dd, 1H_β, *J*=0.7, 6.5 Hz, H-1), 4.00 (dd, 1H_α, *J*=2.0, 8.6 Hz, H-2), 7.20 (dd, 1H, J=1.6, 8.4 Hz, ArH), 7.30 (d, 1H, J=1.4 Hz, ArH), 7.40 (d, 1H, J=8.4 Hz, ArH), 7.80 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ=18.8, 18.9 (CH₃), 19.3 (2CH₃), 23.7 (CH₂), 27.6, 28.0 (CH), 29.9 (NCH₃), 38.8 (CH, C-2), 70.6, 71.2 (CH₂O), 109.4 (C), 112.7 (CH), 115.2, 117.5 (C), 119.1 (CH), 123.9 (C), 124.1, 131.3 (CH), 138.8, 140.2 (C), 167.2, 173.1 (CO). IR (KBr): v=3052, 2948, 2867 (w), 1728, 1703, 1664, 1588, 1573, 1473, 1435 (s), 1392, 1379, 1325 (m), 1269, 1244, 1189, 1140, 1079, 1040 (s), 998, 975, 934, 904, 872, 853, 813 (w), 776, 736, 691 (s), 660, 646, 608, 576, 562 (m) cm⁻¹. GC-MS (EI, 70 eV): m/z (%)=461 ([M, ⁷⁹Br]⁺, 5), 436 (54), 389(10), 299 (100), 267 (70), 225 (12), 178 (17). HRMS (EI, 70 eV): calcd for C₂₃H₂₈BrNO₄ [M, ⁷⁹Br]⁺: 461.12017; found: 461.12020.

3.13. Synthesis of 2,3,6-tris(alkenyl)-N-methylindoles 11

3.13.1. Trimethyl 3,3',3''-(1-methyl-1H-indole-2,3,6-triyl)triacrylate (**11a**). Product **11a** was prepared starting with **2b** (368 mg, 1.0 mmol), methyl acrylate (0.34 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), DMF (5 mL), NEt₃ (1.10 mL, 8.0 mmol) and *tert*-butyl acrylate (0.3 mL, 3.3 mmol), at 90 °C for 36 h

following general procedure D, as a yellowish highly viscous oil (264 mg, 69%). ¹H NMR (250 MHz, CDCl₃): δ =3.60 (s, 3H, CH₃O), 3.70 (s, 3H, OCH₃), 3.70 (s, 3H, NCH₃), 3.80 (s, 3H, OCH₃), 6.20 (d, 1H, *J*=16.1 Hz, ArH), 6.40 (d, 1H, *J*=15.9 Hz, ArH), 6.40 (d, 1H, *J*=15.9 Hz, ArH), 6.40 (d, 1H, *J*=15.9 Hz, ArH), 7.20–7.40 (m, 2H, ArH), 7.70 (d, 1H, *J*=15.9 Hz, ArH), 7.80 (d, 1H, *J*=16.2 Hz, ArH), 7.80 (dd, 1H, *J*=1.3, 7.5 Hz, ArH), 7.90 (d, 1H, *J*=15.9 Hz, ArH), 7.80 (dd, 1H, *J*=15.9 Hz, ArH), 7.90 (d, 1H, *J*=15.9 Hz, ArH), 1³C NMR (75 MHz, CDCl₃): δ =29.4 (CH₃CN), 51.0, 52.1, 52.2 (OCH₃), 108.7 (C), 110.6, 115.0, 115.3, 119.3, 119.4, 123.0 (CH), 125 (C), 128.9 (CH), 129.0 (C), 134.2 (CH), 136.3, 137.1 (C), 143.2 (CH), 164.4, 165.6, 166.1 (CO). IR (KBr): *v*=3028, 2950, 2848 (w), 1710, 1615, 1606 (s), 1298, 1283 (m), 1163, 1138 (s), 1037, 973 (m), 842, 781, 767, 746, 628, 606, 585 (w) cm⁻¹. GC–MS (EI, 70 eV): *m/z* (%)=383 (M⁺, 60), 352 (07), 324 (64), 292 (100), 265 (32), 234 (19), 204 (19). HRMS (EI, 70 eV): calcd for C₂₁H₂₁NO₆ [M]⁺: 383.13634; found: 383.136074.

3,3',3"-(1-methyl-1H-indole-2,3,6-triyl)triacrylate 3.13.2. Trihexyl (11d). Product 11d was prepared starting with 2b (367 mg, 1.0 mmol), *n*-hexyl acrylate (0.66 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a yellow highly viscous oil (437 mg, 74%). ¹H NMR (250 MHz, CDCl₃): δ=0.80 (t, 9H, J=6.6 Hz, 3CH₃), 1.10–1.30 (m, 16H, 8CH₂), 1.60–1.70 (m, 8H, 4CH₂), 3.80 (s, 3H, NCH₃), 3.90 (t, J=6.7 Hz, 2H, CH₂), 4.10-4.30 (m, 4H, 2CH₂), 6.20 (d, 1H, J=16.0 Hz, ArH), 6.40 (d, 1H, J=15.9 Hz, ArH), 6.50 (d, 1H, J=16.0 Hz, ArH), 7.20-7.40 (m, 2H, ArH), 7.70 (d, 1H, *J*=15.9 Hz, ArH), 7.70 (d, 1H, *J*=16.1 Hz, ArH), 7.80 (d, 1H, *J*=8.9 Hz, ArH), 7.90 (d, 1H, J=16.0 Hz, ArH). ¹³C NMR (62 MHz, CDCl₃): $\delta=14.0$ (3CH₃), 22.6, 25.7, 28.7 (3CH₂), 31.3 (CH₃N), 31.5 (3CH₂), 64.0, 64.7, 65.3 (CH₂O), 109.5 (C), 110.5, 117.3, 117.6 (CH), 117.6(C), 120.3, 120.4. 125.3 (CH), 126.9, 129.6 (C), 130.6, 136.0 (CH), 137.3, 138.0 (C) 143.9 (CH), 165.0, 166.1, 167.7 (CO). IR (KBr): v=2953, 2927, 2857 (m), 1703, 1610 (s), 1560, 1530 (w), 1465, 1269, 1241, 1204 (m), 1160 (s), 1037, 979, 906, 845, 808, 764, 724, 609, 583 (w) cm⁻¹. MS (EI, 70 eV): *m*/*z* (%)=593 (M⁺, 90), 492 (12), 463 (69), 406 (29), 380 (100), 362 (74), 336 (14), 278 (25), 234 (69). HRMS (EI, 70 eV): calcd for C₃₆H₅₁NO₆ [M]⁺: 593.37109; found: 593.36965.

3.13.3. Tris(tert-butyl) 3,3',3"-(1-methyl-1H-indole-2,3,6-triyl)triacrylate (11f). Product 11f was synthesized starting with 2b (367 mg, 1.0 mmol), tert-butyl acrylate (0.55 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a yellow oil (387 mg, 76%). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.50$ (s, 9H, 3CH₃), 1.50 (s, 18H, 6CH₃), 3.80 (s, 3H, NCH₃), 6.20 (d, 1H, J=16.1 Hz, ArH), 6.40 (d, 1H, J=15.8 Hz, ArH), 6.40 (d, 1H, J=16.1 Hz, ArH), 7.30 (dd, 1H, J=1.0, 8.4 Hz, ArH), 7.40 (s, 1H, ArH), 7.70 (d, 1H, J=16.1 Hz, ArH), 7.80 (d, 1H, J=16.1 Hz, ArH), 7.80 (d, 1H, J=16.1 Hz, ArH), 7.90 (d, 1H, J=8.5 Hz, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ =28.1 (3CH₃), 28.2 (3CH₃), 28.3 (3CH₃), 31.2 (NCH₃), 80.1, 80.4, 81.4 (C-O), 110.6 (CH), 114.0 (C), 118.9, 119.5, 121.2, 121.4 (CH), 127.0 (C), 127.2, 129.9 (CH), 130.9 (C), 135.3 (CH), 138.3, 139.0 (C), 144.0 (CH), 165.2, 166.4, 167.0 (CO). IR (KBr): v=2976, 2931 (w), 1699, 1621, 1614 (s), 1455, 1391, 1366 (m), 1306, 1280, 1252, 1140 (s), 1038, 975, 844, 809, 763, 729, 609 (m), 584 (w) cm⁻¹. MS (EI, 70 eV): m/z (%)=509 (M⁺, 10), 453 (04), 395 (06), 352 (13), 339 (100), 321 (53), 311 (06), 295 (38), 265 (32), 234 (29), 204 (12). HRMS (EI, 70 eV): calcd for C₃₀H₃₉NO₆ [M]⁺: 509.27719; found: 509.27692.

3.13.4. Tris(6-methylheptyl) 3,3',3"-(1-methyl-1H-indole-2,3,6-triyl) triacrylate (**11g**). Product **11g** was synthesized starting with **2b** (367 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), isooctyl acrylate (0.79 mL, 3.75 mmol), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a yellow oil (493 mg, 73%). ¹H NMR (250 MHz, CDCl₃): δ =0.60–1.80 (m, 45H, aliphatic protons), 3.80 (s, 3H, NCH₃), 4.00–4.30 (m, 6H,

3CH₂O), 6.30 (d, 1H, *J*=15.7 Hz, ArH), 6.40 (d, 1H, *J*=16.4 Hz, ArH), 6.50 (d, 1H, *J*=16.1 Hz, ArH), 7.30–7.40 (m, 2H, ArH), 7.70 (d, 1H, *J*=16.1 Hz, ArH), 7.80 (br d, 1H, *J*=8.7 Hz, ArH), 7.80 (d, 1H, *J*=16.8 Hz, ArH), 7.80 (d, 1H, *J*=15.9 Hz, ArH). ¹³C NMR (62.9 MHz, CDCl₃): δ =13.0, 14.6, 15.2 (CH₃), 20.1, 22.9, 24.5, 25.9, 26.7, 27.5 (CH₂), 31.2 (NCH₃), 45.6 (CH₂), 63.0, 63.8, 65.6 (CH₂O), 110.6 (CH), 114 (C), 117.0, 117.9, 121.3, 121.4, 125.3 (CH), 126.9, 130.7 (C), 130.9, 136.0 (CH), 138.3, 139.0 (C), 145 (CH), 165.9, 167.3, 167.7 (CO). IR (KBr): *v*=2955, 2927, 2870 (m), 1705, 1623 (s), 1561, 1533 (w), 1463 (s), 1380 (w), 1267, 1234, 1161 (s), 1036, 977, 845, 808, 768, 740, 609 (w) cm⁻¹. MS (EI, 70 eV): *m/z* (%)=677 (M⁺, 90), 563 (16), 519 (60), 436 (38), 408 (69), 390 (59), 295 (30), 278 (34), 252 (22), 226 (06), 208 (10), 194 (11). HRMS (EI, 70 eV): calcd for C₄₂H₆₃NO₆ [M]⁺: 677.46499; found: 677.463279.

3.13.5. (2E,2'E,2"E)-trioctadecyl 3,3',3"-(1-methyl-1H-indole-2,3,6*triyl*)*triacrylate* (**11h**). Starting with Pd(OAc)₂ (12 g, 5 mol %) and SPhos (41 mg, 0.10 mmol), brominated indole 2b (367 mg, 1.0 mmol), **11h** was isolated as a yellow oil (702 mg, 64%). ¹H NMR (300 MHz, CDCl₃): δ=0.80 (t, 9H, J=7.6 Hz, 3CH₃), 0.91-1.21 (m, 96H, 48CH₂), 3.62-3.75 (m, 4H, 2CH₂O), 3.79 (s, 3H, CH₃N), 3.82 (t, 2H, J=6.9 CH₂O), 6.24 (d, 1H, J=16.1 Hz, CH), 6.43 (d, 1H, J=15.9 Hz, CH), 6.42 (d, 1H, J=15.9 Hz, CH), 7.23-7.43 (m, 2H, ArH), 7.72 (d, 1H, J=15.9 Hz, CH), 7.83 (d, 1H, J=16.2 Hz, CH), 7.88 (dd, 1H, J=1.3, 7.5 Hz, ArH), 7.95 (d, 1H, J=15.9 Hz, CH). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.1 (CH₃), 22.6 (CH₂), 28.4–29.6 (CH₂), 32.8 (CH₃CN), 63.9, 64.6, 65.2 (CH₂O), 108.7 (C), 110.5, 114.2, 115.3, 117.3, 121.3, 123.0 (CH), 125.4 (C), 128.9 (CH), 129.0 (C), 134.2 (CH), 138.3, 139.0 (C), 144.8 (CH), 166.0, 167.1, 167.7 (CO). GC–MS (EI, 70 eV): m/z (%)=1097 (M⁺,9), 801 (2), 575 (7), 228 (4), 189 (5), 97 (21), 69 (27), 44 (100). HRMS (ESI⁻): *m*/*z* calcd for C₇₂H₁₂₃NO₆ [M]⁺: 1097.93504; found: 1097.935219.

3.14. Synthesis of 6-alkenyl-2,3-dihydrocarbazoles 12

3.14.1. Dimethyl 7-(3-methoxy-3-oxoprop-1-enyl)-9-methyl-2,9dihydro-1H-carbazole-2,3-dicarboxylate (12a). Compound 12a was prepared starting with 2b (367 mg, 1.0 mmol), methyl acrylate (0.34 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h according to general procedure B, as a brownish highly viscous oil (302 mg, 79%). ¹H NMR (250 MHz, CDCl₃): δ =3.00 (dd, 1H_a, *J*=8.5, 17.3 Hz, H-1), 3.50 (s, 3H, NCH₃), 3.60 (dd, 1H_β, *J*=2.4, 17.3 Hz, H-1), 3.60 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.00 (dd, 1H_a, *J*=2.4, 8.8 Hz, H-2), 6.40 (d, 1H, J=15.9 Hz, ArH), 7.30-7.40 (m, 2H, ArH), 7.50 (d, 1H, J=8.6 Hz, ArH), 7.70 (d, 1H, J=15.9 Hz, ArH), 7.90 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ=23.0 (CH₂), 29.7 (CH, C-4), 38.7 (NCH₃), 51.6 (OCH₃), 51.8 (OCH₃), 52.6 (OCH₃), 108.7, 110.4 (CH), 114.6, 115.9 (CH), 117.3, 120.0 (CH), 125.8, 127.4, 131.0 (CH), 137.2, 141.0, 145.0 (CH), 166.5, 166.8, 172.5 (C). IR (KBr): v=2999, 2950, 2846 (w), 1709 (s), 1628, 1605, 1270, 1231, 1188, 1166, 1110, 1040, 1060 (m), 973, 803 (s), 778 (s), 727 (m) cm⁻¹. GC–MS (EI, 70 eV): *m*/ z (%)=383 [M]⁺, 353 (69), 323 (61), 293 (40), 284 (51), 189 (31), 102 (100), 77 (22). HRMS (EI, 70 eV): calcd for C₂₁H₂₁NO₆ [M]⁺: 383.13689; found: 383.13632.

3.14.2. Diethyl 7-(3-ethoxy-3-oxoprop-1-enyl)-9-methyl-2,9dihydro-1H-carbazole-2,3-dicarboxylate (**12b**). Product **12b** was synthesized starting with **2b** (367 mg, 1.0 mmol), ethyl acrylate (0.41 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol%), SPhos (10 mol%), NEt₃ (1.1° mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as yellowish highly viscous oil (285 mg, 67%). ¹H NMR (250 MHz, CDCl₃): δ =1.10 (t, 3H, *J*=7.3 Hz, CH₃), 1.20 (t, 3H, *J*=7.1 Hz, CH₃), 1.30 (t, 3H, *J*=7.0 Hz, CH₃), 3.00 (dd, 1H_α, *J*=8.8, 17.2 Hz, H-1), 3.50 (dd, 1H_β, *J*=2.4, 17.2 Hz, H-1), 3.60 (s, 3H, NCH₃), 3.80–4.10 (m, 3H and 1H_α, H-2 and CH₂O), 4.10–4.30 (m, 4H, 2CH₂O), 6.40 (d, 1H, *J*=15.9 Hz), 7.30 (m, 2H, ArH), 7.50 (d, 1H, *J*=8.5 Hz, ArH), 7.70 (d, 1H, *J*=15.8 Hz), 7.80 (s, 1H, H-4). ¹³C NMR (62 MHz, CDCl₃): δ =14.0 (CH₃), 14.4 (CH₃), 14.5 (CH₃), 23.8 (CH₂), 29.8 (NCH₃), 38.8 (CH, C-2), 60.3 (CH₂O), 60.4 (CH₂O), 61.2 (CH₂O), 109.6 (C), 110.2, 115.9 (CH), 117.4 (C), 118.2, 120.8 (CH), 126.7, 128.3 (C), 131.5 (CH), 138.1, 141.8 (C), 145.7 (CH), 167.1, 167.3, 173.0 (CO). IR (KBr): *v*=2979, 2931 (m), 1731, 1697, 1606 (s), 1475, 1274 (m), 1227, 1168 (s), 1034, 982, 962, 852, 811, 771, 710 (s), 605, 582 (w) cm⁻¹. MS (EI, 70 eV): *m/z* (%)=425 (M⁺, 76), 380 (12), 352 (100), 324 (23), 306 (98), 279 (77), 262 (30), 251 (16), 234 (92), 206 (22). HRMS (EI, 70 eV): calcd for C₂₄H₂₇NO₆ [M]⁺: 425.18329; found: 425.18236.

3.14.3. Dibutyl 7-(3-butoxy-3-oxoprop-1-enyl)-9-methyl-2,9dihydro-1H-carbazole-2,3-dicarboxylate (12c). Product 12c was prepared, following general procedure B, starting with **2b** (367 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), *n*-butyl acrylate (0.53 mL, 3.75 mmol), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h as a yellow solid (483 mg, 95%), mp 112-114 °C. ¹H NMR (250 MHz, CDCl₃): δ =0.80 (t, 3H, *J*=7.3 Hz, CH₃), 0.90 (t, 3H, J=7.3 Hz, CH₃), 0.90 (t, 3H, J=7.3 Hz, CH₃), 1.10–1.30 (m, 2H, CH₂), 1.30–1.50 (m, 6H, 3CH₂), 1.60–1.70 (m, 4H, 2CH₂), 3.00 (dd, 1H_a, *J*=8.6, 17.2 Hz, H-1), 3.60 (dd, 1H_b, *J*=2.2, 17.2 Hz, H-1), 3.70 (s, 3H, NCH₃), 3.80–4.00 (m, 2H, CH₂O), 4.00 (dd, 1H_a, J=1.9, 8.6 Hz, H-2), 4.10-4.20 (m, 4H, 2CH₂O), 6.40 (d, 1H, J=15.8 Hz, CH), 7.20-7.30 (m, 2H, ArH), 7.50 (d, 1H, J=8.3 Hz, ArH), 7.70 (d, 1H, J=16.1 Hz, ArH), 7.80 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.6$ (CH₃), 13.7 (CH₃), 13.8 (CH₃), 19.0 (CH₂), 19.2 (CH₂), 19.3 (CH₂), 24.0 (CH₂), 29.9 (CH₃), 30.4 (CH₂), 30.8 (CH₂), 31.0 (CH₂), 38.8 (NCH₃), 64.3 (CH₂O), 64.4 (CH₂O), 65.1 (CH₂O), 109.7 (C), 110.2, 116.0 (CH), 117.6 (C), 118.2, 120.8 (CH), 126.7, 128.4 (C), 131.4 (CH), 138.2, 141.8 (C), 145 (CH), 167.2, 167.5, 173.1 (CO). IR (KBr): v=2954, 2931 (m), 1721, 1703, 1676 (s), 1469, 1277 (m), 1219, 1167 (s), 1042, 998, 960, 854 (w), 821, 770, 735 (m), 605, 582, 553 (w) cm⁻¹. MS (EI, 70 eV): m/z (%)=509 ([M]⁺, 78), 436 (14), 408 (72), 378 (20), 352 (100), 334 (94), 308 (18), 278 (31), 234 (94). HRMS (EI, 70 eV): calcd for C₃₀H₃₉NO₆ [M]⁺: 509.27719; found: 509.276955.

3.14.4. Di(isobutyl) 7-(3-isobutoxy-3-oxoprop-1-enyl)-9-methyl-2,9dihydro-1H-carbazole-2,3-dicarboxylate (12d). Product 12d was prepared starting with 2b (367 mg, 1.0 mmol), iso-butyl acrylate (0.54 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow solid (363 mg, 72%). ¹H NMR (250 MHz, CDCl₃): δ=0.70 (d, 6H, J=6.7 Hz, 2CH₃), 0.90 (dd, 12H, J=3.4, 6.7 Hz, 4CH₃), 1.70–1.80 (m, 1H, CH), 1.90–2.00 (m, 2H, CH), 3.00 (dd, 1H_α, *J*=8.7, 17.2 Hz, H-1), 3.60 (dd, 1H_β, *J*=2.0, 17.2 Hz, H-1), 3.60-3.70 (m, 5H, NCH₃ and CH₂O), 3.90-4.00 (m, 4H, 2CH₂O), 4.10 (dd, 1H_α, *J*=2.0, 8.5 Hz, H-2), 6.20 (d, 1H, *J*=15.8 Hz, ArH), 7.30 (d, 1H, J=8.4 Hz, ArH), 7.40 (s, 1H, ArH), 7.60 (d, 1H, J=8.2 Hz, ArH), 7.80 (d, 1H, J=15.9 Hz, ArH), 7.90 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ =18.8 (CH₃), 18.9 (CH₃), 19.2 (2CH₃), 19.3 (2CH₃), 23.9 (CH₂), 27.6, 27.9, 28.0 (CH), 29.9 (NCH₃), 38.8 (CH, C-2), 70.5, 70.6, 71.2 (CH₂O), 109.7 (C), 110.3, 116.3 (CH), 117.6 (C), 118.2, 120.9 (CH), 126.7, 128.4 (C), 131.3 (CH), 138.2, 141.9 (C), 145.7(CH), 167.1, 167.5, 173.0 (CO). IR (KBr): v=2956, 2872 (w), 1715, 1693 (s), 1633, 1608, 1529, 1494, 1468, 1454, 1392, 1375, 1355, 1309, 1278 (m), 1228, 1205, 1166 (s), 1110, 1086, 1038, 1017, 989 (m), 942, 930, 852, 832, 799, 779, 756, 731, 705, 650, 615, 600, 550 (w) cm⁻¹. GC-MS (EI, 70 eV): *m*/*z* (%)=507 ([M-2]⁺ (carbazole), 100), 451 (36), 407 (22), 378 (78), 352 (29), 278 (18), 251 (11), 234 (25), 204 (12). HRMS (EI, 70 eV): calcd for C₃₀H₃₇NO₆ [M-2]⁺ (carbazole): 507.26154; found: 507.26138.

3.14.5. Dihexyl 7-(3-(hexyloxy)-3-oxoprop-1-enyl)-9-methyl-2,9dihydro-1H-carbazole-2,3-dicarboxylate (**12e**). Product **12e** was

prepared, starting with **2b** (367 mg, 1.0 mmol), *n*-hexyl acrylate (0.66 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 $^\circ\text{C}$ for 48 h following general procedure B, as a yellowish highly viscous oil (435 mg, 74%). ¹H NMR (300 MHz, CDCl₃): δ =0.70 (t, 3H, *J*=6.9 Hz, CH₃), 0.80 (t, 3H, J=6.3 Hz, CH₃), 0.80 (t, 3H, J=6.9 Hz, CH₃), 1.00–1.20 (m, 6H, 3CH₂), 1.20–1.40 (m, 14H, 7CH₂), 1.60–1.70 (m, 4H, 2CH₂), 3.00 (dd, 1H_a, J=8.6, 17.1 Hz, H-1), 3.60 (dd, 1H_b, J=2.1, 17.1 Hz, H-1), 3.70 (s, 3H, NCH₃), 3.80–4.00 (m, 2H, CH₂O), 4.00 (dd, 1H_a, *J*=2.1, 8.7 Hz, H-2), 4.10 (t, 2H, J=6.8 Hz, CH₂O), 4.20 (t, 2H, J=6.8 Hz, CH₂O), 6.40 (d, 1H, *I*=15.8 Hz, ArH), 7.30 (d, 1H, *I*=8.4 Hz, ArH), 7.30 (s, 1H, ArH), 7.50 (d, 1H, J=8.1 Hz, ArH), 7.70 (d, 1H, J=16.0 Hz, CH), 7.80 (s, 1H, H-4). ¹³C NMR (62 MHz, CDCl₃): δ=13.9 (CH₃), 14.0 (2CH₃), 22.4 (CH₂), 22.5 (2CH₂), 23.9, 25.4, 25.6, 25.7, 28.4, 28.7, 28.8 (CH₂), 29.9 (NCH₃), 31.3, 31.4, 31.5 (CH₂), 38.8, (C(2)H), 64.5, 64.7, 65.3 (CH₂O), 109.7 (C), 110.2, 116.0 (CH), 117.6 (C), 118.2, 120.8 (CH), 126.7, 128.4 (C), 131.4 (CH), 138.1, 141.8 (C), 145,7 (CH), 167.1, 167.4, 173.1 (CO). IR (KBr): *v*=2954, 2928, 2857 (m), 1715, 1695, 1629, 1605 (s), 1558, 1527, 1488 (w), 1471 (w), 1395, 1303, 1278 (m), 1245, 1228 (w), 1162 (s), 974, 908, 848, 821, 754, 730, 700, 607, 592 (w) cm⁻¹. MS (EI, 70 eV): *m*/*z* (%)=593 ([M]⁺, 62), 492 (09), 464 (41), 406 (07), 380 (100), 362 (72), 336 (08), 278 (20), 251 (9), 234 (53). HRMS (EI, 70 eV): calcd for C₃₆H₅₁NO₆ [M]⁺: 593.37109; found: 593.37046.

3.14.6. Di(tert-butyl) 7-(3-tert-butoxy-3-oxoprop-1-enyl)-9-methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (12f). Product 12f was synthesized starting with 2b (367 mg, 1.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), tert-butyl acrylate (0.55 mL, 3.75 mmol), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow oil (401 mg, 79%). ¹H NMR (250 MHz, CDCl₃): δ =1.30 (s, 9H, 3CH₃), 1.40 (s, 9H, 3CH₃), 1.50 (s, 9H, 3CH₃), 3.00 (dd, 1H_a, *J*=8.7, 17.1 Hz, H-1), 3.60 (dd, 1H_b, J=2.2, 17.1 Hz, H-1), 3.70 (s, 3H, NCH₃), 3.90 (dd, 1H_a, J=2.2, 8.7 Hz, H-2), 6.30 (d, 1H, J=16.0 Hz, ArH), 7.30 (dd, 1H, J=1.2, 8.2 Hz, ArH), 7.30 (s, 1H, ArH), 7.50 (d, 1H, J=8.2 Hz, ArH), 7.60 (d, 1H, J=15.9 Hz, ArH), 7.70 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): δ =23.6 (CH₂), 27.9, 28.2, 28.3 (3CH₃), 29.8 (NCH₃), 39.6 (CH, C-2), 78.9, 79.2, 80.1 (C-O), 108.5 (C), 109.9, 116.7, 117.2 (CH), 118.6, (C), 119.6 (CH), 125.6, 127.3 (C), 130 (CH), 137.1, 140.7 (C), 143.8 (CH), 165.5, 165.7, 171.2 (C=O). IR (KBr): v=2976, 2931 (w), 1705 (s), 1631, 1612, 1469, 1461, 1454, 1391 (w), 1366, 1277, 1255 (m), 1147 (s), 1113, 1080, 1041, 980, 846, 812, 791, 765, 608 (w) cm⁻¹. MS (EI, 70 eV): m/z(%)=509 ([M]⁺, 02), 507 (33), 451 (51), 395 (39), 378 (15), 339 (95), 321 (100), 295 (17), 277 (34), 249 (80), 204 (12), 176 (5). HRMS (EI, 70 eV): calcd for C₃₀H₃₇NO₆ ([M-2H]⁺ carbazole): 507.26154; found: 507.26178.

3.14.7. Bis(6-methylheptyl) 9-methyl-7-(3-(6-methylheptyloxy)-3oxoprop-1-enyl)-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (12g). Compound 12g was synthesized starting with 2b (367 mg, 1.0 mmol), isooctyl acrylate (0.79 mL, 3.75 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow oil (501 mg, 74%). ¹H NMR (250 MHz, CDCl₃): δ =0.60–1.80 (m, 45H, aliphatic), 3.00 (dd, 1H_a, *J*=8.9, 17.2 Hz, H-1), 3.60–3.70 (m, 4H, 1× H_{β} -1 and NCH₃), 3.90–4.30 (m, 7H, 3CH₂O and H_{α} -2), 6.40 (d, 1H, J=15.9 Hz, ArH), 7.30–7.40 (m, 2H, ArH), 7.50 (d, 1H, J=8.8 Hz, ArH), 7.80 (d, 1H, J=16.4 Hz), 7.90 (s, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.2 (2CH_3), 14.1 (2CH_3), 14.4 (2CH_3), 19.6, 23.4, 29.1 (CH_2), 25.0,$ 27.0 (CH), 29.9 (CH₃N), 31.9 (CH), 38.8 (CH, C-2), 46.5, 46.6, 46.7 (CH₂), 64.9, 65.0, 65.3 (CH₂O), 108.7 (C), 109.2, 115.0 (CH), 116.6 (C), 117.2, 119.9 (CH), 125.7, 127.6 (C), 130.4 (CH), 137.2, 140.9 (C), 145.7 (CH), 166.1, 166.5, 172.1 (CO). IR (KBr): v=2955, 2927 (w), 1704, 1631, 1608 (s), 1562, 1527 (w), 1462, 1382, 1366, 1305 (m), 1267, 1228, 1206, 1161 (s), 1112, 1084, 1039, 847, 809, 780 (m), 609, 581 (w) cm⁻¹. MS (EI, 70 eV): *m*/*z* (%)=677 ([M]⁺, 100), 563 (21), 548 (14), 519 (44), 434 (60), 408 (99), 390 (81), 234 (44). HRMS (EI, 70 eV): calcd for $C_{42}H_{63}NO_6~[M]^+:$ 677.46499; found: 677.46337.

3.15. Synthesis of 6-alkenylcarbazoles 13

3.15.1. (E)-Dimethyl 7-(3-methoxy-3-oxoprop-1-envl)-9-methyl-9Hcarbazole-2,3-dicarboxylate (13a). Starting with 12a (100 mg) following general procedure C, 13a was isolated as a yellow oil (98 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ =3.77 (s, 3H, CH₃N), 3.83 (s, 3H, CH₃O), 3.89 (s, 3H, CH₃O), 3.91 (s, 3H, CH₃O), 6.51 (d, 1H /=16.0 Hz), 7.44 (d, 1H, J=8.2 Hz, ArH), 7.49 (s, 1H, ArH), 7.59 (s, 1H, ArH), 7.82 (d, 1H, J=16.0 Hz, ArH), 8.03 (d, 1H, J=8.1 Hz, ArH), 8.48 (s, 1H, ArH). ¹³C NMR (62.9 MHz, CDCl₃): δ =29.5 (CH₃N), 51.8, 52.5, 52.8 (CH₃O), 109.2, 109.3, 118.0, 120.1, 121.3 (CH) 121.7 (C), 122.9 (CH), 123.3, 123.9, 131.4, 133.5, 142.3, 142.4 (C), 145.3 (CH), 167.4, 168.0, 169.4 (CO). IR (KBr): v=3047, 3004, 2917, 2848 (w), 1708 (s), 1627 (m), 1563, 1498 (w), 1431 (m), 1376 (w), 1351, 1314 (m), 1272, 1259, 1245, 1232, 1173, 1110 (s), 1080, 1039, 974, 964 (m), 930, 900, 881 (w), 839, 826,803, 777, 760 (m), 747, 729 (w), 711, 653, 603, 584 (m), 551(w) cm⁻¹. GC–MS (EI, 70 eV): *m*/*z* (%)=381 ([M]⁺, 100), 351 (16), 350 (80), 204 (11), 159 (42), 145 (22). HRMS: *m*/*z* calcd for C₂₁H₁₉NO₆ [M]⁺: 381.12069; found: 381.120947.

3.15.2. (E)-Diethyl 7-(3-ethoxy-3-oxoprop-1-enyl)-9-methyl-9H-car bazole-2,3-dicarboxylate (13b). Starting with 12b (100 mg) following general procedure C, 13b was prepared as a yellow oil (98 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ =1.23 (t, 3H, *J*=7.1 Hz, CH₃), 1.31 (t, 3H, J=7.1 Hz, CH₃), 1.32 (t, 3H, J=7.1 Hz, CH₃), 3.81 (s, 3H, CH₃N), 4.20 (q, 2H, *J*=7.0 Hz, CH₂O), 4.31 (q, 2H, *J*=7.0 Hz, CH₂O), 4.31 (q, 2H, J=7.0 Hz, CH₂O), 6.51 (d, 1H, J=15.7 Hz), 7.40 (d. 1H. J=7.9 Hz, ArH), 7.41 (s, 1H, ArH), 7.51 (s, 1H, ArH), 7.80 (d, 1H, J=15.7 Hz), 8.02 (d, 1H, J=7.9 Hz, ArH), 8.41 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=14.1 (CH₃), 14.3 (CH₃), 14.4 (CH₃), 29.4 (CH₃N), 60.5, 61.4, 61.8 (CH₂O), 109.0, 109.2, 118.4, 120.0, 121.3 (CH), 122.1 (C), 122.7 (CH), 123.1, 123.8, 131.7, 133.4, 142.2, 142.3 (C), 145.0 (CH), 167.0, 167.5, 169.0 (CO). IR (KBr): v=2979, 2849 (m), 1703 (s), 1628, 1604, 1560, 1498, 1473, 1391, 1373, 1343, 130 (m), 1258, 1240, 1227 (s), 1173, 1108, 1078, 1039, 975 (m), 908, 874, 842, 804 (w), 779, 730, 664, 606, 585 (s) cm⁻¹. GC–MS (EI, 70 eV): *m*/*z* (%)=423 ([M]⁺, 99), 378 (6), 349 (41), 322 (6), 162 (7), 153 (100), 139 (58). HRMS: m/z calcd for C₂₄H₂₅NO₆ [M]⁺: 423.16764; found: 423.16659.

3.15.3. (E)-Dibutyl 7-(3-butoxy-3-oxoprop-1-enyl)-9-methyl-9H-car bazole-2,3-dicarboxylate (13c). Starting with 12c (100 mg) following general procedure C, 13c was prepared as a yellow oil (99 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ=0.81 (t, 3H, *J*=7.4 Hz, CH₃), 0.91 (t, 3H, J=7.4 Hz, CH₃), 0.93 (t, 3H, J=7.4 Hz, CH₃), 1.10–1.31 (m, 2H, CH₂), 1.31–1.52 (m, 6H, 3CH₂), 1.57–1.71 (m, 4H, 2CH₂), 3.71 (s, 3H, CH₃N), 4.22 (t, 2H, J=6.9 Hz, CH₂O), 4.31 (t, 2H, J=6.6 Hz, CH₂O), 4.34 (t, 2H, J=6.6 Hz, CH₂O), 6.52 (d, 1H, J=16.1 Hz, CH), 7.42 (d, 1H, J=8.5 Hz, ArH), 7.51 (s, 1H, ArH), 7.62 (s, 1H, ArH), 7.80 (d, 1H, *J*=15.3 Hz, CH), 8.01 (d, 1H, *J*=7.6 Hz, ArH), 8.51 (s, 1H, ArH). ¹³C NMR (62.9 MHz, CDCl₃): δ=13.8 (3CH₃), 19.3 (3CH₂), 29.5 (CH₃N), 30.6, 30.7, 30.8 (CH₂), 64.5, 65.4, 65.8 (CH₂O), 109.1, 109.2, 118.4, 120.1, 121.3 (CH), 122.3 (C), 122.7 (CH), 123.2, 123.9, 131.8, 133.5, 142.3, 142.4 (C), 145.0 (CH), 167.1, 167.6, 169.1 (CO). IR (KBr): v=2931 (w), 1706, 1627, 1602, 1563, 1500, 1455, 1387, 1343 (w), 1258 (m), 1223, 1163, 1106, 1077, 1038, 977, 901, 843, 810, 779, 738, 715, 663, 609, 583 (s) cm⁻¹. MS (EI, 70 eV): *m*/*z* (%)=507 ([M]⁺, 100), 434 (6), 378 (33), 332 (7), 278 (4). HRMS: m/z calcd for $C_{30}H_{37}NO_6$ [M]⁺: 507.26154; found: 507.26156.

3.15.4. (E)-Dihexyl 7-(3-(hexyloxy)-3-oxoprop-1-enyl)-9-methyl-9Hcarbazole-2,3-dicarboxylate (**13e**). Starting with **12e** (100 mg) following general procedure C, **13e** was isolated as yellow oil (98 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ =0.81 (t, 3H, J=6.9 Hz, CH₃), 0.82 (t, 6H, J=7.0 Hz, 2CH₃), 1.21–1.33 (m, 12H, 6CH₂), 1.30–1.41 (m, 6H, 3CH₂), 1.61–1.70 (m, 6H, 3CH₂), 3.81 (s, 3H, CH₃N), 4.10 (t, 2H, J=6.7 Hz, CH₂O), 4.21 (t, 2H, J=7.0 Hz, CH₂O), 4.32 (t, 2H, J=7.0 Hz, CH₂O), 6.52 (d, 1H, J=16.2 Hz), 7.41 (d, 1H, J=8.1 Hz, ArH), 7.51 (s, 1H, ArH), 7.63 (s, 1H, ArH), 7.81 (d, 1H, J=16.2 Hz), 8.01 (d, 1H, J=8.1 Hz, ArH), 8.41 (s, 1H, ArH). ¹³C NMR (75 MHz, CDCl₃): δ =13.0 (3CH₃), 22.6 (4CH₂), 24.5 (3CH₂), 27.5, 27.6, 27.7 (CH₂), 28.4 (CH₃N), 30.5 (2CH₂), 63.8, 64.7, 65.1 (CH₂O), 108.0, 108.2, 117.4, 119.0, 120.3 (CH), 121.2 (C), 121.7 (CH), 122.1, 122.9, 130.8, 132.4, 141.2, 141.3 (C), 144.0 (CH), 166.1, 166.6, 168.1 (CO). IR (KBr): *v*=2927 (w), 1708 (s), 1627, 1602, 1563, 1500, 1455, 1388, 1369, 1343, 1305 (m), 1259, 1224, 1163, 1108 (s), 1078, 1038, 979, 905, 845, 810, 781, 725, 663, 642, 609, 583,543 (w) cm⁻¹. (EI⁺, 70 eV): *m/z* (%)=591 ([M]⁺, 100), 406 (26), 322 (05), 43 (08). HRMS: *m/z* calcd for C₃₆H₄₉NO₆ [M]⁺: 591.35544; found: 591.35593.

3.15.5. (2E,2'E)-Diethyl 3,3'-(1-methyl-1H-indole-2,6-diyl)diacrylate or (2E,2'E)-diethyl 3,3'-(1-methyl-1H-indole-3,6-diyl)diacrylate (**14**). Pro duct **14** was isolated as a side product of **12b** as a light brown oil. ¹H NMR (250 MHz, CDCl₃): δ =1.19–1.31 (m, 6H, 2CH₃), 3.78 (s, 3H, NCH₃), 4.16–4.26 (m, 4H, 2CH₂O), 6.41 (d, 1H, *J*=15.9 Hz, CH), 6.44 (d, 1H, *J*=15.7 Hz, CH), 6.87 (s, 1H, ArH), 7.27 (dd, *J*=1.2, 8.5, ArH), 7.3 (s, 1H, ArH), 7.50 (d, 1H, *J*=8.5 Hz, ArH), 7.70 (d, 1H, *J*=15.4 Hz, ArH), 7.73 (d, 1H, *J*=15.4 Hz, ArH). ¹³C NMR (62.9 MHz, CDCl₃): δ =14.4, 30.1 (NCH₃), 60.4, 60.7 (CH₂O), 102.7, 110.5, 116.6, 119.4, 119.9, 121.6 (CH), 128.1, 128.9 (C), 131.0 (CH), 136.0, 138.0 (C), 144.7 (CH), 165.8, 166.3 (CO). IR (KBr): *v*=2978, 2929, 2852 (w), 1705, 1699, 1628, 1604 (s), 1464, 1362, 1302, 1284, 1261, 1242 (m), 1157, 1137, 1090, 1032, 975, 964 (s), 867 (m), 805 (s), 744, 700, 646, 600, 582 cm⁻¹. MS (EI, 70 eV): *m*/*z* (%)=327 (M⁺, 100), 282 (15), 255 (04), 180 (05). HRMS (EI, 70 eV): calcd for C₂₃H₂₉NO4 [M]⁺: 327.14706; found: 327.14715.

3.15.6. Dimethyl 6,7-bis((E)-3-methoxy-3-oxoprop-1-enyl)-9methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (15a). Product 15a was prepared starting with 2c (446 mg, 1.0 mmol), 2ethylhexyl acrylate (0.5 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow highly viscous oil (316 mg, 68%). ¹H NMR (300 MHz, CDCl₃): δ =3.01–3.61 (m, 2H_{α/β}, C-1), 3.52 (s, 3H, CH₃N), 3.62 (s, 3H, CH₃O), 3.71 (s, 6H, 2CH₃O), 3.81 (s, 3H, CH₃O), 4.01 (br d, 1H, J=7.2 Hz C-2), 6.42 (d, 1H, J=15.6 Hz, CH), 6.43 (d, 1H, J=15.6 Hz, CH), 7.32 (s, 1H, ArH), 7.71 (s, 1H, ArH), 7.82 (s, 1H, CH), 8.02 (d, 1H, J=15.8 Hz, CH), 8.03 (d, 1H, J=15.7 Hz, CH). ¹³C NMR (62.9 MHz, CDCl₃): δ =23.9 (CH₂), 30.0 (CH₃N), 38.6 (C(4)H), 51.6, 51.7, 51.8, 52.6 (CH₃O), 108.5 (CH), 109.7 (C), 117.1 (CH), 117.3 (C), 119.1, 119.2 (CH), 126.4, 127.8, 128.3 (C), 131.4 (CH), 138.8 (C), 142.6, 142.7 (CH), 142.9 (C), 167.0, 167.1, 167.3, 173.4 (CO). IR (KBr): v=2950, 2921, 2851 (w), 1693, 1625, 1602, 1525, 1433, 1365 (s), 1310, 1271, 1228, 1189, 1162, 1088 (m), 1035, 972, 912, 919, 853, 802, 775, 725 (s) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)=467 (M⁺, 75), 434 (38), 405 (100), 374 (59), 347 (26), 316 (15). HRMS: *m*/*z* calcd for C₂₅H₂₅N NaO₈ [M+Na]⁺: 490.14724; found: 490.14693.

3.15.7. Diethyl 6,7-bis((*E*)-3-ethoxy-3-oxoprop-1-enyl)-9-methyl-2,9-dihydro-1*H*-carbazole-2,3-dicarboxylate (**15b**). Compound **15b** was synthesized starting with **2c** (446 mg, 1.0 mmol), following general procedure B, as a yellow highly viscous oil (450 mg, 86%). ¹H NMR (250 MHz, CDCl₃): δ =1.10 (t, 3H, *J*=7.0 Hz, CH₃), 1.30 (t, 6H, *J*=7.1 Hz, 2CH₃), 1.30 (t, 3H, *J*=7.0 Hz, CH₃), 3.00 (dd, 1H_α, *J*=8.8, 17.1 Hz, H-1), 3.60 (dd, 1H_β, *J*=2.3, 17.1 Hz, H-1), 3.70 (s, 3H, NCH₃), 3.90–4.00 (m, 2H, CH₂O), 4.10 (dd, 1H_α, *J*=2.6, 9.0 Hz, H-2), 4.20–4.30 (m, 6H, 3CH₂O), 6.20 (d, 1H, *J*=15.7 Hz, ArH), 6.30 (d, 1H, *J*=15.7 Hz, ArH), 7.40 (s, 1H, ArH), 7.70 (s, 1H, ArH), 7.80 (s, 1H, H-4), 8.00 (d, 1H, *J*=15.8 Hz, ArH), 8.10 (d, 1H, *J*=15.8 Hz, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =14.0 (CH₃), 14.3 (2CH₃), 14.5 (CH₃), 23.8 (CH₂), 30.0 (NCH₃), 38.8 (CH, C-2), 60.4, 60.5, 60.5, 61.3 (CH₂O), 108.6 (CH), 109.8 (C), 117.3 (CH), 118.0 (C), 119.6, 119.8 (CH), 126.4, 127.9, 128.8 (C), 130.8 (CH), 138.8 (C), 142.5, 142.6 (CH), 142.7 (C), 166.6, 166.7, 166.9, 172.9 (CO). IR (KBr): ν =2989, 2934, 2903 (w), 1694, 1625, 1604 9 (s), 1528, 1477, 1464, 1446, 1392, 1367 (m), 1274, 1220, 1158 (s), 1111, 1092, 1034, 973, 914, 855 (m), 777 (w), 727 (m), 660, 646, 612, 558 (w) cm⁻¹. GC–MS (EI, 70 eV): m/z (%)=523 (M⁺, 100), 478 (18), 450 (88), 404 (84), 375 (23), 332 (22), 303 (34), 275 (25), 231 (51), 217 (9). HRMS (EI, 70 eV): calcd for C₂₉H₃₃NO₈ (M⁺): 523.22062; found: 523.22073.

6,7-bis((E)-3-butoxy-3-oxoprop-1-enyl)-9-methyl-3.15.8. Dibutyl 2,9-dihydro-1H-carbazole-2,3-dicarboxylate (15c). Product 15c was prepared starting with 2c (446 mg, 1.0 mmol), n-butyl acrylate (0.70 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow highly viscous oil (450 mg, 71%). ¹H NMR (300 MHz, CDCl₃): δ =0.9 (t, 3H, J=7.2 Hz, CH₃), 0.9 (t, 3H, J=7.4 Hz, CH₃), 0.9 (t, 6H, J=7.3 Hz, 2CH₃), 1.3–1.4 (m, 8H, 4CH₂), 1.6-1.7 (m, 8H, 4CH₂), 3.0 (dd, $1H_{\alpha}$, J=8.5, 17.3, Hz, C-1), 3.6 (dd, $1H_{\beta}$, J=2.0, 17.2 Hz, C-1),3.7 (s, 3H, CH₃N), 4.0 (dd, 1H, J=2.0, 8.8 Hz, C-2), 4.1 (t, 4H, J=6.7 Hz, 2CH₂O), 4.2 (t, 4H, J=6.7 Hz, 2CH₂O), 6.2 (d, 1H, J=15.5 Hz, CH), 6.3 (d, 1H, J=16.4 Hz, CH), 7.4 (s, 1H, ArH), 7.8 (s, 1H, ArH), 7.8 (s, 1H, C-4), 8.0 (d, 1H, J=16.4 Hz, H), 8.0 (d, 1H, J=15.5 Hz, CH). ¹³C NMR (62.9 MHz, CDCl₃): δ =13.6 (CH₃), 13.7 (2CH₃), 13.8 (CH₃), 18.9 (CH₂), 19.2 (2CH₂), 19.3 (CH₂), 23.8 (CH₂), 30.0 (CH₃N), 30.4 (CH₂), 30.8 (2CH₂), 30.9 (CH₂), 38.8 (CH, C-2), 64.4 (CH₂O), 64.5 (2CH₂O), 65.2 (CH₂O), 108.6 (CH), 109.9 (C), 117.4 (CH), 118.2 (C), 119.7, 119.9 (CH), 126.4, 128.0, 128.5 (C), 130.7 (CH), 138.8 (C), 142.6, 142.7 (CH) 142.8 (C), 166.7, 166.8, 167.0, 172.9 (CO). IR (KBr): v=2932 (w), 1698, 1624, 1604, 1528 (s), 1464 (m), 1700, 1622 (s), 1548, 1380, 1287, 1274, 1243, 1213 (m), 1168 (s), 1062, 1025, 965, 864 (m), 780, 738, 721, 549 (w) cm⁻¹. (EI, 70 eV): m/z (%)=635 ([M]⁺, 12), 591 (2), 531 (7), 380 (24), 379 (100), 304 (5), 215 (20), 67 (12). HRMS: m/z calcd for C₃₇H₄₉NO₈ (M)⁺: 635.34527; found: 635.34556.

3.15.9. Di(isobutyl) 6,7-bis((E)-3-isobutoxy-3-oxoprop-1-enyl)-9methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (15d). Compound 15d was synthesized starting with 2c (455 mg, 1.0 mmol) and, isobutyl acrylate (0.72 mL, 5.0 mmol) following general procedure B, as a yellow highly viscous oil (455 mg, 72%). ¹H NMR (250 MHz, CDCl₃): δ=0.70 (d, 6H, J=6.9 Hz, 2CH₃), 0.90–1.00 (m, 18H, 6CH₃), 1.70–1.80 (m, 3H, CH), 1.90–2.00 (m, 1H, CH), 3.00 (dd, 1H_α, *J*=8.6, 17.2 Hz, H-1), 3.60 (dd, 1H_B, J=1.8, 17.3 Hz, H-1), 3.60–3.70 (m, 5H, NCH₃ and CH₂O), 3.90–4.00 (m, 6H, 3CH₂O), 4.00–4.10 (dd, 1H_a, J=1.6, 8.4 Hz, H-2), 6.20 (d, 1H, J=15.6 Hz, ArH), 6.30 (d, 1H, J=15.6 Hz, ArH), 7.40 (s, 1H, ArH), 7.70 (s, 1H, ArH), 7.80 (s, 1H, H-4), 8.10 (d, 2H, J=15.6 Hz, ArH). ¹³C NMR (75 MHz, CDCl₃): δ=18.7 (CH₃), 18.8 (CH₃), 19.2 (4CH₃), 19.3 (2CH₃), 23.7 (CH₂), 27.6 (CH), 27.8 (2CH), 27.9 (CH), 30.0 (NCH₃), 38.7 (CH, C-2), 70.5, 70.6, 70.7, 71.2 (CH₂O), 108.6 (CH), 109.8 (C), 117.3 (CH), 118.2 (C), 119.6, 119.8 (CH), 126.4, 127.9, 128.3 (C), 130.5 (CH), 138.8 (C), 142.5, 142.6 (CH), 142.9 (C), 166.6, 166.7, 166.9, 172.8 (CO). IR (KBr): v=2958, 2932, 2873 (w), 1702, 1692 (s), 1623, 1605, 1528, 1483, 1468, 1393, 1375, 1342, 1287, 1271 (m), 1219, 1163 (s), 1084, 1035, 980 (m), 945, 908, 884, 863, 778, 729, 645, 613, 572 (w) cm⁻¹. GC–MS (EI, 70 eV): *m*/*z* (%)=635 (M⁺, 100), 578 (27), 498 (55), 409 (43), 375 (32), 333 (51), 288 (16), 275 (33), 196 (22), 173(77). HRMS (EI, 70 eV): calcd for C₃₇H₄₉NO₈ (M⁺): 635.34582; found: 635.34571.

3.15.10. Di(tert-butyl) 6,7-bis((E)-3-tert-butoxy-3-oxoprop-1-enyl)-9methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (**15e**). Compound **15e** was synthesized starting with **2c** (446 mg, 1.0 mmol), following general procedure B, as a yellow highly viscous oil (463 mg, 72%). ¹H NMR (250 MHz, CDCl₃): δ =1.30 (s, 9H, 3CH₃), 1.50 (s, 18H, 6CH₃), 1.50 (s, 9H, 3CH₃), 3.00 (dd, 1H_α, J=8.9, 17.2 Hz, H-1), 3.50 (dd, 1H_β, J=2.2, 17.2 Hz, H-1), 3.70 (s, 3H, NCH₃), 3.90 (dd, 1H_α, J=2.2, 8.6 Hz, H-2), 6.20 (d, 1H, J=15.5 Hz, ArH), 6.30 (d, 1H, J=15.5 Hz, ArH), 7.40 (s, 1H, ArH), 7.70 (s, 1H, ArH), 7.80 (s, 1H, H-4), 7.90 (d, 1H, *J*=15.7 Hz, ArH), 8.00 (d, 1H, *J*=15.7 Hz, ArH). ¹³C NMR (75 MHz, CDCl₃): δ =23.6 (CH₂), 27.9 (3CH₃), 28.1 (CH₃), 28.3 (6CH₃), 28.4 (2CH₃), 30.0 (CH₃CN), 39.5 (C(2)H), 80.1, 80.4, 80.5, 81.3 (C), 108.4 (CH), 109.7 (C), 117.2 (CH), 120.3 (C), 121.3, 121.6 (CH), 126.4, 127.9, 128.4 (C), 129.3 (CH), 138.7 (C), 141.8, 141.9 (CH), 142.6 (C), 166.0, 166.1, 166.4, 172.1 (CO). IR (KBr): *v*=2977, 2929 (w), 1713 (s), 1611, 1530, 1478, 1455, 1392, 1367, 1285, 1256, 1221 (m), 1152 (s), 1089, 979, 847, 794, 530 (w) cm⁻¹. MS (EI, 70 eV): *m/z* (%)=635 (M⁺, 15), 634 (10), 577 (46), 562 (100), 259 (25), 225 (50), 181 (97), 63 (37). HRMS (EI, 70 eV): calcd for C₃₇H₄₉NO₈ (M⁺): 635.34582; found: 635.34535.

3.15.11. Dihexyl 6,7-bis((E)-3-(hexyloxy)-3-oxoprop-1-enyl)-9*methyl-2,9-dihydro-1H-carbazole-2,3-dicarboxylate* (**15***f*). Product **15f** was prepared starting with **2c** (446 mg, 1.0 mmol), *n*-hexyl acrylate (0.9 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow highly viscous oil (598 mg, 80%). ¹H NMR (300 MHz, CDCl₃): δ =0.81–0.93 (m, 12H, CH₃), 1.32-1.41 (m, 16H, 8CH₂), 1.61-1.72 (m, 16H, 8CH₂), 3.00 (dd, $1H_{\alpha}$, J=8.5, 17.1 Hz, C-1); 3.61 (dd, $1H_{\beta}$, J=2.1, 17.1 Hz, C-1), 3.82 (s, 3H, CH₃N), 3.91 (dd, 1H_a, *J*=1.7, 6.7 Hz, C-2), 4.12–4.22 (m, 8H, 4CH₂O), 6.31 (d, 2H, J=16.0 Hz, CH), 7.30 (s, 1H, ArH), 7.49 (s, 1H, ArH), 8.01 (s, 1H, C-4), 8.02 (d, 2H, J=16.0 Hz, CH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 14.0(CH_3), 22.5(CH_2), 25.7(CH_2), 28.4(CH_2), 28.7(CH_2), 28.8, 29.7$ (CH₂), 30.1 (CH₃N), 31.2 (CH₂), 31.5 (CH₂), 31.6 (CH₂), 33.3 (CH), 64.5, 64.8, 64.8, 65.4 (CH2O), 108.9 (CH), 109.6, 112.8 (C), 120.0, 120.4, 120.5 (CH), 127.4, 128.1, 129.6 (C), 136.6 (CH), 138.6, 138.7 (C), 142.5, 142.6 (CH), 166.6, 166.8, 168.0, 172.8 (CO). IR (KBr): v=2953, 2926, 2856 (w), 1701, 1622, 1605 (s), 1551, 1527, 1465, 1455, 1378, 1337 (w), 1242 (m), 1159 (s), 973, 908, 849, 728, 674, 648, 605 (w) cm⁻¹. (EI⁺, 70 eV): *m*/*z* (%)=747 (M⁺, 10), 596 (11), 595 (31), 594 (37), 595 (100), 492 (20), 465 (16), 464 (33), 463 (68), 407 (07), 380 (30), 362 (35), 336 (13), 355 (18), 278 (13), 251 (13), 234 (23). HRMS: m/z calcd for C₄₅H₆₅NO₈ (M⁺): 747.47047; found: 747.46850.

3.15.12. Bis(2-ethylhexyl) 6,7-bis((E)-3-(2-ethylhexyloxy)-3oxoprop-1-enyl)-9-methyl-2,9-dihydro-1H-carbazole-2,3dicarboxylate (15g). Product 15g was prepared starting with 2c (446 mg, 1.0 mmol), 2-ethylhexyl acrylate (1.10 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow highly viscous oil (618 mg, 72%). ¹H NMR (300 MHz, CDCl₃): δ=0.82-0.93 (m, 24H, 8CH₃), 1.21-1.43 (m, 32H, Aliphatic), 1.51–1.62 (m, 4H, CH-aliphatic), 3.02–3.61 (dd, 2H_{α/β}, C-1), 3.71 (s, 3H, CH₃N), 3.82 (dd, 1H_α, *J*=3.2, 5.3 Hz, C-2), 4.12 (dd, 8H, J=2.4, 5.8 Hz, 4CH₂O), 6.32 (d, 1H, J=15.7 Hz), 6.33 (d, 1H, J=15.7 Hz), 7.41 (s, 1H, ArH), 7.72 (s, 1H, ArH), 7.83 (s, 1H, C(4)), 8.01 (d, 1H, *J*=15.7 Hz), 8.12 (d, 1H, *J*=15.7 Hz). ¹³C NMR (62 MHz, CDCl₃): δ =10.9 (CH₃), 11.0 (CH₃), 14.1 (CH₃), 23.0 (CH₂), 23.9 (CH₂), 29.0 (CH₂), 29.7 (CH₂), 30.1 (CH₃N), 30.5 (CH₂), 31.2, 38.6, 38.7 (CH), 38.9 (CH-2), 38.9 (CH), 67.0, 67.1, 67.3, 67.5 (CH₂O), 108.6 (CH), 110.0 (C), 117.3 (CH), 118.0 (C), 119.7, 120.0 (CH), 126.4, 128.0, 128.5 (C), 130.5 (CH), 138.8 (C), 142.5, 142.6 (CH), 142.8 (C), 166.8, 166.9, 167.0, 173.0 (CO). IR (KBr): v=2928, 2925, 2858 (w), 1703 (s), 1631, 1605, 1528, 1460, 1380, 1265, 1220 (m), 1161 (s), 1113, 1085, 1031, 974 (m), 852, 773, 730, 695, 645, 609 (w) cm⁻¹, (EI, 70 eV): m/z (%)=859 (M⁺, 12), 699 (10), 590 (11), 588 (11), 572 (11), 460 (5), 83 (20), 71 (22), 70 (11), 69 (16), 57 (100), 44 (93). HRMS: *m*/*z* calcd for C₅₃H₈₁NO₈ (M⁺+1): 859.596901; found: 859.59567.

3.15.13. Bis(6-methylheptyl) 9-methyl-6,7-bis((E)-3-(6-methylheptyloxy)-3-oxoprop-1-enyl)-2,9-dihydro-1H-carbazole-2,3-dicarboxylate (**15h**). Product **15h** was prepared starting with **2c** (446 mg, 1.0 mmol), 6-methylheptyl acrylate (1.0 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol),

DMF (5 mL) at 120 °C for 48 h following general procedure B, as a yellow highly viscous oil (636 mg, 74%). ¹H NMR (300 MHz, CDCl₃): δ=0.8-0.9 (m, 24H, aliphatic), 0.9-1.2 (m, 12H, 6CH₂), 1.2-1.3 (m, 12H, 6CH₂), 0.8–0.9 (m, 8H, 2CH₂), 3.0 (dd, 1H_a, J=8.6, 17.2 Hz, C-1), 3.6 (m, 1H_b, C-1), 3.7 (s, 3H, CH₃N), 3.9–4.1 (m, 3H, 1H_a, C-2/CH₂O), 4.1-4.2 (m, 6H, 3CH₂O), 6.3 (d, 1H, *J*=15.6 Hz, CH), 6.3 (d, 1H, *I*=15.7 Hz, CH), 7.4 (s, 1H, ArH), 7.7 (s, 1H, ArH), 7.8 (s, 1H, C-4, CH), 8.1 (d, 2H, I=15.6 Hz, CH). ¹³C NMR (62.9 MHz, CDCl₃): $\delta=11.4$, 12.1, 14.0, 14.3, 15.3, 15.3, 17.9, 19.5, 19.7 (CH₃), 17.0, 19.2 (CH), 19.9 (CH₂), 19.3 (CH), 22.6, 23.7, 23.8, 26.1, 26.2, 26.3, 26.4, 26.7, 26.8 (CH₂), 28.7 (CH₃N), 30.3, 30.5, 30.1, 33.0 (CH₂), 38.0 (CH), 63.1, 63.7, 64.8, 65.1 (CH2O), 108.5 (CH), 109.9 (C), 117.3 (CH), 118.2 (C), 119.7, 119.9 (CH), 126.4, 128.0, 128.5 (C), 130.7 (CH), 138.8, 142.6 (C), 142.6 (CH), 166.7, 166.8, 166.9, 173.0 (CO). IR (KBr): v=2953, 2926, 2870 (w), 1701, 1626 (m), 1605, 1551, 1527, 1465, 1455, 1378 (w), 1272 (s), 1220 (m), 1160 (s), 1034, 974, 855, 777, 735, 700, 661, 642 (w) cm⁻¹. (EI⁺, 70 eV): *m*/*z* (%)=859 (M⁺, 32), 857 (11), 734 (09), 678 (11), 677 (26), 676 (25), 572 (10), 519 (12), 434 (12), 390 (12), 84 (39), 83 (24), 71 (22), 70 (34), 69 (65), 57 (64), 56 (59), 55 (62), 44 (87), 43 (100). HRMS [ESI⁺] (Carbazole): *m*/*z* calcd for C₅₃H₈₀NO₈ (M+H): 858.58698; found: 658.58698.

3.15.14. Dimethyl 6,7-bis((*E*)-3-methoxy-3-oxoprop-1-enyl)-9methyl-9*H*-carbazole-2,3-dicarboxylate (**16a**). Compound **16a** was synthesized starting with **15a** (100 mg, 0.22 mmol), following general procedure C, as a yellow highly viscous oil (99 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ =3.54 (s, 3H, CH₃), 3.64 (s, 3H, CH₃), 3.74 (s, 6H, 2CH₃), 3.77 (s, 3H, CH₃), 6.3 (d, 1H, *J*=15.6 Hz, CH), 6.4 (d, 1H *J*=16.3 Hz, CH), 7.4 (s, 1H, ArH), 7.5 (s, 1H, ArH), 8.0 (d, 1H, *J*=15.6 Hz, CH), 8.1 (d, 1H, *J*=15.6 Hz, CH), 8.5 (s, 2H, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ =29.6 (CH₃N), 52.5, 52.6, 52.8, 52.9 (CH₃O), 107.9, 109.4, 119.6, 120.2, 122.7, 122.9 (CH), 123.1, 123.8, 124.5, 125.5, 126.0, 126.9, 128.9, 133.7 (C), 142.0, 142.4 (CH), 166.7, 167.1, 167.8, 169.4 (CO). IR (KBr): *v*=3089 (w), 1652 (s), 1455, 1277 (m), 1097, 1060 (s), 912 (w), 845, 798, 699 (s) cm⁻¹. GC-MS (EI, 70 eV): *m/z* (%)=465 (M⁺, 53), 434 (31), 405 (100), 374 (83). HRMS: *m/z* calcd for C₂₅H₂₃NO₈ (M⁺): 465.14181; found: 465.141506.

3.15.15. Dibutyl 6,7-bis((E)-3-butoxy-3-oxoprop-1-enyl)-9-methyl-9H-carbazole-2,3-dicarboxylate (16c). Compound 16c was synthesized starting with 15c (100 mg, 0.16 mmol), following general procedure C, as a yellow highly viscous oil (98 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ=0.9 (t, 3H, *J*=7.3 Hz, CH₃), 0.9 (t, 3H, *J*=7.3 Hz, CH₃), 0.9 (t, 3H, J=7.5 Hz, CH₃), 0.9 (t, 3H, J=7.3 Hz, CH₃), 1.3-1.4 (m, 8H, 4CH₂), 1.6-1.7 (m, 8H, 4CH₂), 3.7 (s, 3H, CH₃N), 4.1 (t, 4H, J=6.7 Hz, 2CH₂O), 4.2 (t, 2H, J=7.1 Hz, CH₂O), 4.3 (t, 2H, J=6.9 Hz, CH₂O), 6.3 (d, 1H, J=15.9 Hz), 6.4 (d, 1H, J=15.9 Hz), 7.4 (s, 1H, ArH), 7.4 (s, 1H, ArH), 8.0 (d, 1H, J=15.2 Hz), 8.1 (d, 1H, J=15.8 Hz), 8.1 (s, 1H, ArH), 8.3 (s, 1H, ArH). ¹³C NMR (75.5 MHz, CDCl₃): δ =13.7, 13.7 (CH₃), 19.2 (CH₂), 19.2 (CH₂), 19.3 (CH₂), 29.5 (CH₃N), 30.6 (CH₂), 30.7 (2CH₂), 30.8 (CH₂), 64.5, 64.6, 65.4, 65.8 (CH₂O), 107.7, 109.2, 119.8, 120.0, 121.8, 122.5 (CH), 122.5, 122.9, 123.6, 126.8, 132.4, 133.6 (C), 141.6, 142.0 (CH), 142.7 (C), 166.3, 166.7, 167.2, 168.9 (CO). IR (KBr): v=2957, 2932, 2872 (w), 1705 (s), 1623, 1596, 1561, 1463 (m), 1387, 1341 (w), 1262, 1226, 1162, 1107 (s), 1080, 1063, 1021, 967 (m), 906, 856, 774, 737, 713, 659, 618, 594 (w) cm⁻¹. (EI⁺, 70 eV): *m*/*z* $(\%)=633 (M^+, 24), 560 (09), 531 (69), 507 (100), 458 (29), 378 (41),$ 302 (28). HRMS (ESI⁺): m/z calcd for $C_{37}H_{48}NO_8$ [M+H]⁺: 634.33744; found: 634.33799.

3.15.16. Bis(2-ethylhexyl) 6,7-bis((E)-3-(2-ethylhexyloxy)-3-oxoprop-1-enyl)-9-methyl-9H-carbazole-2,3-dicarboxylate (**16g**). Compound **16g** was synthesized starting with **15g** (100 mg, 0.12 mmol), following general procedure C, as a yellow highly viscous oil (99 mg, 100%). ¹H NMR (300 MHz, CDCl₃): δ =0.8–0.9 (m, 24H, 8CH₃), 1.2–1.4 (m, 32H, CH-aliphatic), 1.6–1.7 (m, 4H, aliphatic), 3.9 (s, 3H, CH₃N), 4.1 (dd, 4H, *J*=2.6, 5.7 Hz, 2CH₂O), 4.2 (dd, 4H, *J*=2.6, 5.7 Hz, 2CH₂O), 6.4 (d, 1H, *J*=15.7 Hz, CH), 6.4 (d, 1H, *J*=15.7 Hz, CH), 7.5 (s, 1H, ArH), 7.6 (s, 1H, ArH), 8.1 (d, 1H, *J*=15.7 Hz, CH), 8.2 (d, 1H, *J*=15.8 Hz, CH), 8.3 (s, 1H, ArH), 8.5 (s, 1H, ArH). ¹³C NMR (62.9 MHz, CDCl₃): δ =10.9 (3CH₃), 11.0 (CH₃), 14.1 (4CH₃), 23.0 (2CH₂), 23.7 (2CH₂), 23.8 (2CH₂), 23.9 (2CH₂), 29.0 (2CH₂), 29.6 (CH₃N), 30.4 (2CH₂), 30.5 (2CH₂), 30.9, 38.5, 38.7, 38.8, (CH), 67.1, 67.3, 68.1, 68.5 (CH₂O), 107.8, 109.4, 120.1, 120.3, 122.0, 122.7 (CH), 122.9, 123.1, 123.8, 127.0, 132.7, 133.8 (C), 141.8, 142.2 (CH), 142.8, 142.9 (C), 166.5, 166.8, 167.4, 169.1 (CO). IR (KBr): *v*=2927(w), 1712, 1624, 1601, 1562, 1459, 1379, 1260, 1229, 1165, 1108, 1081, 1015, 975, 858, 774, 726, 615 (s) cm⁻¹. GC–MS (EI⁺, 70 eV): *m/z* (%)=857 (M⁺, 23), 699 (23), 588 (27), 346 (18), 302 (29). HRMS: *m/z* calcd for C₅₃H₇₉NO₈ (M⁺): 857.5806; found: 857.5803.

3.15.17. (2E,2'E,2"'E)-Tetraethyl 3,3',3",3"'-(1-methyl-1H-indole-2,3,5,6-tetrayl) tetraacrylate (17b). Product 17b was prepared starting with 2c (446 mg, 1.0 mmol), ethyl acrylate (0.6 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a yellow highly viscous oil (397 mg, 76%). ¹H NMR (300 MHz, CDCl₃): δ=1.3 (t, 6H, J=6.8 Hz, 2CH₃), 1.3 (t, 6H, J=7.0 Hz, 2CH3), 3.8 (s, 3H, CH3N), 4.2-4.3 (m, 8H, 4CH2O), 6.2 (d, 1H, J=15.8 Hz, CH), 6.3 (d, 1H, J=15.7 Hz, CH), 6.3 (d, 1H, J=15.4 Hz, CH), 6.4(d,1H,J=16.0Hz,CH),7.4(s,1H,ArH),7.8(d,1H,J=16.0Hz),7.9(d, 1H, J=16.0 Hz), 8.0 (s, 1H, ArH), 8.0 (d, 1H, J=15.8 Hz), 8.1 (d, 1H, I=15.8 Hz). ¹³C NMR (62.9 MHz, CDCl₃): $\delta=13.2$ (CH₃), 13.3 (2CH₃), 13.4 (CH₃), 30.4 (CH₃N), 59.5, 59.6, 59.7, 60.2 (CH₂O), 107.9 (CH), 113.2 (C), 116.7, 119.4, 119.7, 120.1, 125.1, (CH), 125.7, 127.8 (C), 129.3 (CH), 130.0 (C), 134.7 (CH), 138.1, 138.4 (C), 141.2, 141.3 (CH), 164.7, 165.4, 165.6, 166.5 (CO). IR (KBr): v=2979, 2930, 2872 (w), 1704, 1613 (s), 1463, 1445, 1367 (m), 1259, 1160, 1093, 1028, 974, 855 (s), 809, 785, 770, 727, 702, 607 (m) cm⁻¹. GC–MS (EI, 70 eV): *m/z* (%)=523 (M⁺, 100), 477 (18), 452 (88), 402 (84), 375 (23), 350 (70). HRMS: *m*/*z* calcd for C₂₉H₃₃NO₈ (M⁺): 523.22062; found: 523.22073.

3.15.18. (2E,2'E,2"'E)-Tetrabutyl 3,3',3",3"'-(1-methyl-1H-indole-2,3,5,6-tetrayl)tetraacrylate (17c). Product 17c was prepared starting with 2c (446 mg, 1.0 mmol), n-butyl acrylate (0.70 mL, 5.0 mmol), Pd(OAc)2 (11 mg, 5 mol %), SPhos (10 mol %), NEt3 (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure B, as a yellow highly viscous oil (450 mg, 71%). ¹H NMR (300 MHz, CDCl₃): δ=0.8-0.9 (m, 12H, 4CH₃), 1.3-1.5 (m, 8H, 4CH₂), 1.6–1.7 (m, 8H, 4CH₂), 3.7 (s, 3H, CH₃N), 4.1 (t, 4H, J=6.9 Hz, 2CH₂O), 4.2 (t, 4H, J=6.9 Hz, 2CH₂O), 6.2 (d, 1H, J=16.4 Hz, CH), 6.2 (d, 1H, J=15.4 Hz, CH), 6.3 (d, 1H, J=15.8 Hz, CH), 6.4 (d, 1H, J=16.2 Hz, CH), 7.4 (s, 1H, ArH), 7.7 (d, 1H, J=16.2 Hz, CH), 7.8 (d, 1H, J=16.2 Hz, CH), 7.9 (s, 1H, ArH), 8.0 (d, 1H, J=15.4 Hz, CH), 8.0 (d, 1H, J=15.4 Hz, CH). ¹³C NMR (75.5 MHz, CDCl₃): δ =13.7 (CH₃), 13.7 (2CH₃), 13.8 (CH₃), 19.1, 19.1, 19.2, 19.2, 30.6, 30.7, 30.8, 30.8 (CH₂), 31.4 (CH₃N), 64.4, 64.5, 64.5, 65.0 (CH₂O), 108.9 (CH), 114.1 (C), 117.6, 120.3, 120.6, 121.0, 125.9 (CH), 126.6, 128.6 (C), 130.3 (CH), 130.9 (C), 135.5 (CH), 139.0, 139.3, 142.0, 142.1 (C), 165.7, 166.3, 166.6, 167.4 (CO). IR (KBr): v=2932 (w), 1699, 1622, 1548 (s), 1463 (m), 1416, 1379, (s), 1273 (m), 1243, 1212, 1168, 1062, 1025, 956, 864, 780 (s), 738 (m), 694, 647, 588 (s) cm⁻¹. (EI, 70 eV): *m*/*z* (%)=635 (M⁺, 100), 591 (18), 562 (16), 534 (14), 509 (14), 507 (11), 478 (33), 460 (46), 431 (11), 360 (11), 334 (12), 304 (13), 260 (19), 231 (15), 57 (21). HRMS: *m*/*z* calcd for C₃₇H₄₉NO₈ (M⁺): 635.34527; found: 635.34554.

3.15.19. (2E,2'E,2''E,2'''E)-tert-Butyl 3,3',3'',3'''-(1-methyl-1H-indole-2,3,5,6-tetrayl) tetraacrylate (**17e**). Product **17e** was prepared starting with **2c** (446 mg, 1.0 mmol), tert-butyl acrylate (0.7 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a yellow highly viscous oil (559 mg, 88%). ¹H NMR

(300 MHz, CDCl₃): δ =1.5 (s, 9H, 3CH₃), 1.5 (s, 9H, 3CH₃), 3.8 (s, 3H, CH₃N), 6.2 (d, 1H, *J*=16.1 Hz, CH), 6.3 (d, 1H, *J*=15.7 Hz, CH), 6.3 (d, 1H, *J*=15.7 Hz, CH), 6.4 (d, 1H, *J*=16.0 Hz, CH), 7.4 (s, 1H, ArH), 7.7 (d, 1H, *J*=16.0 Hz, CH), 7.8 (d, 1H, *J*=16.0 Hz, CH), 7.9 (d, 1H, *J*=15.8 Hz, CH), 8.0 (d, 1H, *J*=14.2 Hz, CH), 8.0 (s, 1H, ArH). ¹³C NMR (62.9 MHz, CDCl₃): δ =28.1 (CH₃), 28.2 (CH₃), 28.3 (CH₃), 30.9 (CH₃CN), 80.4, 80.6, 80.7, 81.5 (C-O), 108.7 (CH), 114.1 (C), 119.3, 120.5, 122.6, 122.7 (CH), 126.6 (C), 127.7 (CH), 128.8 (C), 129.6 (CH), 131.0 (C), 134.9 (CH) 139.0, 139.3 (C), 141.5 (CH), 165.0, 165.7, 165.9, 166.9 (CO). IR (KBr): *v*=2976, 2931 (w), 1694, 1621, 1548, 1475, 1455, 1390, 1365, 1289, 1254, 1217, 1140, 965, 846, 764 (s) cm⁻¹. El⁺ (70 eV): *m/z* (%)=635 (M⁺, 15), 579 (04), 523 (07), 478 (17), 766 (20), 304 (28). HRMS: *m/z* calcd for C₃₇H₄₉NO₈ (M⁺): 635.34582; found: 635.34532.

3.15.20. (2E,2"E,2"E,2"E)-Tetrakis(2-ethylhexyl) 3,3',3",3"'-(1-methyl-1H-indole-2,3,5,6-tetrayl) tetraacrylate (17g). Product 17g was prepared starting with 2c (446 mg, 1.0 mmol), 2-ethylhexyl acrylate (1.10 mL, 5.0 mmol), Pd(OAc)₂ (11 mg, 5 mol %), SPhos (10 mol %), NEt₃ (1.10 mL, 8.0 mmol), DMF (5 mL) at 90 °C for 36 h following general procedure A, as a yellow highly viscous oil (645 mg, 75%). ¹H NMR (300 MHz, CDCl₃): δ=0.81-0.92 (m, 24H, 8CH₃), 1.23-1.44 (m, 32H, CH₂-aliphatic), 1.52-1.61 (m, 4H, CH), 3.83 (s, 3H, CH₃N), 4.01-4.12 (m, 8H, 4CH₂O), 6.21 (d, 1H, J=16.1 Hz), 6.32 (d, 1H, J=15.6 Hz), 6.33 (d, 1H, J=15.7 Hz), 6.41 (d, 1H, J=16.0 Hz), 7.52 (s, 1H, ArH), 7.74 (d, 1H, J=16.0 Hz), 7.81 (d, 1H, J=16.0 Hz), 8.01 (s, 1H, ArH), 8.02 (d, 2H, I=16.0 Hz). ¹³C NMR (75.5 MHz, CDCl₃): $\delta=10.9$ (CH₃), 11.0 (3CH₃), 14.0 (4CH₃), 22.9 (4CH₂), 23.7 (CH₂), 23.8 (2CH₂), 23.9, 28.1, 28.9 (CH₂), 29.0 (2CH₂), 30.3 (CH₂), 30.4 (2CH₂), 30.5 (CH₂), 31.3 (CH₃N), 38.8 (CH), 38.9 (3CH), 66.9, 67.0, 67.1, 67.6 (CH₂O), 108.9 (CH), 114.1 (C), 117.8, 120.4, 120.7, 121.0, 125.9 (CH), 126.7, 128.8 (C), 130.4 (CH), 131.0 (C), 135.5 (CH), 139.0, 139.4 (C), 142.1, 142.2 (CH), 165.8, 166.4, 166.6, 167.5 (CO). IR (KBr): v=2957, 2927, 2872, 2858 (w), 1706, 1691, 1624 (s), 1600, 1548, 1460, 1379, 1283, 1254, 1215 (w), 1164 (s), 1029, 970, 864 (m), 769, 727, 695, 639, 595 (w) cm⁻¹. El⁺ (70 eV): m/z (%)=859 (M⁺, 46), 703 (11), 701 (14), 591 (13), 590 (32), 571 (11), 572 (28), 543 (15), 460 (14), 432 (21), 431 (13), 416 (10), 414 (13), 304 (19), 276 (19), 71 (31), 70 (20), 57 (100), 44 (19), 43 (44). HRMS (ESI⁺): *m*/*z* calcd for C₅₃H₈₂NO₈ [M⁺+H]: 860.6035; found: 860.6029.

3.15.21. (2E,2'E)-Diethyl 3,3'-(1-methyl-1H-indole-5,6-diyl)diacry *late* (18). By heating 17b in xylene side-product 18 was derived. ¹H NMR (250 MHz, CDCl₃): δ=1.3 (t, 3H, J=7.1 Hz, CH₃), 1.3 (t, 3H, J=7.1 Hz, CH₃), 3.7 (s, 3H, CH₃N), 4.2 (q, 2H, J=7.2 Hz, CH₂O), 4.2 (q, 2H, *J*=7.2 Hz, CH₂O), 6.2 (d, 1H, *J*=15.9 Hz, CH), 6.3 (d, 1H, *J*=15.9 Hz, CH), 6.4 (d, 1H, J=3.0 Hz, ArH), 7.0 (d, 1H, J=3.0 Hz, ArH), 7.5 (s, 1H, ArH), 7.8 (s, 1H, ArH), 8.1 (d, 1H, J=15.9 Hz, CH), 8.2 (d, 1H, J=15.9 Hz, CH). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.4 (2CH₃), 33.0 (CH₃N), 60.4 (CH2O), 60.5 (CH2O), 102.0, 108.3, 119.1, 119.5, 120.5 (CH), 126.4, 128.4, 130.0 (C), 132.0 (CH), 137.5 (C), 143.2, 143.4 (CH), 166.8, 167.0 (CO). IR (KBr): v=2925 (w), 1703, 1626, 1604, 1505, 1462, 1446, 1422, 1366, 1349, 1303, 1260, 1174, 1159, 1094, 1030, 974, 856, 761, 748, 718, 655, 590 (s) cm⁻¹. GC-MS (EI, 70 eV): m/z (%)=327 ([M]⁺, 100), 298 (52), 277 (33). HRMS (EI): *m*/*z* calcd for C₁₉H₂₁NO₄ [M⁺]: 327.14706; found: 327.147666.

3.16. General procedure D for Sonogashira cross-coupling reactions of 2a

A mixture of Pd(OAc)₂ (11 mg, 5 mol %), the ligand XPhos (L_2) (48 mg, 10 mol %) and 20 ml xylene was stirred at room temperature for 30 min under an argon atmosphere. Then, Cul (19 mg, 10 mol %), (ⁱPr)₂NH (5 ml), 1-methyl-2,3-dibromoindole (290 mg, 1 mmol) and phenylacetylene (0.12 ml, 2.2 mmol) were added and the mixture was stirred for 36 h at 120 °C. The organic layer was washed with

water and extracted with CH₂Cl₂. The crude product was purified by column chromatography (*n*-heptane/ethylacetate 10:1).

3.16.1. 1-Methyl-2,3-bis(phenylethynyl)-1H-indole (**19**). Compound **19** was synthesized according to the general procedure D starting with **2a** (290 mg, 1.0 mmol) as a brown, unstable semisolid (199 mg, 60%). ¹H NMR (CDCl₃, 250 MHz): δ =3.81 (s, 3H, CH₃), 7.12–7.34 (m, 9H, ArH), 7.52–7.57 (m, 4H, ArH), 7.70–7.74 (m, 1H, ArH). ¹³C NMR (CDCl₃, 62.9 MHz): δ =30.1 (CH₃), 78.9, 81.8, 93.5, 98.4 (C=C), 102.2 (C), 108, 119.3, 119.9 (CH), 121.5 (C), 123.1 (CH), 123.2 (C), 124.7 (C), 126.6 (CH), 127.0 (C), 127.3, 127.5, 127.8, 130.3, 130.6 (CH), 135.7 (C). IR (ATR, cm⁻¹): ν =3050 (w), 2962 (w), 2210 (w), 2195 (w), 1594 (w), 1569 (w), 1494 (w), 1477 (m), 1464 (m), 1439 (w), 1413 (w), 1372 (m), 1329 (m), 1259 (s), 1086 (s), 1067 (s), 1011 (s). MS (EI, 70 eV): *m*/*z* (%)=331 (M⁺, 100), 314 (4), 254 (4), 226 (1), 187 (1), 164 (3), 150 (2), 77 (1). HRMS (EI): calcd for C₂₅H₁₇N (M⁺) 331.13555, found 331.13528.

References and notes

 Reviews: (a) Brossi, A. In *The Alkaloids*; Cordell, G. A., Ed.; Academic: New York, NY, 1985; Vol. 26, p 1; (b) Bhattacharrya, P; Chakraborthy, D. P. Prog. Chem. Org. Nat. Prod. **1987**, 52, 160; (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. **1989**, 89, 863; (d) Knölker, H.-J.; Reddy, K. R. Chem. Rev. **2002**, *102*, 4303; (e) Chakraborty, D. P.; Roy, S. Prog. Chem. Org. Nat. Prod. **1991**, 57, 71; (f) Chakraborty, D. P. In *The Alkaloids*; Cordell, G. A., Ed.; Academic: New York, NY, 1993; Vol. 44, p 257; (g) Knölker, H.-J. *Top. Curr. Chem.* **2005**, *244*, 115; (h) Knölker, H.-J.; Reddy, K. R. In *The Alkaloids*; Cordell, G. A., Ed.; Academic: Amsterdam, 2008; Vol. 65, p 1; (i) Pindur, U. Chimia **1990**, *44*, 406; (j) Bergman, J.; Pelcman, B. Pure Appl. Chem. **1990**, 62, 1967; (k) Moody, C. J. Synlett **1994**, 681; (l) Kirsch, G. H. Curr. Org. Chem. 2001, 5, 507; (m) Lemster, T.; Pindur, U. Recent Res. Dev. Org. Bioorg. Chem. 2002, 5, 99; (n) Knölker, H.-J. Curr. Org. Synth. 2004, 1, 309.

- For some recent contributions, see: (a) Bedford, R. B.; Betham, M. J. Org. Chem. 2006, 71, 9403; (b) Lebold, T. P.; Kerr, M. A. Org. Lett. 2007, 9, 1883; (c) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. Chem. Commun. 2007, 4516; (d) Jean, D. J., Jr.; Poon, S. F.; Schwarzbach, J. L. Org. Lett. 2007, 9, 4893; (e) Liu, C.-Y.; Knochel, P. J. Org. Chem. 2007, 72, 7106; (f) Naffziger, M. R.; Ashburn, B. O.; Perkins, J. R.; Carter, R. G. J. Org. Chem. 2007, 72, 9857.
- (a) Forke, R.; Krahl, M. P.; Däbritz, F.; Jäger, A.; Knölker, H.-J. Synlett 2008, 1870;
 (b) Forke, R.; Krahl, M. P.; Krause, T.; Schlechtingen, G.; Knölker, H.-J. Synlett 2007, 268.
- 4. Ackermann, L.; Althammer, A. Angew. Chem., Int. Ed. 2007, 46, 1627.
- 5. Pindur, U. Heterocycles 2008, 27, 1253.
- 6. Kano, S.; Sugino, E.; Shibuya, S.; Hibino, S. J. Org. Chem. 1981, 46, 3856.
- 7. Pindur, U.; Adam, R. Helv. Chim. Acta **1990**, 73, 827.
- 8. Voigt, K.; von Zezschwitz, P.; Rosauer, K.; Lansky, A.; Adams, A.; Reiser, O.; de Meijere, A. *Eur. J. Org. Chem.* **1998**, 1521 and references cited therein.
- (a) Hussain, M.; Dang, T. T.; Langer, P. Synlett **2009**, 1822; (b) Toguem, S.-M. T.; Hussain, M.; Malik, I.; Villinger, A.; Langer, P. Tetrahedron Lett. **2009**, 50, 4962; (c) Hussain, M.; Hung, N. T.; Langer, P. Tetrahedron Lett. **2009**, 50, 3929; (d) Toguem, S.-M. T.; Langer, P. Synlett **2010**, 1779.
- 10. Tang, S.; Li, J.-H.; Xie, Y.-X.; Wang, N.-X. Synthesis 2007, 1535.
- 11. Ji, N.-Y.; Li, X.-M.; Cui, C.-M.; Wang, B.-G. Helv. Chim. Acta 2007, 90, 1731.
- 12. Ji, N.-Y.; Li, X.-M.; Cui, C.-M.; Wang, B.-G. Helv. Chim. Acta 2007, 90, 385.
- 13. Carter, G. T.; Rinehart, K. L., Jr.; Li, L. H.; Küntzel, S. L.; Condor, J. L. *Tetrahedron Lett.* **1978**, *19*, 4479.
- 14. Liu, Y.; Gribble, G. W. J. Nat. Prod. 2002, 65, 748.
- Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358 and references cited therein.
- 16. Li, H. J.; Wang, L. Eur. J. Org. Chem. 2006, 5099.
- CCDC-823758 (5f), CCDC-823759 (6a), CCDC-823760(7) and CCDC-823758 (12c) contain all crystallographic details of this publication, which are available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; Fax:(-44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- 18. Kawasaki, I.; Yamashita, M.; Ohta, S. Chem. Pharm. Bull. 1996, 44, 1831.