U. Kober, H.-J. Knölker

## Palladium-Catalyzed Approach to Malasseziazole A and First Total Synthesis of Malasseziazole C

А



Received: 07.03.2015 Accepted after revision: 14.04.2015 Published online: 30.04.2015 DOI: 10.1055/s-0034-1380713; Art ID: st-2015-b0162-l

**Abstract** We describe a convergent route to 5,11-dihydroindolo[3,2b]carbazoles using a twofold oxidative cyclization as key step. The method has been applied to the synthesis of a precursor for malasseziazole A and to the first total synthesis of malasseziazole C.

**Key words** alkaloids, catalysis, cyclization, indolocarbazoles, natural products, palladium

The human lipophilic yeast Malassezia furfur is believed to be one of the fungi which in their pathogenic mycelial form cause the common skin disease pityriasis versicolor, a fungal infection leading to mild inflammation of the skin and characteristic colored lesions.<sup>1</sup> Steglich et al. described the isolation and structural elucidation of eleven new alkaloids from cultures of Malassezia furfur, among them the malasseziazoles A-C (1-3) and pityriazole (4, Figure 1).<sup>2</sup> These compounds were shown to be tryptophan metabolites generated via indol-3-ylpyruvate and some of them may be involved in the pathogenesis of pityriasis versicolor.<sup>3</sup> The structural variety and the broad range of biological activities of carbazole alkaloids have been extensively investigated.<sup>4,5</sup> Also the chemistry of indolocarbazoles has been studied in detail.<sup>5,6</sup> However, till 2002 all indolocarbazole alkaloids isolated from nature were limited to indolo[2,3-*a*]carbazole derivatives.<sup>5,6b,c</sup> Thus, the compounds **1**– 4 found by Steglich et al. are structurally unique, as the malasseziazoles A-C (1-3) represent the first 5,11-dihydroindolo[3,2-b]carbazole alkaloids and pityriazole (4) is the first 1-(indol-3-yl)carbazole isolated from natural sources.



Bergman et al. have developed synthetic routes to 5,11dihydroindolo[3,2-*b*]carbazoles.<sup>6a,c,7-9</sup> 5,11-Dihydroindolo[3,2-*b*]carbazole-6-carbaldehyde and 5,11-dihydroindolo[3,2-*b*]carbazole-6,12-dicarbaldehyde are formed by photolysis of a tryptophan solution and represent strongly binding ligands for the aryl hydrocarbon receptor.<sup>10</sup> Bergman's group reported efficient syntheses of both compounds.<sup>7,8</sup>

Previously, we have already reported the first total synthesis of pityriazole (**4**).<sup>11</sup> In the present paper,<sup>12</sup> we describe an approach to a potential precursor for the synthesis of malasseziazole A (**1**) and the first total synthesis of malasseziazole C (12-formyl-5,11-dihydroindolo[3,2-*b*]carbazole-6-carboxylic acid) (**3**).

Letter

Syn lett

В



**Scheme 1** Retrosynthetic analysis of malasseziazole A (1)

The synthetic plan for malasseziazole A (1) is based on our well-established palladium-catalyzed synthesis of carbazoles.<sup>13,14</sup> Key feature of our approach is a bidirectional indole annulation, which was applied earlier to the synthesis of indolo[2,3-*b*]carbazole from *m*-phenylenediamine via our iron-mediated synthesis.<sup>15</sup> Thus, malasseziazole A (1) should be formed by twofold palladium(II)-catalyzed oxidative cyclization of 2',5'-bis(phenylamino)acetophenone (5) followed by oxidation of the acetyl side chain to an  $\alpha$ keto acid (Scheme 1). Compound 5 could derive from double Buchwald–Hartwig coupling of the 2',5'-disubstituted acetophenone 6 with aniline (7). In a model study, we achieved the oxidation of acetophenone (8) to the corresponding  $\alpha$ -keto acid 9 in high yield following the procedure reported by Zhang et al. (Scheme 2).<sup>16</sup>



(9). *Reagents and conditions*: (a) SeO<sub>2</sub> (2 equiv), pyridine, 120 °C, 18 h, 83%.

The palladium(0)-catalyzed Buchwald–Hartwig coupling of 2',5'-dichloroacetophenone (**6a**) with 2.1 equivalents of aniline in the presence of catalytic amounts of SPhos<sup>17</sup> as ligand led to 2',5'-bis(phenylamino)acetophenone (**5**)<sup>18</sup> in high yield (Scheme 3). The Buchwald–Hartwig amination of the 2',5'-bistriflate **6c**, which is readily prepared from the corresponding 2',5'-dihydroxy compound **6b** (3 equiv Tf<sub>2</sub>O, 6 equiv 2,6-lutidine, CH<sub>2</sub>Cl<sub>2</sub>, –15 °C to r.t.,

16 h, 81% **6c**), provided compound **5** in only moderate yield. The oxidative cyclization of **5** under the conditions previously applied<sup>11,19</sup> led to the 6-acetyl-5,11-dihydroindo-lo[3,2-*b*]carbazole (**10**, 12% yield)<sup>20</sup> along with the monocyclized product **11** (23% yield)<sup>21</sup> and starting material. The fact that only one regioisomeric monocyclized product was formed as byproduct has been ascribed to an acetyl-directed palladation generating an acetyl-coordinated palladi-um(II) complex.<sup>22</sup> Subsequent reductive elimination leads to the 4-acetyl-substituted carbazole derivative **11**, which on further cyclization provides compound **10**. An optimization of this oxidative cyclization is still being explored.



 $\begin{array}{l} \textbf{Scheme 3} \quad \text{Synthesis of the 5,11-dihydroindolo[3,2-b]carbazole 10. Reagents and conditions: (a) aniline (7, 2.1 equiv), Pd(OAc)_2 (10 mol%), \\ \textbf{SPhos (20 mol%), Cs_2CO_3 (2.1 equiv), toluene, reflux, 2 d, 77%; (b) \\ Pd(OAc)_2 (30 mol%), K_2CO_3 (30 mol%), PivOH, 85 °C, air, 19 h, 12% 10, \\ 23\% 11, 21\% 5. \end{array}$ 

For the first total synthesis of malasseziazole C (3), we decided to follow the route described by Bergman et al. for the synthesis of 6,12-disubstituted indolo[3,2-b]carbazoles.8 Condensation of diethyl cyclohexane-1,4-dione-2,5dicarboxylate (12) with an excess of aniline (7) afforded diethyl 2,5-bis(phenylamino)terephthalate (13) as reported by Liebermann more than a century ago (Scheme 4).<sup>23</sup> Our original conditions for the palladium(II)-catalyzed oxidative cyclization [30 mol% Pd(OAc)<sub>2</sub>, 5 equiv Cu(OAc)<sub>2</sub>, AcOH, microwave, 130 °C, 3 h],<sup>24</sup> provided the desired diethyl 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarboxylate (14) in only 38% yield along with 28% of the monocyclized product and 27% of starting material. The conditions first described by Åkermark et al. for the cyclization of electrondeficient diarylamines (two equivalents of palladium(II) acetate in acetic acid at 100 °C),<sup>25,26</sup> afforded compound **14** in 69% yield. The selective reduction of 14 described by Bergman et al.8 led to the monoalcohol 15 in 92% yield. Oxidation of the monoalcohol 15 using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) afforded the monoaldehyde 16.8.27 Finally, ester cleavage of 16 provided quantitatively malasseziazole C (3),<sup>28</sup> which is identical to the natural product according to its spectroscopic data.<sup>2</sup>



**Scheme 4** Synthesis of malasseziazole C (**3**). *Reagents and conditions*: (a) aniline (**7**, 2.4 equiv), AcOH, 100 °C, air, 12 h, 96%; (b) Pd(OAc)<sub>2</sub> (2.2 equiv), AcOH, 100 °C, 3 h, 69%; (c) LiAlH<sub>4</sub> (2.0 equiv), THF, 0 °C, 30 min, 92%; (d) DDQ (1.3 equiv), 1,4-dioxane, r.t., 2 h, 92%; (e) KOH (100 equiv), EtOH–H<sub>2</sub>O (1:1), reflux, 30 min, 100%.

Saponification of compound **14** afforded 5,11-dihydroindolo[3,2-*b*]carbazole-6,12-dicarboxylic acid (**17**) in high yield (Scheme 5).<sup>29</sup> The diacid **17** should have a better solubility in water, which would be advantageous for projected bioactivity studies. Moreover, as a potential oxidation product of malasseziazole C (**3**), compound **17** could also be a natural product.



**Scheme 5** Synthesis of 5,11-dihydroindolo[3,2-*b*]carbazole-6,12-dicarboxylic acid (**17**). *Reagents and conditions*: (a) KOH (100 equiv), EtOH $-H_2O$  (1:1), reflux, 1 h, 86%.

In conclusion, using a bidirectional indole annulation as the key step, we have achieved an approach to the 5,11-dihydroindolo[3,2-*b*]carbazole alkaloid malasseziazole A (1). Moreover, we have completed the first total synthesis of malasseziazole C (3) thus confirming the structural assignment for this natural product. Via the present route, malasseziazole C(3) is available in five steps and 56% overall yield based on cheap commercial starting materials.

## Acknowledgment

С

We would like to thank Kevin Muth for experimental support.

## **Supporting Information**

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380713.

## **References and Notes**

- (1) Gupta, A. K.; Bluhm, R.; Summerbell, R. J. Eur. Acad. Dermatol. Venerol. **2002**, *16*, 19.
- (2) Irlinger, B.; Bartsch, A.; Krämer, H.-J.; Mayser, P.; Steglich, W. *Helv. Chim. Acta* **2005**, *88*, 1472.
- (3) Zuther, K.; Mayser, P.; Hettwer, U.; Wu, W.; Spiteller, P.; Kindler, B. L. J.; Karlovsky, P.; Basse, C. W.; Schirawsky, J. *Mol. Microbiol.* 2008, 68, 152.
- (4) (a) Chakraborty, D. P.; Roy, S. In Progress in the Chemistry of Organic Natural Products; Vol. 57; Herz, W.; Grisebach, H.; Kirby, G. W.; Steglich, W.; Tamm, C., Eds.; Springer: Wien, 1991, 71. (b) Chakraborty, D. P. In *The Alkaloids*; Vol. 44; Cordell, G. A., Ed.; Academic Press: New York, 1993, 257.
- (5) (a) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
  (b) Knölker, H.-J.; Reddy, K. R. In *The Alkaloids*; Vol. 65; Cordell, G. A., Ed.; Academic Press: Amsterdam, 2008, 1. (c) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193.
- (6) For reviews on indolocarbazoles, see: (a) Bergman, J.; Janosik, T.; Wahlström, N. Adv. Heterocycl. Chem. 2001, 80, 1. (b) Sánchez, C.; Méndez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 1007. (c) Janosik, T.; Wahlström, N.; Bergman, J. Tetrahedron 2008, 64, 9159.
- (7) (a) Tholander, J.; Bergman, J. Tetrahedron Lett. **1998**, 39, 1619.
  (b) Tholander, J.; Bergman, J. Tetrahedron **1999**, 55, 6243.
- (8) Tholander, J.; Bergman, J. Tetrahedron 1999, 55, 12577.
- (9) (a) Yudina, L. N.; Bergman, J. Tetrahedron 2003, 59, 1265.
  (b) Wahlström, N.; Romero, I.; Bergman, J. Eur. J. Org. Chem. 2004, 2593. (c) Van Snick, S.; Dehaen, W. Org. Biomol. Chem. 2012, 10, 79.
- (10) (a) Rannug, A.; Rannug, U.; Rosenkranz, H. S.; Winqvist, L.; Westerholm, R.; Agurell, E.; Grafström, A.-K. J. Biol. Chem. 1987, 262, 15422. (b) Rannug, U.; Rannug, A.; Sjöberg, U.; Li, H.; Westerholm, R.; Bergman, J. Chem. Biol. (Oxford, U.K.) 1995, 2, 841. (c) Öberg, M.; Bergander, L.; Håkansson, H.; Rannug, U.; Rannug, A. Toxicol. Sci. 2005, 85, 935.
- (11) Forke, R.; Jäger, A.; Knölker, H.-J. Org. Biomol. Chem. 2008, 6, 2481.
- (12) Part 124 of Transition Metals in Organic Synthesis; for Part 123, see: Hesse, R.; Schmidt, A. W.; Knölker, H.-J. *Tetrahedron* 2015, 71, in press; doi: 10.1016/j.tet.2015.03.064.
- (13) For reviews, see: (a) Knölker, H.-J. Curr. Org. Synth. 2004, 309.
  (b) Knölker, H.-J. Chem. Lett. 2009, 38, 8. (c) Bauer, I.; Knölker, H.-J. Top. Curr. Chem. 2012, 309, 203.
- (14) For recent applications, see: (a) Gruner, K. K.; Knölker, H.-J. Org. Biomol. Chem. 2008, 6, 3902. (b) Börger, C.; Krahl, M. P.; Gruner, M.; Kataeva, O.; Knölker, H.-J. Org. Biomol. Chem. 2012, 10, 5189.

(c) Hesse, R.; Gruner, K. K.; Kataeva, O.; Schmidt, A. W.; Knölker, H.-J. *Chem. Eur. J.* 2013, *19*, 14098. (d) Kumar, V. P.; Gruner, K. K.; Kataeva, O.; Knölker, H.-J. *Angew. Chem. Int. Ed.* 2013, *52*, 11073. (e) Hesse, R.; Jäger, A.; Knölker, H.-J. Org. Biomol. Chem. 2014, *12*, 3866. (f) Hesse, R.; Krahl, M. P.; Jäger, A.; Kataeva, O.; Schmidt, A. W.; Knölker, H.-J. *Eur. J. Org. Chem.* 2014, 4014. (g) Gassner, C.; Hesse, R.; Schmidt, A. W.; Knölker, H.-J. *Org. Biomol. Chem.* 2014, *12*, 6490.

- (15) (a) Knölker, H.-J.; Reddy, K. R. *Tetrahedron Lett.* **1998**, 39, 4007.
  (b) Knölker, H.-J.; Reddy, K. R. *Tetrahedron* **2000**, 56, 4733.
- (16) Zhuang, J.; Wang, C.; Xie, F.; Zhang, W. *Tetrahedron* **2009**, *65*, 9797.
- (17) (a) Charles, M. D.; Schulz, P.; Buchwald, S. L. Org. Lett. 2005, 7, 3965. (b) Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338.
- (18) 2',5'-Bis(phenylamino)acetophenone (5)
  - Orange oil. IR (ATR): v = 3380, 3276, 3034, 2921, 2851, 1641, 1619, 1595, 1575, 1512, 1492, 1465, 1420, 1398, 1360, 1306, 1245, 1204, 1076, 1025, 994, 957, 933, 874, 814, 743, 692, 664 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ): δ = 2.57 (s, 3 H), 6.74 (t, *J* = 7.3 Hz, 1 H), 6.94–7.03 (m, 3 H), 7.17–7.20 (m, 4 H), 7.25–7.33 (m, 4 H), 7.62 (d, *J* = 1.9 Hz, 1 H), 7.98 (br s, 1 H), 9.88 (br s, 1 H). <sup>13</sup>C NMR and DEPT (125 MHz, DMSO- $d_6$ ): δ = 28.53 (CH<sub>3</sub>), 114.91 (2 CH), 116.81 (CH), 118.57 (CH), 120.01 (2 CH), 121.68 (C), 122.00 (CH), 122.10 (CH), 126.81 (CH), 129.26 (2 CH), 129.49 (2 CH), 133.98 (C), 139.91 (C), 141.46 (C), 144.89 (C), 201.24 (C=0). MS (EI): *m/z* = 302 (100), 287 (12), 285 (10), 256 (10), 195 (47), 183 (16), 167 (54), 166 (22), 154 (14), 128 (13), 77 (18), 51 (9). Anal. Calcd (%) for C<sub>20</sub>H<sub>18</sub>N<sub>2</sub>O: C, 79.44; H, 6.00; N, 9.26. Found: C, 79.42; H, 5.99; N, 9.16.
- (19) (a) Forke, R.; Krahl, M. P.; Däbritz, F.; Jäger, A.; Knölker, H.-J. *Synlett* **2008**, 1870. (b) Liégault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. *J. Org. Chem.* **2008**, 73, 5022. (c) Fuchsenberger, M.; Forke, R.; Knölker, H.-J. *Synlett* **2011**, 2056. (d) Huet, L.; Forke, R.; Jäger, A.; Knölker, H.-J. *Synlett* **2012**, 23, 1230.
- (20) **6-Acetyl-5,11-dihydro-indolo[3,2-b]carbazole (10)** Yellow solid; mp 244 °C. UV (MeOH):  $\lambda$  = 213 (sh), 223, 254, 306, 338 (sh), 357, 438 nm. Fluorescence (MeOH):  $\lambda_{ex}$  = 223 nm,  $\lambda_{em}$  = 507 nm. IR (ATR): v = 3456, 3400, 3051, 2920, 2851, 1640, 1605, 1558, 1512, 1457, 1418, 1353, 1320, 1292, 1270, 1221, 1186, 1168, 1144, 1109, 1010, 988, 961, 934, 866, 739, 692, 641, 621 cm<sup>-1.</sup> <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  = 2.96 (s, 3 H), 7.23–7.28 (m, 2 H), 7.46–7.49 (m, 3 H), 7.51–7.52 (m, 1 H), 8.10 (d, *J* = 7.8 Hz, 1 H), 8.17 (d, *J* = 8.1 Hz, 1 H), 8.22 (s, 1 H), 8.28 (br s, 1 H), 9.72 (br s, 1 H). <sup>13</sup>C NMR and DEPT (150 MHz, CDCl<sub>3</sub>):  $\delta$  = 30.93 (CH<sub>3</sub>), 106.42 (CH), 110.95 (CH), 111.00 (CH), 115.07 (C), 119.26 (CH), 119.46 (CH), 124.25 (C), 126.40 (CH), 126.73 (CH), 135.09 (C), 135.29 (C), 141.15 (2 C), 202.85 (C=0). MS (EI): *m/z* = 298 (100), 283 (30), 255 (64), 254 (10), 253 (11), 227 (11).
- (21) **4-Acetyl-3-(phenylamino)carbazole (11)** Yellow solid; mp 153 °C. UV (MeOH):  $\lambda = 204$ , 242, 306, 348 (sh), 452 nm. Fluorescence (MeOH):  $\lambda_{ex} = 306$  nm,  $\lambda_{em} = 411$  nm. IR (ATR):  $\nu = 3404$ , 2924, 2853, 1737, 1689, 1601, 1496, 1444,

1374, 1354, 1304, 1225, 1183, 1152, 1077, 1020, 903, 805, 748, 695 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ = 2.68 (s, 3 H), 6.26 (br s, 1 H), 6.85 (t, *J* = 7.4 Hz, 1 H), 6.90 (d, *J* = 8.3 Hz, 2 H), 7.18–7.23 (m, 3 H), 7.41–7.45 (m, 4 H), 7.86 (d, *J* = 8.0 Hz, 1 H), 8.19 (br s, 1 H). <sup>13</sup>C NMR and DEPT (125 MHz, CDCl<sub>3</sub>): δ = 31.68 (CH<sub>3</sub>), 110.95 (CH), 113.05 (CH), 115.90 (2 CH), 119.37 (C), 119.78 (CH), 119.80 (CH), 121.55 (C), 122.19 (CH), 122.35 (CH), 126.30 (CH), 129.33 (2 CH), 129.49 (C), 131.49 (C), 136.22 (C), 140.18 (C), 145.58 (C), 205.90 (C=0). MS (EI): *m/z* = 300 (100), 285 (67), 284 (18), 257 (48), 256 (45), 255 (30).

- (22) Gensch, T.; Rönnefahrt, M.; Czerwonka, R.; Jäger, A.; Kataeva, O.; Bauer, I.; Knölker, H.-J. *Chem. Eur. J.* **2012**, *18*, 770.
- (23) Liebermann, H. Ann. Chem. 1914, 404, 272.
- (24) (a) Knölker, H.-J.; O'Sullivan, N. *Tetrahedron* 1994, 50, 10893.
  (b) Knölker, H.-J.; Fröhner, W.; Reddy, K. R. *Synthesis* 2002, 557.
  (c) Schmidt, M.; Knölker, H.-J. *Synlett* 2009, 2421.
- (25) Åkermark, B.; Eberson, L.; Jonsson, E.; Pettersson, E. J. Org. Chem. 1975, 40, 1365.
- (26) (a) Börger, C.; Knölker, H.-J. Synlett 2008, 1698. (b) Börger, C.; Knölker, H.-J. Tetrahedron 2012, 68, 6727.
- (27) Wang, W.; Li, T.; Attardo, G. J. Org. Chem. 1997, 62, 6598.
- (28) Malasseziazole C (12-Formyl-5,11-dihydroindolo[3,2-b]carbazole-6-carboxylic Acid) (3) Brownish solid; mp >300 °C (decomp.). UV (MeOH):  $\lambda$  = 213, 247, 272 (sh), 307 (sh), 391, 465 nm. Fluorescence (MeOH):  $\lambda_{ex}$ = 307 nm,  $\lambda_{em}$  = 455 nm. IR (ATR): v = 3448, 3055, 2922, 2852, 1712, 1611, 1585, 1512, 1458, 1392, 1347, 1321, 1299, 1263, 1205, 1158, 1126, 1077, 1022, 954, 895, 839, 804, 741, 698, 653 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ ):  $\delta$  = 7.22 (m, 2 H), 7.48 (t, J = 7.6 Hz, 1 H), 7.52 (t, J = 7.7 Hz, 1 H), 7.79 (d, J = 8.2 Hz, 1 H), 7.82 (d, J = 8.1 Hz, 1 H), 8.58 (d, J = 8.2 Hz, 1 H), 8.61 (d, J = 8.1 Hz, 1 H), 11.41 (s, 1 H), 11.44 (s, 1 H), 11.96 (s, 1 H), 13.72 (br s, 1 H). <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>OD):  $\delta$  = 7.11–7.13 (m, 1 H), 7.19–7.21 (m, 1 H), 7.40–7.45 (m, 2 H), 7.60 (d, J = 8.0 Hz, 1 H), 7.61 (d, J = 7.9 Hz, 1 H), 8.33 (d, J = 8.0 Hz, 1 H), 8.91 (d, J = 8.2 Hz, 1 H), 11.50 (br s, 1 H). <sup>13</sup>C NMR and DEPT (125 MHz, DMSO- $d_6$ ):  $\delta$  = 112.60 (CH), 112.72 (CH), 114.57 (C), 114.93 (C), 119.56 (CH), 119.77 (CH), 120.36 (C), 120.62 (C), 121.15 (C), 123.31 (C), 124.42 (CH), 125.09 (CH), 127.18 (CH), 127.51 (CH), 134.33 (C), 135.39 (C), 142.38 (C), 142.70 (C), 168.57 (C=O), 191.11 (CHO). ESI-MS (+25 V): *m*/*z* = 329.1 [M + H]<sup>+</sup>.
- (29) **5,11-Dihydroindolo[3,2-***b*]carbazole-6,12-dicarboxylic Acid (17)

Red solid; mp >294 °C (decomp.). UV (MeOH):  $\lambda = 211, 275$  (sh), 294, 366 nm. Fluorescence (MeOH):  $\lambda_{ex} = 294$  nm,  $\lambda_{em} = 515$  nm. IR (ATR): v = 3448, 3413, 2920, 2850, 2577, 1642, 1610, 1570, 1543, 1501, 1473, 1457, 1429, 1314, 1297, 1229, 1207, 1151, 1112, 1021, 891, 857, 793, 763, 746, 699, 624 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>):  $\delta = 7.16$  (m, 2 H), 7.45 (m, 2 H), 7.75 (d, *J* = 8.1 Hz, 2 H), 8.67 (d, *J* = 8.2 Hz, 2 H), 11.25 (s, 2 H), 13.95 (br s, 2 H). <sup>13</sup>C NMR and DEPT (125 MHz, DMSO-*d*<sub>6</sub>):  $\delta = 110.44$  (2 C), 111.63 (2 CH), 118.31 (2 CH), 120.35 (2 C), 120.63 (2 C), 124.28 (2 CH), 126.57 (2 CH), 134.72 (2 C), 141.81 (2 C), 168.47 (2 C=0). ESI-MS (+10 V): *m/z* = 345.2 [M + H]<sup>+</sup>.

San Francisco. Copyrighted material.