Reactions of titanium hydrazides with silanes and boranes: N–N bond cleavage and N atom functionalization

Laura C Stevenson,[†] Simona Mellino,[†] Eric Clot^{*,‡} and Philip Mountford^{*,†}

[†] Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

[‡] Institut Charles Gerhardt Montpellier, CNRS 5253, Université Montpellier, cc 1501, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.

Supporting Information Placeholder

ABSTRACT: Reaction of Ti(N₂^{iPr}N)(NNPh₂)(py) with Ph(R)SiH₂ (R = H, Ph) or 9-BBN gave reductive cleavage of the N_α-N_β bond and formation of new silyl- or boryl-amido ligands. The corresponding reactions of Cp*Ti{MeC(NⁱPr)₂}(NNR₂) (R = Me or Ph) with HBPin or 9-BBN gave borylhydrazido-hydride or borylimido products, respectively. N_α and N_β atom transfer and dehydrogenative coupling reactions are also reported.

It has been shown over the last 5-8 years in particular (heralded by a preliminary communication in 1991¹) that Group 4 hydrazides of the type (L)M=NNR₂ (R = alkyl, aryl; L = ancillary ligand set) can undergo a variety of addition or insertion reactions of the Ti=N_a multiple bond with unsaturated substrates.¹⁻² While some aspects of the chemistry are reminiscent of that of the related and better-established Group 4 imides (L)M=NR,³ a distinctive aspect of Group 4 hydrazido (and of the related alkoxyimides (L)Ti=NOR⁴) is the typically facile reductive cleavage of the N_a-N_β bond that can also occur with oxidizable substrates such as CO,¹ isocyanides^{2d, 2l} and alkynes to form new N-element functional groups and/or organic products.^{2g, 2i, j}

Only one example of the reaction of Group 4 dialkylhydrazides with the Si–H bonds of silanes has been reported to date, namely the reversible 1,2-addition (without $N_{\alpha}-N_{\beta}$ bond cleavage) to the Ti= N_{α} multiple bond of Cp*Ti{MeC(NⁱPr)₂}(NNMe₂).⁵ No reactions of hydrazido compounds with primary or secondary boranes are known (boranes without B–H bonds form Lewis adducts with the Ti= N_{α} atom of certain hydrazides²¹). There is precedent for Si–H addition to metal-heteroatom multiple bonds in general,^{3, 6} but only one (very recently) structurally authenticated example of the 1,2-addition of a B–H bond to a transition metal imide.⁷

Of further relevance to the work described herein are the E–H bond activation, and in some cases subsequent N–N bond cleavage reactions, of early transition metal-bound N₂ with Si–H⁸ or B–H⁹ bonds of silanes and boranes. These proceed *via* bimetallic intermediates in all instances. The subsequent N–N bond breaking reactions (forming silyl- or boryl-imido ligands) are sometimes accompanied by ancillary ligand degradation (especially in the case of the Group 5 borane reaction products) and are typically assisted (in Group 4) by addition of a reducing reagent such as CO.

We recently reported the unusual reactions of the diamide-aminesupported titanium hydrazide $Ti(N_2^{iPt}N)(NNPh_2)(py)$ (1, Scheme 1) with certain alkynes in which the rather sterically unencumbered ancilliary ligand allows access to new types of intermediate and mechanism in hydrohydrazination catalysis.²ⁿ In this contribution we describe the reactions of this compound and a half-sandwich counterpart with selected silanes and boranes, leading to the reductive cleavage of the N_{α} -N_{β} bond and formation of silyl- and boryl-amido and imido species, along with N_{α} and N_{β} atom transfer and dehydrogenative coupling reactions.

Scheme 1. Reactions of $Ti(N_2^{iPr}N)(NNPh_2)(py)$ (1) with phenyl silanes and 9-BBN. Major isomer of 5 and 6 shown.

Reaction of Ti(N2^{iPr}N)(NNPh2)(py) (1) with PhSiH3 at RT (room temperature) gave quantitative conversion to $Ti(N_2^{iPr}N){N(H)SiH_2Ph}(NPh_2)$ (2) which exists as two isomers, denoted trans-2 and cis-2, in a 40:60% ratio (Scheme 1). When followed by ¹H NMR spectroscopy in toluene- d_8 from -78 °C to RT the reaction started to occur at ca. -10 °C, initially forming only trans-2, establishing this as the kinetic product. On warming to ca. 10 °C the cis-isomer started to appear, and after several hours at RT the thermodynamic equilibrium was established. Similar isomerizations have been noted elsewhere with this type of supporting ligand.²¹ Reaction with Ph₂SiH₂ gave an analogous product, namely $Ti(N_2^{iPr}N)\{N(H)SiHPh_2\}(NPh_2)$ (3), which likewise exists as mixture of *trans* and *cis* isomers (50:50% ratio).

The solid state structure of *trans-3* is shown in Fig. 1 and reveals the complete cleavage of the N_{α} - N_{β} bond of 1 forming the new NPh₂ and N(H)SiHPh₂ ligands (each having an N atom in a formal –3 oxidation state compared to –2 in 1), positioned *cis* and *trans*, respectively, to the NMe moiety of $N_2^{iPr}N$. The NMR data for 2 and 3 are consistent with the solid state structure, in particular showing scalar coupling between the N<u>H</u> and Si<u>H</u> atoms of the N(H)SiH_xPh_{3-x}(x = 1 or 2) ligands. These resonances

The formation of **2** and **3** from **1** represents the first reductive cleavage of a hydrazide (or related) N–N bond by a silane at a single metal center, with net insertion of the N_{α} atom of **1** into a silane Si–H bond. Further experiments and DFT calculations were

carried out to probe the mechanism. Comparison of the reactions of **1** with PhSiH₃ or PhSiD₃, either by initial rates (at -10 °C) or by a competition experiment between **1** and an excess of PhSiH₃ and PhSiD₃ (at RT) established a kinetic isotope effect in the range 1.34 - 1.41 for both types of experiment, comparable to values found for Si–H addition to Ti=S^{6a} and Ti=O^{6b} bonds. It was also found that the presence of an excess of pyridine decreased the rate of reaction (although competing unknown side-reactions prevented a detailed analysis). Likewise, reaction of the DMAP analogue of **1**, Ti(N₂^{iPr}N)(NNPh₂)(DMAP) (**4**, DMAP = 4dimethylaminopyridine), with PhSiH₃ proceeded considerably more slowly to form **2**. Thus both pyridine (or DMAP) loss and E–H (E = Si or B) bond cleavage are kinetically important to the rate-determing steps for the cleavage reaction.

DFT calculations found two related pathways for the formation of 2, starting from different isomers of 1 (NNPh₂ trans or cis to NMe). The lowest energy pathway (Fig. 2) leads to the experimentally observed kinetic product trans-2 which may then isomerise readily to the thermodynamic equilibrium mixture of cis and *trans* isomers.²¹ As is well-established for the reactions of many diamide-amine-supported imido and hydrazido analogues of 1, the reaction proceeds via loss of pyridine to form fourcoordinate Int1. The 1,2-addition of Si–H to the Ti= N_{α} bond of Int1 proceeds in a facile manner via intermediate Int2 (relative G = 13.3 kcal mol⁻¹) to form the silvlhydrazido-hydride species Int3. The barrier from this species, namely irreversible hydride transfer to N_{α} and highly exergonic reductive $N_{\alpha} – N_{\beta}$ bond cleavage, to give the final product at -58.7 kcal mol⁻¹ is readily accessible ($\Delta G^{\ddagger} = 17.3 \text{ kcal mol}^{-1}$). The alternative pathway to that shown in Fig 2, starting from the trans isomer of 1 (Fig. S1 of the SI) is almost identical, but the final transition state (analogous to **TS2**) has $\Delta G^{\ddagger} = 25.2$ kcal mol⁻¹ and is therefore uncompetitive. The highest points (Int1, TS1 and TS2) located on the lowest energy reaction pathway involve either pyridine loss from *cis-1* or Si-H /Ti-H bond cleavage. Therefore the computed mechanism is entirely consistent with the experimental observations presented above.

Figure 2. DFT mechanism for the reaction of *cis*-1 with PhSiH₃ forming *trans*-2 and py. Gibbs free energies (kcal mol⁻¹, T = 298 K) for minima, maxima and transition states (labeled **TSx**) are shown in bold relative to *trans*-1 and PhSiH₃. [Ti] represents Ti(N₂^{iPr}N).

The unprecedented reactions of **1** with silanes prompted us to explore the corresponding reaction with boranes. Initial NMR tube-scale studies with pinacol borane gave rather complex spectra, possibly indicative of reaction at the Ti- N_{amide} bonds of the $N_2^{\,iPr}N$ ligand. Similar reaction outcomes were also found when halosilanes were used. However, as shown in Scheme 1, reaction of **1** with 1 equiv. of 9-BBN dimer gave clean conversion to the borylamide $Ti(N_2^{\,iPr}N)\{N(H)BC_8H_{14}\}(NPh_2)$ (**5**) together with py·HBC_8H_{14}. In solution **5** exists predominantly as the *cis* isomer

(3:1 ratio of *cis:trans*) illustrated which was characterized by Xray crystallography (Fig. 1). Overall, the N_{α} atom of **1** has inserted into the B–H bond of the borane with concommitant reductive cleavage of the N_{α}–N_{β} bond. This is also the first reaction of this type for a single metal center. DFT calculations indicate an analogous mechanism to that for PhSiH₃ (see Fig. S2). The key transition states for Si–H, B–H and N–N bond breaking are shown in Fig. S3.

60

1

2

3

4

5

6

7

8

9

10

11

17

20

21

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

The reductive transformations of a terminal (L)M=NNR₂ functional group to the corresponding silvlamido and borylamido ligands are unprecedented. We note, in this context, the recent report of Si-H and B-H bond addition to the terminal N atom of the vanadium(+5) nitride (^{Dipp}NacNac)V(N)(NTol₂) forming V(+3) silyl- and boryl-amido products with net 2-electron reduction of the metal.¹⁰ These reactions (like their iridium¹¹ (Si-H) and osmium¹² (B-Ph) nitride addition precedents) are mechanistically distinct from those reported here which involve N-N bond cleavage with overall 1-electron reduction of the hydrazide $N_{\alpha,\beta}$ atoms as opposed to the metal center.

Compound 5 does not undergo reaction with further equivs of 9-BBN. However, $Ti(N_2^{iPr}N){N(H)SiH_2Ph}(NPh_2)$ (2) consumed 1 12 equiv. of the borane dimer forming two new products, 13 $Ti(N_2^{iPr}N){(\mu-H)_2BC_8H_{14}}(NPh_2)$ (6, confirmed by X-ray crystallography in Fig. S4 of the SI) and the silylaminoborane 14 PhH₂SiN(H)BC₈H₁₄ (7, Scheme 1). This reaction is quantitative 15 when followed by ¹H NMR spectroscopy in C_6D_6 but the isolated 16 yields are modest owing to the difficult separation of 6 and 7. The reaction probably proceeds via a Ti-N/H-B exchange reaction 18 forming a transient hydride $Ti(N_2^{iPr}N)(H)(NPh_2)$ and 7, and then 19 trapping of the transient hydride by borane forming a borohydride ligand. Overall the sequential reaction of 1, first with PhSiH₃ and then 9-BBN, has resulted in total extrusion of N_{α} from the 22 Ti=NNPh₂ linkage and formation of 3 different element-nitrogen bonds solely by reaction with Si-H and B-H bonds.

> In principle, the new borylamide 5 could allow access to a borylimido analogue via elimination of Ph₂NH in presence of a suitable donor. However, heating in the presence of bipy gave no apparent reaction, and specifically did not lead to the target sixcoordinate $Ti(N_2^{iPr}N)(NBC_8H_{14})$ (bipy). We speculated that a more sterically crowded/higher coordination number metal center might facilitate such a reaction and therefore turned to $Cp*Ti \{MeC(N^{i}Pr)_{2}\}(NNR_{2}) (R = Me (8a) \text{ or } Ph (8b)).$ Compound 8a undergoes a number of small molecule activation reactions, including reversible 1,2-Si–H bond addition to Ti= N_{α} , but without cleavage of the N_{α} - N_{β} bond.⁵

Scheme 2. Reactions of $Cp^{Ti}{MeC(N^{i}Pr)_{2}}(NNR_{2})$ (R = Me (8a) or Ph (8b)) with pinacol borane and 9-BBN.

Reaction of 8a with 1 equiv. of pinacol borane (HBPin) gave irreversible 1,2-addition of B–H to the Ti= N_{α} bond to form the borylhydrazido-hydride 9 (Scheme 2) which was isolated and crystallographically characterized (Fig. 3). Compound 9 is

analogous to the reaction intermediate Int3 (Fig. 2) shown by DFT to preceed N_{α} -N_b bond cleavage en route to **2**. Although **9** is stable for weeks both in solution and the solid state at RT, upon heating to 70 °C in C₆D₆ decomposition occurs to a mixture of unidentified products. Compound 9 represents only the second fully authenticated B-H bond 1,2-addition product of a transition metal imide or hydrazide, the first being very recently reported for a rare terminal scandium imide.⁷

Reaction of 8a with 0.5 equiv of 9-BBN dimer in C₆D₆ at RT gave ca 50% conversion of the titanium complex and all of the borane to a 1:1 mixture of two boron-containing products as well as H₂ (as judged by a ¹H NMR singlet at 4.46 ppm) according to NMR spectroscopy. Scaling up the reaction with 1 equiv. of 9-BBN dimer gave quantitative conversion of both starting materials to the borylimide $Cp*Ti\{MeC(N^{1}Pr)_{2}\}(NBC_{8}H_{14})$ (10) and the aminoborane Me₂NBC₈H₁₄ (**11a**)¹³ which was separated from **10** by careful vacuum sublimation. Compound 8b also reacted quantitatively with 9-BBN dimer in C₆D₆ at 60 °C to form 10 and $Ph_2NBC_8H_{14}$ (11b),¹⁴ together with H₂. It was not possible to fully separate 11b from 10 on scale-up. The lower volatility of the aminoborane led to longer sublimation times and/or higher temperatures, giving thermal degradation of 10.

Displacement Figure 3. ellipsoid plot of $Cp*Ti{MeC(N^{i}Pr)_{2}(H){N(NMe_{2})BPin}}$ top) (9, and $Cp*Ti{MeC(N'Pr)_2}(NBC_8H_{14})$ (10, bottom).

The solid state structure of 10 is shown in Fig. 3 and confirms the formation of the new borylimido ligand. Terminal transition metal borylimides are extremely rare and there are no established synthetic routes.^{9a, 15} Only one example has (very recently) been reported for Group 4. this being Mindiola's Ti(NBEt₂)(NTol₂){HC(C^tBuNDipp)₂} prepared from the corresponding parent imide (Ti=NH functional group) and 2 equivs. NaHBEt₃, potentially *via* a nitrido intermediate.^{15c} The Ti(1)-N(1) bond length of 1.731(3) Å in **10** is identical within error to the Ti=NR distances in 8a (1.723(2) Å) and 8b (1.734(2) Å) and their xylylimido analogue (1.738(2) Å) all of which have formal Ti=N triple bonds ($\sigma^2 \pi^4$). In addition, the N(1)-B(1) distance of 1.402(4) Å is typical¹⁶ of species of the type R_2N -BR'₂ which have significant N=B double bond character via $N_{2p} \rightarrow B_{2p} \pi$ donation. Molecular orbital and NBO analyses of the DFT structure of 10 support this interpretation (Figs. S5 and S6 of the SI) by finding two Ti–N π -bonding interactions, one of which is significantly stabilized by delocalization into the otherwise vacant 2p AO of B(1) oriented perpendicular to the N(1)B(1)C(1)C(2) plane.

The conversion of a terminal hydrazide to a borylimide is a previously unknown reaction. Mechanistically, based on the other observations reported above, we propose that this proceeds first of all via 1,2-B–H addition to Ti= N_{α} to form an intermediate analogous to 9. Hydride transfer to the N_{α} atom and reductive N_{α} -N_b would bond cleavage then form $Cp*Ti\{MeC(N^{i}Pr)_{2}\}\{N(H)BC_{8}H_{14}\}(NR_{2})$ (10_Int), analogous to 5. Subsequent 1,2-elimination of R₂NH from 10_Int would form 10 and Ph₂NH (Ph₂NH does not react with 10, consistent with this hypothesis). An independent control experiment confirmed that Ph2NH and 9-BBN react quantitatively at 60 °C in the presence of 10 to form H_2 and 11b. -

Compounds **8a,b** are prepared from Cp*Ti{MeC(NⁱPr)₂}(N^tBu) by protonolysis (ⁱBuNH₂ elimination) using the appropriate hydrazine. In a similar manner, the reaction of **10** with 1 equiv. Ph₂NNH₂ in C₆D₆ quantitatively re-formed **8b** and the aminoborane H₂NB₈H₁₄ (**12**,¹⁷ Scheme 2; a corresponding reaction was observed for Me₂NNH₂ but was less clean). Overall, the reaction sequence in Scheme 2 converting **8b** into **10** and then back again may be viewed as the titanium-mediated reduction of Ph₂NNH₂ with 9-BBN dimer to form H₂, H₂NC₈H₁₄ and Ph₂NBC₈H₁₄. This is a new reaction of disubstituted hydrazines and boranes which usually undergo dehydrogenative N–B bond coupling without N–N bond cleavage.¹⁸

In summary we have reported the first examples of the Si–H or B–H induced reductive cleavage of a hydrazide N–N bond at a single metal center. These reactions can ultimately result in complete N_{α} or N_{β} atom transfer to substrate (i.e., formation of 7, **11** and **12**), and encompasses the overall reduction of R₂NNH₂ with 9-BBN to the corresponding borylamines R₂NB₈H₁₄ (R' = Ph or H) and H₂, a new type of dehydrogenative coupling reaction. Further work is ongoing to determine the mechanistic details, scope and further potential of this and other borylimide-mediated dehydrogenative coupling reactions which are beyond the scope of this preliminary communication.

ASSOCIATED CONTENT

Supporting Information

Synthetic procedures, characterizing data, crystallographic data in CIF format, further computational details, and geometries of all the optimized structures as a single .xyz file. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author:

philip.mountford@chem.ox.ac.uk. eric.clot@umontpellier.fr

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We thank the University of Oxford for support.

REFERENCES

- 1. Walsh, P. J.; Carney, M. J.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 6343.
- 2 (a) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794; (b) Banerjee, S.; Odom, A. L. Organometallics 2006, 25, 3099; (c) Dissanayake, A. A.; Odom, A. L. Chem. Commun. 2012, 48, 440; (d) Herrmann, H.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Angew. Chem. Int. Ed. 2007, 46, 8426; (e) Gehrmann, T.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Angew. Chem. Int. Ed. 2009, 48, 2152; (f) Gehrmann, T.; Kruck, M.; Wadepohl, H.; Gade, L. H. Chem. Commun. 2012, 48, 2397; (g) Gehrmann, T.; Scholl, S. A.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Chem. Eur. J. 2012, 18, 3925; (h) Blake, A. J.; McInnes, J. M.; Mountford, P.; Nikonov, G. I.; Swallow, D.; Watkin, D. J. J. Chem. Soc., Dalton Trans. 1999, 379; (i) Selby, J. D.; Manley, C. D.; Feliz, M.; Schwarz, A. D.; Clot, E.; Mountford, P. Chem. Commun. 2007, 4937; (j) Schofield, A. D.; Nova, A.; Selby, J. D.; Manley, C. D.; Schwarz, A. D.; Clot, E.; Mountford, P. J. Am. Chem. Soc. 2010, 132, 10484; (k) Tiong, P. J.; Schofield, A. D.; Selby, J. D.; Nova, A.; Clot, E.; Mountford, P. Chem. Commun. 2010, 46, 85; (1) Schofield, A. D.; Nova, A.; Selby, J. D.; Schwarz, A. D.; Clot, E.; Mountford, P. Chem. Eur. J. 2011, 17, 265; (m) Tiong, P. J.; Nova, A.; Clot, E.; Mountford, P. Chem. Commun. 2011, 47, 3147; (n) Schwarz, A. D.; Onn, C. S.; Mountford, P. Angew. Chem. Int. Ed. 2012, 51, 12298.
- (a) Duncan, A. P.; Bergman, R. G. *The Chemical Record* 2002, 2, 431; (b) Hazari, N.; Mountford, P. *Acc. Chem. Res.* 2005, *38*, 839; (c) Fout, A. R.; Kilgore, U. J.; Mindiola, D. J. *Chem. Eur. J.* 2007, *13*, 9428.
- 4. Schwarz, A. D.; Nova, A.; Clot, E.; Mountford, P. *Chem. Commun.* **2011**, *47*, 4926.
- 5. Tiong, P. J.; Nova, A.; Schwarz, A. D.; Selby, J. D.; Clot, E.; Mountford, P. *Dalton Trans.* **2012**, *41*, 2277.
- (a) Sweeny, Z. K.; Polse, J. L.; Bergman, R. G.; Andersen, R. A. *Organometallics* 1999, 18, 5502; (b) Hanna, T. E.; Lobkovsky, E.; Chirik, P. J. *Inorg. Chem.* 2007, 46, 2359.
- Chu, J.; Han, X.; Kefalidis, C. E.; Zhou, J.; Maron, L.; Leng, X.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 10894.
- (a) MacKay, B. A.; Munha, R. F.; Fryzuk, M. D. J. Am. Chem. Soc. 2006, 128, 9472; (b) Hirotsu, M.; Fontaine, P. P.; Epshteyn, A.; Zavalij, P. Y.; Sita, L. R. J. Am. Chem. Soc. 2007, 129, 9284; (c) Semproni, S. P.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2011, 133, 10406.
- (a) Fryzuk, M. D.; MacKay, B. A.; Johnson, S. A.; Patrick, B. O. *Angew. Chem. Int. Ed.* **2002**, *14*, 3709; (b) MacKay, B. A.; Johnson, S. A.; Patrick, B. O.; Fryzuk, M. D. *Can. J. Chem.* **2005**, *83*, 315; (c) Semproni, S. P.; Chirik, P. J. *Eur. J. Inorg. Chem.* **2013**, 3907.
- Thompson, R.; Tran, B. A.; Ghosh, S.; Chen, C.-H.; Pink, M.; Gao, X.; Carroll, P. J.; Baik, M.-H.; Mindiola, D. J. *Inorg. Chem.* 2015, 54, 3068.
- 11. Sieh, D.; Schoffel, J.; Burger, P. Dalton Trans. 2011, 40, 9512.
- 12. Creview, T. J.; Mayer, J. M. Angew. Chem. Int. Ed. 1998, 37, 1891.
- 13. Komoroski, L.; Meller, A.; Niedenzu, K. Inorg. Chem. 1990, 29, 538.
- 14. Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B.; Procopiou, P. A. Organometallics 2007, 26, 4076.
- (a) Danopoulos, A. A.; Redshaw, C.; Vaniche, A.; WIlkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. *Polyhedron* **1993**, *12*, 1061;
 (b) Weber, K.; Korn, K.; Schorm, A.; Kipke, J.; Lemke, M.; Khvorost, A.; Harms, K.; Sundermeyer, J. *Z. Anorg. Allg. Chem.* **2003**, *629*, 744; (c) Thompson, R.; Chen, C.-H.; Pink, M.; Wu, G.; Mindiola, D. J. *J. Am. Chem. Soc.* **2014**, *136*, 8197.
- Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem. Inf. Comput. Sci. 1996, 36, 746 (The UK Chemical Database Service: CSD version 5.35 updated May 2015).
- 17. Köster, R.; Seidel, G. Liebigs Ann. Chem. 1977, 1837.
- Johnson, H. C.; Hooper, T. N.; Weller, A. S. Top. Organomet. Chem. 2015, 49, 153.

