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2-Nitroenamines serve as versatile intermediates in organic
synthesis (Scheme 1).1–3 Some bioactive compounds including
the anti-ulcer drugs Nizatidine4 and Ranitidine,5 as well as an
insecticide family6 possess a nitroenamine motif. Nucleophilic sub-
stitution of dialkylamino groups with activated arenes or aromatic
heterocycles,7 enolates,8 amines,9 hydroxide10 and Grignard
reagents11 gives rise to various nitroalkene derivatives. As such,
nitroenamines have been used as convenient precursors for 1,2-
aminoalcohols, which have been employed in total syntheses of
several natural compounds, such as (�)-detoxinine,3a (+)-castano-
spermine3b and (�)-rosmarinecine.3c Recently, an asymmetric
synthesis of 1,2-diamines based on organocatalytic addition of
aldehydes to 2-nitroenamines was reported.2

Several types of nitroenamines can be outlined depending on
their substitution pattern. b-Substituted species 1 can be readily
synthesized by amination of the corresponding a-nitroketones
[Scheme 2, (1)].12 In contrast, the synthesis of b-unsubstituted
nitroenamines 1 (R2 = H) requires other paths, since 2-nitroaldehy-
des are unstable and cannot be isolated.9 General methods for the
synthesis of 2-nitroenamines 1 (R2 = H) employ primary aliphatic
nitro compounds 2 (ANC) as precursors [Scheme 2, (2)].13–19 How-
ever, for aliphatic substituents R1 (R1 = Me, Et, etc.) the yields
decrease dramatically and an excess of the ANC is necessary.13–15
This makes these procedures only applicable to the simplest and
commercially available ANCs (nitromethane,14 nitroethane15 and
so forth), or activated ANCs (a-nitroketones16 or nitroacetic acid
esters13). Considering the aforementioned facts, an efficient proce-
dure employing functionalized and inactivated ANCs is needed.

Synthesis of nitroenamines 1

We assumed that higher nitroalkanes could be involved in
nitroenamine synthesis by employing silyl nitronates 3. The latter
have proved themselves as useful synthetic equivalents of ANCs 2,
which react with greater selectivity under milder conditions.20

Employment of a silyl group avoids the occurrence of mobile
protons, thus making the crucial C–C bond forming step 3 ? 4
irreversible (Table 1).21 The presented strategy for the synthesis
of nitroenamines 1 involves three steps. In the first step (i) ANC
2 is converted into silyl nitronate 3 via a literature procedure,22 fol-
lowed by treatment at �78 �C with dimethylformamide dimethyl
acetal (DMFDMA) to give intermediate hemiaminal 4 (step ii).
Upon warming, the latter undergoes elimination of methanol
leading to the target nitroenamine 1 (step iii).23

The data presented in Table 1 reveal that high yields can be
achieved for a wide variety of nitroenamines 1. In most cases there
was no need to exceed a stoichiometric amount of reagents.
Separation of target 1 from the by-product salt [DBUH]+Cl� was
accomplished by ether extraction (Et2O or t-BuOMe). For large
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Scheme 1. Nitroenamines as biologically active compounds and useful intermedi-
ates in organic syntheses.
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Table 1
Synthesis of nitroenamines 1 via silylation of ANCs 2
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Entry ANC R Yield of 1a (%) Conversion of 2b (%)

1 2a CH2CH2CO2Me 92 100
2c 2a CH2CH2CO2Me 80 100
3 2b CH2CH2C(O)Me 85 100
4 2c CH2CH(Me)CO2Me 85 90
5 2d CH(Me)CH2CO2Me 68 100
6d 2d CH(Me)CH2CO2Me n/d e 40
7 2e 1-Cyclohexenyl 45 65
8 2f H 75 n/d
9 2g Me 95 n/d
10 2h Et 90 100
11 2i Ph 78 100
12 2j CH2Ph 80 (35f) 96
13 2k CH(Ph)CH2CO2Et 41 n/d
14 2l CH2CH2Ph 75 100

i: DBU (1.05 equiv), TMSCl (1.1 equiv), �15 �C ? rt, 40 min.
ii: DMFDMA (1.1 equiv), �78 �C, 1 h (for 1k: 2.2 equiv).
iii:�78 �C ? rt, overnight [for 1d: DBU (1 equiv), TMSCl (1 equiv), then �78 �C ? rt,
overnight].

a Isolated yield.
b Determined by integration of the 1H NMR spectra.
c TBSCl was used instead of TMSCl.
d Without addition of DBU/TMSCl at step iii.
e Not determined.
f Yield after purification by column chromatography on alumina.
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Scheme 2. Existing approaches for the synthesis of b-nitroenamines. Reagents and
conditions: X = OR: (a) Me2NCH(OMe)2, Temp (�C) (Refs. 16,17); (b) amine, HC(OR)3,
p-TsOH, Temp (�C) (Refs. 14,15,18). X = SR: (c) [Me2NCHSMe]+I�, KF, TEBAC, CH2Cl2,
rt (Ref. 19).
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scale preparations (36�50 mmol of ANC 2), Soxhlet extraction was
used. It is worthy of note that purification of products 1 via aque-
ous extraction or column chromatography was not efficient and led
to substantial loss of the target enamines 1 (e.g., see Table 1, entry
12), due to their high polarity and hydrolytic lability.9 If the nitro-
enamine possesses a high melting point, the separation of 1 and 2
was easily performed by recrystallization. Otherwise, full conver-
sion of the initial ANC 2 was preferable.

The structures of the obtained enamines 1 were supported by
1H and 13C NMR data, as well as by elemental analysis or HRMS
data. All nitroenamines 1 in chloroform solutions were observed
as (E)-isomers (NOESY data). This is in accordance with known
rules for E/Z-isomerism in similar substances.9,24

For the synthesis of enamines 1 more stable TBS-nitronates can
also be used (Table 1; cf. entries 1 and 2). However, branching at
the b-position of the carbon skeleton in ANC 2 (substrates 2d,e,k)
significantly diminished the conversion of ANC 2 and consequently
the yield of products 1; for example, for ANC 2d (Table 1, entry 6)
the conversion was 40%.25 Fortunately, the addition of DBU
(10 mol %) to the reaction mixture increased the conversion of 2d
from 40% to 90%. An even better effect was achieved by the addi-
tion of 1 equiv of a mixture of DBU/TMSCl, capable of trapping
the methanol. Thus the conversion of ANC 2d was increased to
100% (Table 1, cf. entries 5 and 6). However, for ANC 2k, this pro-
cedure was not successful. For the transformation of 2k ? 1k the
use of a twofold excess of DMFDMA was the method of choice
(see Table 1, entry 13).

Studies on the mechanism

It was interesting to elucidate in more detail the mechanism of
nitroenamine 1 formation. To the best of our knowledge, there is
only one known example of a similar process [coupling of silyl nitr-
onates with a hemiaminal (TMSOCH2NMe2)].26 It turned out that
coupling of DMFDMA with isolated silyl nitronates 3h or 30h [sim-
ulation of step (ii), see Table 1] did not lead to enamine 1h, while
hemiaminal 4h was observed as the major product (Scheme 3).
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Moreover, while the synthesis of nitroenamine 1h by the standard
procedure was completed within 24 h (Table 1, entry 10), conver-
sion of pure silyl nitronate 3h via the reaction with DMFDMA over
24 h exposure was only 76%. Several days were needed to reach
quantitative conversion. The structure of hemiaminal 4h was con-
firmed from 1H, 13C, COSY and HSQC data. Unfortunately, we did
not obtain accurate elemental analysis or HRMS data due to the
hydrolytic lability of the hemiaminal.

Due to the hydrolytic instability of TMS-nitronate 3h, further
investigations were performed on its TBS-analogue 30h. Several
substances, including DBU, its salt [DBUH]+Cl� and chlorosilanes
SiCl (Si = SiMe3, SiMe2t-Bu) were tested as catalysts for the reaction
of 30h with DMFDMA (see Supplementary data for details). Pre-
sumably, activation of both the reaction components was neces-
sary for the successful synthesis of 1 (Scheme 4). The function of
hydrogen bond donors ([DBUH]+Cl�, MeOH) consists of the activa-
tion of DMFDMA by removal of the MeO group.27,28 Lewis bases
(e.g. DBU) activate the silyl nitronate 3 by its equilibrium conver-
sion into nitronate anion A. As mentioned before, when silyl nitro-
nate 3h was prepared in situ, a high yield of 1h was observed (see
Table 1). But in order to reach a similar yield with the isolated nitr-
onate, simultaneous use of both DBU and its salt [DBUH]+Cl� was
required. Thus, in the presented one-pot procedure for the synthe-
sis of enamines 1 from ANC 2, the in situ generation of silyl nitro-
nates 3 is important, since the by-product ([DBUH]+Cl�) catalyses
step ii (Table 1), i.e., C–C bond formation (3 ? 4). Obviously, the
nitronate anion A can be generated by treating ANC 2 with DBU.
However, performing the reaction of 2a and DMFDMA mediated
by DBU (10 mol %) and [DBUH]+Cl� (1 equiv) without prior silyla-
tion did not give enamine 1a in a yield higher than 60%. Moreover,
in the latter case, the use of a catalytic amount of [DBUH]+Cl� led to
prolonged (2 or more days) reaction times.29

Similarly, the use of both DBU and [DBUH]+ appeared to be nec-
essary for successful elimination of methanol from intermediate
hemiaminal 4. Additionally, in another experiment, silyl nitronate
3h was obtained in situ from ANC 2h by treatment with n-BuLi and
TMSCl.30 After addition of DMFDMA to the reaction mixture, rapid
and quantitative conversion of 3h into hemiaminal 4h was
2h

1) n-BuLi 
2) Me3SiCl

- 78 °C to r.t.

3h

DMFDMA,
r.t.

4h
98% (1H NMR)

dr = 1.3:1

Et

N
OSiMe3

OH
Et

NO2

Et

NO2Me2N

OMe

Scheme 5. Synthesis of hemiaminal 4h from 2h.
observed (according to 1H NMR) (Scheme 5). Presumably, in this
case, the activation of DMFDMA is due to the Lewis acidity of LiCl.

In conclusion, a new and efficient procedure for the synthesis of
nitroenamines 1 from ANCs 2 through in situ formed silyl nitro-
nates 3 is described. The mechanism of the reaction is elucidated.
Detailed investigations revealed the roles and interactions of the
reagents, intermediates and by-products.
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