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Introduction

The alarming rates of emerging and reemerging micro-
bial threats coupled with the rapid development of 
multi-drug-resistant microbial pathogens are major 
escalating concerns to the public health, particularly 
during the past decades1,2. Despite a large number of 
antibiotics and chemotherapeutics available for medical 
use, at the same time, the emergence of old and new anti-
biotic resistance created revealed a substantial medical 
need for new classes of antimicrobial agents3. There is no 
doubt that the existing arsenal of antimicrobial agents we 
have in hand for the treatment of infectious diseases is 
insufficient to protect us over the long term4–7. Thus there 
is a need to search for new and efficacious antimicrobial 
agents8,9. Nevertheless, there is a continuing effort among 
the scientists especially in the pharmaceutical industry 
to develop new antimicrobial agents for the treatment of 
resistant infections10.

The tricyclic carbazole nucleus is an important type 
of nitrogen-containing aromatic heterocyclic compound 

and possesses desirable electronic and charge-transport 
properties, as well as large p-conjugated system, and 
the various functional groups are easily introduced into  
the structurally rigid carbazole ring. These character-
istics result in the extensive potential applications of 
carbazole-based derivatives in the field of chemistry and 
medicinal chemistry11.

Carbazole and its derivatives are a considerable 
structural unit which have been isolated from differ-
ent sources such as some genera of higher plants, blue 
green algae, actinomycetes and filamentous fungi12–14. 
It is known that natural origin carbazoles especially for 
those complex carbazoles fusing with a heterocyclic frag-
ment show well-known pharmacological activities15,16. 
Accordingly, to the present, a large number of natural 
and synthetic carbazole derivatives have been reported to  
exhibit diverse biological activities such as antituber-
culosis17, antiproliferative14, antibacterial18,19, antiviral20,  
antifungal21,22, antitumour23, anti-inflammatory24, anti-
oxidant12 and antihistaminic activities25.
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It is known that the phenol and phenol derivatives are 
in use as potential antimicrobial agent26. Several studies 
demonstrated the antimicrobial activity of phenols and/
or phenolic compounds making them a good alterna-
tive to antibiotics and chemical preservatives27. Also the 
alkoxy and aryloxy moiety, which is containing phenol 
residue, has low toxicity and active against the growth of 
various yeasts and bacteria28–30.

In the view of these observations, we designed and 
synthesised carbazole-based aryloxy compounds as 
potential antimicrobial agent.

Experimental

Chemistry
All chemicals were purchased from Sigma-Aldrich 
Chemical Co. All melting points (m.p.) were determined 
by Electrothermal 9100 digital melting point apparatus 
and are uncorrected. Spectroscopic data were recorded 
with the following instruments: 1H-NMR, Bruker 400 MHz 
spectrometer; 13C-NMR, Bruker 100 MHz spectrometer; 
and MS-FAB, VG Quattro Mass spectrometer. Elemental 
analyses were performed on a Perkin Elmer EAL 240 
elemental analyzer.

General procedure for the synthesis of the compounds
2-Chloro-N-(9-ethyl-9H-carbazole-3-yl)acetamide (1)
9-Ethyl-9H-carbazole-3-amine (0.05 mol) and triethylam-
ine (0.06 mol) were dissolved in THF with a constant stir-
ring at 0–5°C, then chloroacetyl chloride (0.06 mol) was 
added dropwise gradually to this solution. The reaction 
mixture thus obtained was further agitated for 1 h at room 
temperature. After the solvent was evaporated to dryness, 
the solid was filtered and washed with water.

N-(9-Ethyl-9H-carbazole-3-yl)-2-(substituted phenoxy)
acetamide derivatives (2a-n)
A mixture of 2-chloro-N-(9-ethyl-9H-carbazole-3-yl)
acetamide (1) (1.65 mmol, 0.5 g), the appropriate phenol 

derivatives (1.98 mmol) and K
2
CO

3
 (1.98 mmol, 0.3 g) in 

acetonitrile was refluxed for 6 hours. The cooled mixture 
was filtered and recrystallised from alcohol. Some char-
acteristics of the compounds are given in Table 1.

N-(9-Ethyl-9H-carbazole-3-yl)-2-(o-tolyloxy)acetamide (2a)
IR (KBr) ν

max
 (cm−1): 3332 (amide N-H), 3050 (aromatic 

C-H), 2922, 2850 (aliphatic C-H), 1683 (amide C=O), 
1604, 1556, 1442 (C=C), 1000–1300 (C-N), 1245 (C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t J = 6 Hz, 

CH
3
), 2.29 (3H, s, Ar-CH

3
), 4.43 (2H, q J = 7 Hz, N-CH

2
), 

4.75 (2H, s, O-CH
2
), 6.91–7.60 (9H, m, Ar-H), 8.07  

(H, d, J=8 Hz, carbazole C
5
-H), 8.44 (H, s, carbazole C

4
-H), 

10.04 (H, s, NH).
13C NMR (100 MHz, DMSO-d

6
): 13.65 (CH

3
), 16.16 

(CH
3
), 36.95 (CH

2
), 67.52 (CH

2
), 108.98 (CH), 109.16 (CH), 

111.50 (CH), 111.88 (CH), 118.57 (CH), 119.39 (CH), 
120.19 (CH), 120.85 (CH), 125.78 (CH), 130.23 (2C), 130.58 
(2CH), 136.39 (2C), 139.96 (2C), 156.10 (C), 166.27 (C).

For C
23

H
22

N
2
O

2
 calculated: 77.07% C, 6.19% H, 7.82% 

N; found: 77.02% C, 6.18% H, 7.80% N.
MS (FAB) [M+1]+: m/z 359

N-(9-Ethyl-9H-carbazole-3-yl)-2-(m-tolyloxy)acetamide (2b)
IR (KBr) ν

max
 (cm−1): 3299 (amide N-H), 3030 (aromatic 

C-H), 2904 (aliphatic C-H), 1665 (amide C=O), 1610, 1557 
(C=C), 1000–1300 (C-N), 1247 (C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 8 Hz, CH

3
), 

2.31 (3H, s, Ar-CH
3
), 4.43 (2H, q, J = 7 Hz, N-CH

2
), 4.71 (2H, 

s, O-CH
2
), 6.85–7.65 (9H, m, Ar-H), 8.07 (H, d, J = 8 Hz, car-

bazole C
5
-H), 8.44 (H, s, carbazole C

4
-H), 10.06 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.65 (CH

3
), 21.10 

(CH
3
), 36.95 (CH

2
), 67.20 (CH

2
), 108.94 (CH), 109.16 

(CH), 111.62 (CH), 115.47 (CH), 118.57 (3CH), 121.80 
(C), 125.78 (C), 129.22 (2CH), 130.17 (2C), 136.42 (CH), 
138.97 (2C), 139.96 (CH), 157.88 (C), 166.20 (C).

For C
23

H
22

N
2
O

2
 calculated: 77.07% C, 6.19% H, 7.82% 

N; found: 77.04% C, 6.19% H, 7.82% N.
MS (FAB) [M+1]+: m/z 359

Table 1. Some characteristics of the synthesised compounds.
Compound Ar Yield (%) Melting point (°C) Molecular formula Molecular weight
2a 2-Methylphenyl 70 146 C

23
H

22
N

2
O

2
358

2b 3-Methylphenyl 72 173 C
23

H
22

N
2
O

2
358

2c 4-Ethylphenyl 75 166 C
24

H
24

N
2
O

2
372

2d 2-Chlorophenyl 80 159 C
22

H
19

ClN
2
O

2
378.5

2e 4-Chlorophenyl 81 186 C
22

H
19

ClN
2
O

2
378.5

2f 2-Nitrophenyl 73 198 C
22

H
19

N
3
O

4
389

2g 3-Nitrophenyl 75 178 C
22

H
19

N
3
O

4
389

2h 4-Nitrophenyl 80 175 C
22

H
19

N
3
O

4
389

2i 2,3-Dimethylphenyl 76 165 C
24

H
24

N
2
O

2
372

2j 3,4-Dimethylphenyl 72 191 C
24

H
24

N
2
O

2
372

2k 2,4-Dimethylphenyl 74 146 C
24

H
24

N
2
O

2
372

2l 3,5-Dimethylphenyl 75 178 C
24

H
24

N
2
O

2
372

2m 1,1′-Biphenyl]-4-yl 70 183 C
28

H
24

N
2
O

2
420

2n Quinolin-8-yl 71  85 C
25

H
21

N
3
O

2
395
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N-(9-Ethyl-9H-carbazole-3-yl)-2-(4-ethylphenoxy) 
acetamide (2c)
IR (KBr) ν

max
 (cm−1): 3354 (amide N-H), 3042, 3015  

(aromatic C-H), 2987, 2889 (aliphatic C-H), 1691  
(amide C=O), 1554, 1486 (C=C), 1000–1300 (C-N), 1230 
(C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.15 (3H, t, J = 7.4,  

Hz, C-CH
2
CH

3
) 1.31 (3H, t, J = 7.1 Hz, CH

3
), 2.31 (2H, 

q, J = 7 Hz C-CH
2
), 4.43 (2H, q, J = 7.2 Hz, N-CH

2
), 4.71  

(2H, s, O-CH
2
), 6.96–7.65 (9H, m, Ar-H), 8.07 (H, d, J = 7.5 

Hz, carbazole C
5
-H), 8.44 (H, s, carbazole C

4
-H), 10.06 

(H, s, NH).
13C NMR (100 MHz, DMSO-d

6
): 13.82 (CH

3
), 16.8 

(CH
3
), 28.0 (CH

2
), 37.09 (CH

2
), 68.35 (CH

2
), 109.63 

(CH), 111.51 (2CH), 115.72 (CH), 119.75 (CH), 120.94 
(CH), 121.76 (2CH), 123.78 (C), 124.02 (CH), 128.81 (C), 
132.42 (2CH), 134.34 (C), 137.17 (C), 141.63 (2C), 156.75 
(C), 167.77 (C).

For C
24

H
24

N
2
O

2
 calculated: 77.39% C, 6.49% H, 7.52% 

N; found: 77.39% C, 6.47% H, 7.56% N.
MS (FAB) [M+1]+: m/z 373

N-(9-Ethyl-9H-carbazole-3-yl)-2-(2-chlorophenoxy) 
acetamide (2d)
IR (KBr) ν

max
 (cm−1): 3413 (amide N-H), 3012 (aromatic 

C-H), 2989, 2876 (aliphatic C-H), 1698 (amide C=O), 
1610, 1564 (C=C), 1000–1300 (C-N), 1218 (C-O-C),

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t,  

J = 6 Hz, CH
3
), 4.43 (2H, q, J = 6 Hz, N-CH

2
), 4.88 (2H, s,  

O-CH
2
), 7.01–7.60 (9H, m, Ar-H), 8.08 (H, d, J = 8  

Hz, carbazole C
5
-H), 8.45 (H, s, carbazole C

4
-H), 10.14  

(H, s, NH).
13C NMR (100 MHz, DMSO-d

6
): 13.65 (CH

3
), 36.95 

(CH
2
), 67.80 (CH

2
), 109.06 (2CH), 109.16 (CH), 111.59 

(CH), 114.11 (2C), 118.58 (CH), 120.20 (2C), 122.07 (CH), 
125.81 (2CH), 128.25 (CH), 130.06 (CH), 130.22 (C), 
136.38 (C), 139.97 (CH), 153.51 (C), 165.50 (C).

For C
22

H
19

ClN
2
O

2
 calculated: 69.75% C, 5.05% H, 7.39% 

N; found: 70.02% C, 5.03% H, 7.41% N.
MS (FAB) [M+1]+: m/z 379

N-(9-Ethyl-9H-carbazole-3-yl)-2-(4-chlorophenoxy) 
acetamide (2e)
IR (KBr) ν

max
 (cm−1): 3249 (amide N-H), 3079 (aromatic 

C-H), 2908 (aliphatic C-H), 1683 (amide C=O), 1612, 1594 
(C=C), 1000–1300 (C-N), 1274 (C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 8 Hz, 

CH
3
), 4.43 (2H, q, J = 7 Hz, N-CH

2
), 4.75 (2H, s, O-CH

2
), 

7.09–7.61 (9H, m, Ar-H), 8.07 (H, d, J = 8 Hz, carbazole 
C

5
-H), 8.43 (H, s, carbazole C

4
-H), 10.11 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.65 (CH

3
), 36.95 

(CH
2
), 67.42 (CH

2
), 108.95 (CH), 109.16 (2CH), 112.05 

(2C), 116.53 (C), 118.58 (CH), 120.17 (2C), 124.84 (C), 
129.24 (2CH), 130.10 (CH), 136.44 (2CH), 139.96 (2CH), 
156.77 (C), 165.83 (C).

For C
22

H
19

ClN
2
O

2
 calculated: 69.75% C, 5.05% H, 7.39% 

N; found: 69.78% C, 5.06% H, 7.40% N.
MS (FAB) [M+1]+: m/z 379

N-(9-Ethyl-9H-carbazole-3-yl)-2-(2-nitrophenoxy) 
acetamide (2f)
IR (KBr) ν

max
 (cm−1): 3317 (amide N-H), 3100 (aromatic 

C-H), 2980 (aliphatic C-H), 1687 (amide C=O), 1525, 1442 
(C=C), 1000–1300 (C-N), 1239 (C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.30 (3H, t, J = 8 Hz, 

CH
3
), 4.42 (2H, q, J = 8 Hz, N-CH

2
), 4.99 (2H, s, O-CH

2
), 

7.18–7.96 (9H, m, Ar-H), 8.08 (H, d, J = 8 Hz, carbazole 
C

5
-H), 8.44 (H, s, carbazole C

4
-H), 10.10 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.64 (CH

3
), 36.95 

(CH
2
), 67.87 (CH

2
), 109.11 (CH), 109.17 (C), 111.55 (C), 

115.44 (2C), 118.61 (2C), 121.20 (CH), 125.26 (CH), 125.84 
(2CH), 130.05 (2CH), 134.57 (CH), 136.42 (CH), 139.46 
(CH), 139.98 (CH), 150.92 (C), 165.04 (C).

For C
22

H
19

N
3
O

4
 calculated: 67.86% C, 4.92% H, 10.79% 

N; found: 67.85% C, 4.90% H, 10.75% N.
MS (FAB) [M+1]+: m/z 390

N-(9-Ethyl-9H-carbazole-3-yl)-2-(3-nitrophenoxy) 
acetamide (2g)
IR (KBr) ν

max
 (cm−1): 3440 (amide N-H), 3012 (aromatic 

C-H), 2980 (aliphatic C-H), 1695 (amide C=O), 1602, 
1543, 1551 (C=C), 1000–1300 (C-N), 1245 (C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J=8 Hz, 

CH
3
), 4.43 (2H, q, J = 8 Hz, N-CH

2
), 4.92 (2H, s, O-CH

2
), 

7.19–7.89 (9H, m, Ar-H), 8.08 (H, d, J = 8 Hz, carbazole 
C

5
-H), 8.43 (H, s, carbazole C

4
-H), 10.20 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.66 (CH

3
), 36.96 

(CH
2
), 67.46 (CH

2
), 108.99 (CH), 109.17 (CH), 109.52 

(2CH), 112.11 (C), 116.01 (C), 118.60 (CH), 120.18 (2C), 
121.91 (2C), 125.81 (CH), 130.02 (CH), 130.72 (CH), 136.48 
(CH), 139.97 (CH), 148.62 (CH), 158.43 (C), 165.47 (C).

For C
22

H
19

N
3
O

4
 calculated: 67.86% C, 4.92% H, 10.79% 

N; found: 67.81% C, 4.90% H, 10.78% N.
MS (FAB) [M+1]+: m/z 390

N-(9-Ethyl-9H-carbazole-3-yl)-2-(4-nitrophenoxy) 
acetamide (2h)
IR (KBr) ν

max
 (cm−1): 3298 (amide N-H), 3017 (aromatic 

C-H), 2980, 2875 (aliphatic C-H), 1669 (amide C=O), 
1556, 1510 (C=C), 1000–1300 (C-N), 1236 (C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J=8 Hz, 

CH
3
), 4.43 (2H, q, J = 8 Hz, N-CH

2
), 4.95 (H, s, O-CH

2
), 

7.19–8.42 (11H, m, Ar-H), 10.27 (H, s, NH).
13C NMR (100 MHz, DMSO-d

6
): 13.66 (CH

3
), 43.61 

(CH
2
), 67.42 (CH

2
), 109.00 (CH), 109.09 (CH), 109.18 

(CH), 111.60 (CH), 115.35 (C), 118.61 (C), 119.44 (CH), 
121.86 (CH), 125.81 (CH), 130.05 (CH), 130.29 (CH), 
136.45 (CH), 139.97 (2C), 141.22 (2C), 163.21 (CH), 164.21 
(C), 165.16 (C).

For C
22

H
19

N
3
O

4
 calculated: 67.86% C, 4.92% H, 10.79% 

N; found: 67.82% C, 4.89% H, 10.80% N.
MS (FAB) [M+1]+: m/z 390

N-(9-Ethyl-9H-carbazole-3-yl)-2-(2,3-dimethylphenoxy)
acetamide (2i)
IR (KBr) ν

max
 (cm−1): 3356 (amide N-H), 3059 (aro-

matic C-H), 2932, 2879 (aliphatic C-H), 1689 (amide 
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C=O), 1601, 1557, 1444 (C=C), 1000–1300 (C-N), 1215 
(C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 8 Hz, 

CH
3
), 2.16 (3H, s, Ar-CH

3
) 2.21 (3H, s, Ar-CH

3
), 4.42 (2H, 

q, J = 8 Hz, N-CH
2
), 4.66 (2H, s, O-CH

2
), 6.97–7.76 (8H, m, 

Ar-H), 8.04 (H, d, J = 8.2 Hz, carbazole C
5
-H), 8.42 (H, s, 

carbazole C
4
-H), 10.02 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.56 (CH

3
), 18.82 

(CH
3
), 19.65 (CH

3
), 35.54 (CH

2
), 67.12 (CH

2
), 108.92 

(CH), 110.16 (CH), 115.18 (2C), 113.51 (2C), 117.26 (CH), 
117.512 (CH), 121.18 (CH), 126.78 (CH), 128.67 (C), 132.54 
(CH), 135.40 (2C), 137.58 (CH), 140.94 (2CH), 155.45 (C), 
166.34 (C).

For C
24

H
24

N
2
O

2
 calculated: 77.39% C, 6.49% H, 7.52% 

N; found: 77.34% C, 6.48% H, 7.56% N.
MS (FAB) [M+1]+: m/z 373

N-(9-Ethyl-9H-carbazole-3-yl)-2-(3,4-dimethylphenoxy)
acetamide (2j)
IR (KBr) ν

max
 (cm−1): 3346 (amide N-H), 3013  

(aromatic C-H), 2984, 2750 (aliphatic C-H), 1687  
(amide C=O), 1650, 1556 (C=C), 1000–1300 (C-N), 1254 
(C-O-C),

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 8 Hz, 

CH
3
), 2.16 (3H, s, Ar-CH

3
) 2.21 (3H, s, Ar-CH

3
), 4.43 (2H, 

q, J = 8 Hz, N-CH
2
), 4.66 (2H, s, O-CH

2
), 6.77–7.65 (8H, m, 

Ar-H), 8.07 (H, d, J = 8.1 Hz, carbazole C
5
-H), 8.43 (H, s, 

carbazole C
4
-H), 10.02 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.66 (CH

3
), 18.42 

(CH
3
), 19.65 (CH

3
), 36.94 (CH

2
), 67.32 (CH

2
), 108.93 

(CH), 109.16 (CH), 111.58 (2C), 112.03 (2C), 116.16 (CH), 
118.57 (CH), 120.17 (CH), 125.78 (CH), 128.67 (C), 130.15 
(CH), 136.40 (2C), 137.28 (CH), 139.94 (2CH), 155.94 (C), 
166.34 (C).

For C
24

H
24

N
2
O

2
 calculated: 77.39% C, 6.49% H, 7.52% 

N; found: 77.35% C, 6.50% H, 7.53% N.
MS (FAB) [M+1]+: m/z 373

N-(9-Ethyl-9H-carbazole-3-yl)-2-(2,4-dimethylphenoxy)
acetamide (2k)
IR (KBr) ν

max
 (cm−1): 3381 (amide N-H), 3059 (aro-

matic C-H), 2927, 2874 (aliphatic C-H), 1694 (amide 
C=O), 1600, 1556, 1448 (C=C), 1000–1300 (C-N), 1224 
(C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 8 Hz, 

CH
3
), 2.21 (3H, s, Ar-CH

3
) 2.26 (3H, s, Ar-CH

3
), 4.43 (2H, 

q, J = 8.3 Hz, N-CH
2
), 4.70 (2H, s, O-CH

2
), 6.83–7.59 (8 H, 

m, Ar-H), 8.07 (H, d, J = 8 Hz, carbazole C
5
-H), 8.43 (H, s, 

carbazole C
4
-H), 10.01 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.66 (CH

3
), 16.11 

(CH
3
), 20.05 (CH

3
), 36.94 (CH

2
), 67.71 (CH

2
), 108.97 (C), 

109.16 (C), 111.53 (C), 111.87 (CH), 118.57 (2C), 119.39 
(2C), 120.19 (CH), 121.96 (CH), 125.78 (CH), 129.49 (CH), 
130.22 (CH), 131.29 (2CH), 136.37 (CH), 139.94 (CH), 
154.01 (C), 166.40 (C).

For C
24

H
24

N
2
O

2
 calculated: 77.39% C, 6.49% H, 7.52% 

N; found: 77.40% C, 6.51% H, 7.47% N.
MS (FAB) [M+1]+: m/z 373

N-(9-Ethyl-9H-carbazole-3-yl)-2-(3,5-dimethylphenoxy)
acetamide (2l)
IR (KBr) ν

max
 (cm−1): 3412 (amide N-H), 3053 (aromatic 

C-H), 2962, 2858 (aliphatic C-H), 1635 (amide C=O), 
1504, 1482 (C=C), 1000–1300 (C-N), 1287 (C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 8.2 Hz, CH

3
), 

2.26 (6H, s, 2CH
3
), 4.43 (2H, q, J = 8.1 Hz, N-CH

2
), 4.67 (2H, s, 

O-CH
2
), 6.64–7.65 (8H, m, Ar-H), 8.07 (H, d, J = 8 Hz, carba-

zole C
5
-H), 8.43 (H, s, carbazole C

4
-H), 10.02 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 13.66 (CH

3
), 21.05 

(2CH
3
), 36.95 (CH

2
), 67.17 (CH

2
), 108.94 (CH), 109.16 

(CH), 112.05 (CH), 112.46 (CH), 118.57 (2C), 119.54 (CH), 
120.16 (C), 122.77 (C), 125.78 (C), 130.17 (2CH), 136.42 
(2CH), 138.62 (CH), 139.96 (2C), 157.89 (C), 166.25 (C).

For C
24

H
24

N
2
O

2
 calculated: 77.39% C, 6.49% H, 7.52% 

N; found: 77.34% C, 6.46% H, 7.49% N.
MS (FAB) [M+1]+: m/z 373

N-(9-Ethyl-9H-carbazole-3-yl)-2-([1,1′-biphenyl]-4-yloxy)
acetamide (2m)
IR (KBr) ν

max
 (cm−1): 3346 (amide N-H), 3084 (aromatic 

C-H), 2978, 2880 (aliphatic C-H), 1673 (amide C=O), 
1650, 1589, 1442 (C=C), 1000–1300 (C-N), 1238 (C-O-C),

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 7.2 Hz, 

CH
3
), 4.44 (2H, q, J = 7.6 Hz, N-CH

2
), 4.80 (2H, s, O-CH

2
), 

7.14–7.67 (14H, m, Ar-H), 8.09 (H, d, J = 7.8 Hz, carbazole 
C

5
-H), 8.46 (H, s, carbazole C

4
-H), 10.20 (H, s, NH).

13C NMR (100 MHz, DMSO-d
6
): 14.24 (CH

3
), 37.95 

(CH
2
), 67.87 (CH

2
), 109.11 (CH), 109.17 (CH), 112.55 

(C), 116.44 (2C), 118.61 (2C), 121.20 (CH), 123.26 (CH), 
125.84 (2CH), 127.05 (2CH), 128.57 (CH), 129.42 (CH), 
130.46 (CH), 131.98 (CH), 134.92 (C), 137.04 (C), 141.04 
(2CH), 141.27 (2CH), 158.96 (C), 167.72 (C).

For C
28

H
24

N
2
O

2
 calculated: 79.98% C, 5.75% H, 6.66% 

N; found: 79.96% C, 5.76% H, 6.68% N.
MS (FAB) [M+1]+: m/z 421

N-(9-Ethyl-9H-carbazole-3-yl)-2-(quinolin-8-yloxy) 
acetamide (2n)
IR (KBr) ν

max
 (cm−1): 3411 (amide N-H), 3056 (aromatic 

C-H), 2987, 2850 (aliphatic C-H), 1659(amide C=O), 1652, 
1587, 1498 (C=C), 1000–1300 (C-N), 1247(C-O-C).

1H NMR (400 MHz, DMSO-d
6
): 1.31 (3H, t, J = 8, CH

3
), 

4.42 (2H, q, J = 8.3 Hz, N-CH
2
), 5.01 (2H, s, O-CH

2
),  

7.19–9.04 (13H, m, Ar-H), 10.65 (H, s, NH).
13C NMR (100 MHz, DMSO-d

6
): 13.65 (CH

3
), 18.52 

(CH
2
), 36.95 (CH

2
), 56.00 (CH), 70.12 (CH), 109.13 (CH), 

111.40 (C), 113.06 (C), 118.58 (2C), 118.93 (2C), 120.25 
(CH), 121.39 (CH), 125.83 (CH), 129.18 (CH), 130.24 
(2CH), 136.24 (CH), 136.39 (CH), 139.97 (CH), 140.05 
(CH), 149.55 (C), 154.21 (C), 166.40 (C).

For C
25

H
21

N
3
O

2
 calculated: 75.93% C, 5.35% H, 10.63% 

N; found: 75.92% C, 5.36% H, 10.60% N.
MS (FAB) [M+1]+: m/z 396

Antimicrobial activity
The antimicrobial activities of compounds (2a-n) were 
tested using the microbroth dilution method31. Tested 
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microorganism strains were Micrococcus luteus (NRLL 
B-4375), Bacillus subtilis (NRS-744), P. aeroginosa 
(ATCC-254992), Staphylococcus aureus (NRRL B-767), 
Escherichia coli (ATCC-25922), Listeria monocytogenes 
(ATCC-7644) and Candida albicans (ATCC-22019). 
Microbroth dilution-susceptibility assay was used for 
antimicrobial evaluation of the compounds. Stock solu-
tions of the samples were prepared in dimethylsulfoxide. 
Dilution series using sterile distilled water were pre-
pared from 0.65–4 mg/mL to 0.000633–0.0039 mg/mL in 
micro test tubes that were transferred to 96-well micro-
titre plates. Overnight-grown bacterial and C. albicans 
suspensions in double-strength Mueller–Hinton broth 
were standardised to 108 CFU/mL using McFarland No: 
0.5 standard solutions. 100 µL of each microorganism 
suspension were then added into the wells. The last well 
chain without a microorganism was used as a negative 
control. Sterile distilled water and the medium served 
as a positive growth control. After incubation at 37°C for 
18–24 h, antimicrobial activity was detected by spray-
ing of 0.5% TTC (triphenyl tetrazolium chloride, Merck) 
aqueous solution. MIC was defined as the lowest con-
centration of compounds that inhibited visible growth, 
as indicated by the TTC staining. Streptomycin was used 
as standard antibacterial agent, whereas ketoconazole 
was used as an antifungal agent.

Cytotoxicity
The cytotoxic activities of the tested compounds were 
determined by cell proliferation analysis using standard 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay32,33. Mouse embryonic fibroblast 
(NIH/3T3) cells were cultured in 96-well flat-bottom 
plates at 37°C for 24 h (2 × 104 cells per well). All of 
the compounds were dissolved in dimethyl sulfoxide 
(DMSO) individually and added to culture wells at vary-
ing concentrations (0.5–500 µg/mL); the highest final 
DMSO concentration was under 0.1%. After 24-hour 
drug incubation at 37°C, 20 µl MTT solution (5 mg/
mL MTT powder in PBS) was added to each well. Then 
3-hour incubation period was maintained in the same 
conditions. Purple formazan was occurred at the end of 
the process which is the reduction product of MTT agent 
by the mitochondrial dehydrogenase enzyme of intact 
cells. Formazan crystals were dissolved in 100 µL DMSO, 
and the absorbance was read by ELISA reader (OD

570nm
). 

The percentage of viable cells was calculated based on 
the medium control.

Result, discussion and conclusion

Chemistry
In this study, a series of carbazole-based compounds were 
synthesised via an easy, convenient and efficient syn-
thetic route. The synthesis of the compounds is shown in  
Scheme 1. To obtain final compounds, 3-amino-9-ethyl-
carbazole was reacted with chloroacetyl chloride to pro-
duce 2-chloro-N-(9-ethyl-9H-carbazole-3-yl)acetamide 

(1) which was then reacted with some phenol derivatives 
to get N-(9-ethyl-9H-carbazole-3-yl)-2-(substituted phe-
noxy)acetamide derivatives (2a-n).

The structure elucidation of the compounds was 
determined by IR, 1H-NMR, 13C-NMR, FAB+-MS spectral 
data and elemental analyses results.

In the IR spectra of all compounds, characteristic 
amide function was observed in the region 1659–
1698 cm−1 because of the amide C=O vibration. In addi-
tion, the amide N-H vibration of the compounds were 
seen at 3249–3440 cm−1 region as expected.

The 1H-NMR spectral data were also consistent  
with the assigned structures. In the 400 MHz 1H-NMR 
spectrum of compounds, the O-CH

2
 protons resonated 

at 4.6–5.01 ppm as a singlet and also N-H protons  
were observed at 10.01–10.65 ppm. For ethyl substitu-
tion, CH

3
 protons were observed at about 1.31 ppm as 

triplet and CH
2
 protons at 4.42–4.43 ppm as quartet. In 

aromatic region, the signal of the carbazole C
4
-H and 

carbazole C
5
-H protons was observed much further 

from upfield at about 8.06–8.46 ppm34 and the other 
characteristic aromatic protons were observed at 
expected regions.

In the 13C-NMR spectra of the compounds, the signal 
of characteristic carbonyl carbon appeared at 166.27 ppm 
and O-CH

2
 at 67.52 ppm, respectively.

In the MS spectra, the electron-spraying technique 
with positive polarity mode was applied and M+1 peaks 
were detected as base peak.

All compounds gave satisfactory elemental analysis 
results.

Antimicrobial activity and toxicity
Antimicrobial activity was investigated by finding mini-
mum inhibitory concentration (MIC) of the synthe-
sised compounds against S. aureus, L. monocytogenes,  
E. coli, Pseudomonas aeruginosa, M. luteus, B. subtilis 
and C. albicans comparing with streptomycin and keto-
conazole as standard drug. The MIC value of the com-
pounds and control drugs are summarised in Table 2.

The MIC values were generally within the range of 
31.25–500 μg/mL. Most of the compounds showed sig-
nificant antifungal activity against C. albicans. In con-
sideration of synthesised compounds’ MIC values with 

Scheme 1. The synthetic protocol of the compounds (2a-n).
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standard drug, compounds 2a, 2c and 2n had more and 
2g had less antifungal activity than did ketoconazole 
and also 2b and 2f had similar antifungal activity to 
ketoconazole.

It was also observed that all compounds had anti-
microbial activity against all tested bacteria according 
to standard drug streptomycin. Especially, compounds 
2c and 2n are highly active against all of the evaluating 
bacterial strains. Compound 2n, which includes qui-
nolinoxy moiety, exhibited equipotent activity to stan-
dard drug with an MIC value of 31.25 μg/mL against  
S. aureus.

Compounds 2a, 2c and 2b had satisfying activ-
ity against P. aeruginosa. Compound 2c was the most  
effective against this bacteria with an MIC value of  
40.25 μg/mL, whereas streptomycin had an MIC value 
of 125 μg/mL.

Compounds were also studied for their cytotoxic 
properties using MTT assay. The IC

50
 (μg/mL) values  

of the compounds against NIH/3T3 cells are shown in 
Table 3. The biological study indicated that compounds 
2a, 2c, 2e, 2j and 2l possessed the highest cytotoxicity, 
whereas the other compounds exhibited moderate cyto-
toxicity except 2n. The IC

50
 concentration of compound 

2n was 300 μg/mL, which was greater than all MIC  
values observed against all tested bacteria and fungi for 
this compound.

In comparison of the results of cytotoxicity and anti-
microbial activity tests, it can be claimed that compound 
2n possibly has antimicrobial activity not because of its 
general toxicity but because of its selective antimicrobial 
effect. The recognition of alkoxyquinoline’s antimicrobial 
activity supports this result35.

In conclusion, all synthesised compounds can be 
potential antimicrobial agent against different tested 
microorganisms.
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