Tetrahedron: Asymmetry 24 (2013) 1281–1285

Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

A highly diastereoselective oxa-Pictet-Spengler approach to (+)-astropaquinone B and (+)-astropaquinone C and the formation of astropaquinone B dimer

Rodney A. Fernandes*, Sandip V. Mulay

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India

ARTICLE INFO

Article history: Received 1 July 2013 Accepted 3 September 2013

ABSTRACT

A concise and highly diastereoselective synthesis of (+)-astropaquinone B and (+)-astropaquinone C is reported. The synthetic strategy is based on an efficient combination of Dötz benzannulation using a chiral alkyne to construct the naphthalene unit and a highly diastereoselective oxa-Pictet-Spengler reaction to install the *trans*-configured pyran ring as the key steps.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Pyranonaphthoquinone antibiotics are isolated from various strains of bacteria and fungi, most of them being of microbial origin.¹ This class of antibiotics shows activity against various grampositive bacteria, pathogenic fungi, and yeasts, as well as having antiviral activity.¹ Several pyranonaphthoguinones have been proposed to act as effective bioreductive alkylating agents.² Wang et al.³ isolated three new naphthoquinones: astropaguinone A **1** and the pyranonaphthoguinones with a unique lactol ring, astropaquinones B 2, and C 3 (Fig. 1) from the cultures of the fresh water fungus Astrosphaeriella papuana YMF 1.01181, along with the known compound 6-hydroxy-2,4-dimethoxy-7-methylanthraguinone 4. Their structures were determined by spectroscopic techniques including 1D and 2D NMR. They showed moderate antagonistic activity against fungi and bacteria.³ Astropaquinone C 3 is a 7,9-dimethyl ether of pyranonaphthoquinone, (-)-thysanone 7,⁴ which was isolated from *Thysanophora penicilloides* (MF 5636, Merck Culture Collection). (-)-Thysanone 7 shows potent activity against human rhinoviruses (HRVs) 3C-protease (IC50 13 μ g/mL). Related compounds ascomycones A **5** and B **6**⁵ were isolated from the culture of an unknown ascomycete found on the bark of a dead twig in French Guiana. Recently, Zhang et al.⁶ isolated the enantiomers of astropaquinone B 2 and C 3, that is, ent-2 and ent-3 from the fungus Torula herbarum. Brimble et al.⁷ reported the first and only total synthesis of both astropaquinones B **2** and C **3** through a Staunton-Weinreb annulation.⁸ Due to the significant biological activity of thysanone 7 against HRV-3C protease several approaches for its synthesis and those of its analogs have been reported.9

Figure 1. Structures of astropaquinones 1-3, thysanone 7, and related molecules.

In continuation of our research program aimed at the stereoselective synthesis of pyranonapthoquinones and related compounds¹⁰ by employing the Dötz benzannulation¹¹ reaction as a key step, we became interested in the unique lactol containing pyranonaphthoquinones: (+)-astropaquinone B **2** and (+)-astropaquinone C **3**. Demethylation of any of these could give thysanone **7**. Herein we report a concise and highly diastereoselective synthesis of (+)-astropaquinone B **2** and (+)-astropaquinone C **3** along with the oxidative formation of a unique dimer of astropaquinone B **2**.

Tetrahedron

^{*} Corresponding author. Tel.: +91 (22) 25767174; fax: +91 (22) 25767152. *E-mail address:* rfernand@chem.iitb.ac.in (R.A. Fernandes).

^{0957-4166/\$ -} see front matter © 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetasy.2013.09.001

2. Results and discussion

Our retrosynthetic route to **2** and **3** is shown in Scheme 1. The synthesis of compounds **2** and **3** could be envisioned from the naphthyl alcohol **8** through an oxa-Pictet-Spengler reaction. The substituted naphthalene ring could be easily accessed by a Dötz benzannulation reaction of Fischer carbene **9** with chiral alkyne **10**. The TBDMS protection of the OH group *para* to the carbene carbon on the Fischer carbene **9** was aimed to increase the benzannulation reaction yield although its introduction adds one step to the synthesis. It is reported in the literature¹² that Fischer carbenes with an electron donating group at the *para* position of the aromatic ring (such as –OMe) give poor yields in Dötz benzannulation reactions which is one of the key steps in the synthesis.

The synthesis of 2 and 3 started from the known bromo compound **11**¹² (Scheme 2). The Fischer carbene **9** was prepared from 11 in good yield (65%). The Dötz benzannulation reaction of 9 with alkyne **10**^{10e} gave naphthol **12** in a moderate yield of 48%. A similar Fischer carbene with an -OMe group instead of -OTBDMS gave only 35% yield.¹⁰ⁱ The protection of the phenolic OH group using NaH (1.2 equiv) in DMF solvent gave a mixture of compounds, in which 13 was formed through arvl-OTBDMS deprotection and methylation along with the expected TBDMS containing compound. Increasing the base concentration (NaH. 2.2 equiv) resulted in only 13 (70%) where the complete removal of the phenolic TBDMS group occurred followed by methylation. The aliphatic-OTBDMS group remained intact. Removal of this from 13 gave the desired alcohol 8 in 96% yield. The latter was subjected to an oxa-Pictet-Spengler¹³ reaction with trimethylorthoformate in the presence of a catalytic amount of *p*-TsOH to furnish the *trans*-configured pyran **14** exclusively in excellent yields (92%).¹⁴ No trace of the cis-pyran product was observed within the detectable limits of NMR. The oxidation of compound 14 using phenyliodinebis(trifluoroacetate) (PIFA) provided (+)-astropaquinone B 2 in 80% yield $\{[\alpha]_{D}^{25} = +42.3 \text{ (c } 0.12, \text{ CHCl}_3), \text{ lit.}^7 \ [\alpha]_{D}^{19} = +35.0 \text{ (c } 0.14, \text{ CHCl}_3), \text{ lit.}^3 \ [\alpha]_{D}^{27.8} = +45.1 \text{ (c } 0.12, \text{ CHCl}_3)\} \text{ along with a small amount of }$ dimerized product 15 (10%). The formation of 15 was ascertained by the presence of only one aryl-H in the ¹H NMR corresponding to 8-ArH (and 8'-ArH) and by mass analysis. The formation of 15 is similar to the dimerization of ventiloquinone L as observed by Brimble et al.¹⁵ when quinone formation was carried out by using cerium ammonium nitrate. Further treatment of **2** with a catalytic amount of *p*-TsOH and water in benzene gave astropaquinone C 3 in 75% yield { $[\alpha]_D^{25} = +44.0 (c \ 0.1, CHCl_3), lit.^7 [\alpha]_D^{19} = +31.1 (c \ 0.10, CHCl_3), lit.^3 [\alpha]_D^{24.7} = +53.9 (c \ 0.10, CHCl_3)$ }. The spectroscopic data of both **2** and **3** were in excellent agreement with that reported in the literature.^{3,7}

Scheme 1. Retrosynthesis of astropaquinones B 2 and C 3.

Scheme 2. Synthesis of (+)-astropaquinone B **2**, (+)-astropaquinone C **3** and the formation of dimer **15**. Reagents and conditions: (a) (i) *n*-BuLi, Et₂O, $-50 \degree$ C, 15 min; (ii) Cr(CO)₆, Et₂O, $0\degree$ C, 1 h, rt, 2 h; (iii) Me₃OBF₄, CH₂Cl₂, $0\degree$ C, 1 h, rt, 2 h, 65%, (b) **10**, THF, 45 °C, 12 h, 48%, (c) NaH, DMF, MeI, $0\degree$ C to rt, 6 h, 70%, (d) TBAF, THF, rt, 6 h, 96%, (e) CH(OMe)₃, *p*-TsOH, CH₂Cl₂, rt, 1 h, 92%, (f) PIFA, CH₃CN-H₂O, $0\degree$ C, 5 min, **2** 80% and **15** 10%, (g) *p*-TsOH; H₂O, benzene, reflux, 4 h, 75%.

3. Conclusion

In conclusion, a concise diastereoselective synthesis of (+)-astropaquinone B and (+)-astropaquinone C has been achieved. A unique dimer of the former was isolated during quinone formation. The synthetic strategy features an efficient combination of a Dötz benzannulation reaction of a Fischer carbene with a chiral alkyne to construct the naphthalene unit and a highly diastereoselective oxa-Pictet-Spengler reaction to install the *trans*-configured pyran ring as the key steps. The synthesis was completed from the known compound **11** in six steps for **2** (15.4% overall yield) and seven steps for **3** (11.6% overall yield).

4. Experimental

4.1. General

Flasks were oven or flame dried and cooled in a desiccator. Dry reactions were carried out under an atmosphere of Ar or N₂. Solvents and reagents were purified by standard methods. Thin layer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO₄ or by UV lamp. ¹H NMR and ¹³C NMR were recorded at 400 and 100 MHz respectively, and chemical shifts are based on TMS peak at δ = 0.00 ppm for proton NMR, and CDCl₃ peak at δ = 77.00 ppm (t) for carbon NMR. IR samples were prepared by

evaporation from CHCl₃ on CsBr plates. High-resolution mass spectra were obtained using positive electrospray ionization.

4.1.1. (4-Bromo-3-methoxyphenoxy)(*tert*-butyl)-dimethyl-silane 11¹²

To a stirred solution of 4-bromoresorcinol (3.0 g, 15.87 mmol) in dry acetone (60 mL) were added K₂CO₃ (10.97 g, 79.36 mmol, 5.0 equiv) and TsCl (3.18 g, 16.7 mmol, 1.05 equiv). The reaction mixture was refluxed for 16 h and then cooled to room temperature. To the reaction mixture was added MeI (2.47 mL, 39.67 mmol, 2.5 equiv) and further refluxed for 12 h. It was then cooled to room temperature and the precipitated solid was filtered off. The filtrate was concentrated under reduced pressure and the residue diluted with water and EtOAc (1:1, 50 mL). The separated aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9:1 to 4:1) as eluent to afford 4-bromo-3-methoxyphenyl-4-methylbenzenesulfonate (5.05 g, 89%) as a white solid: mp 68-70 °C; IR (CHCl₃): v = 3015, 2942, 2862, 1596, 1578, 1481, 1446, 1403, 1374, 1307, 1292, 1273, 1211, 1194, 1179, 1139, 1120, 1092, 1048, 1025, 949, 855, 816, 784, 720, 703, 664 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): δ = 2.46 (s, 3H), 3.78 (s, 3H), 6.40 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.59 (d, *J* = 2.5 Hz, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.6 Hz, 1H), 7.71 (d, J = 8.2 Hz, 2H; ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.7, 56.3, 106.9,$ 109.9, 115.2, 128.5, 129.8, 131.9, 133.2, 145.6, 149.5, 156.4; HRMS m/z calcd for $[C_{14}H_{13}BrO_4S + Na]^+$ 378.9610, found: 378.9610.

To a stirred solution of the above 4-bromo-3-methoxyphenyl-4methylbenzenesulfonate (4.2 g, 11.76 mmol) in ethanol (30 mL) was added KOH (1.32 g, 23.52 mmol, 2.0 equiv). The reaction mixture was refluxed for 3 h and then cooled to room temperature. The solvent was evaporated at reduced pressure and the residue diluted with water and EtOAc (1:1, 50 mL). The separated aqueous layer was extracted with EtOAc (2 \times 30 mL). The combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1 to 7:3) as eluent to afford 4-bromo-3-methoxyphenol (2.1 g, 88%) as a white solid: mp 74-76 °C; IR (CHCl₃): v = 3462, 3010, 2943, 1607, 1590, 1487, 1468, 1450, 1430, 1297, 1267, 1199, 1168, 1128, 1047, 1024, 951, 830, 797, 758, 625 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): δ = 3.84 (s, 3H), 5.68 (s, 1H, OH), 6.34 (dd, I = 8.5, 2.7 Hz, 1H), 6.45 (d, J = 2.7 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 56.1$, 100.5, 102.1, 108.6, 133.3, 156.1, 156.6; HRMS m/z calcd for $[C_7H_7BrO_2 + Na]^+$ 224.9522, found: 224.9523.

To a solution of the above 4-bromo-3-methoxyphenol (1.80 g, 8.87 mmol) in dry THF (30 mL) was added NaH (0.277 g, 11.53 mmol, 1.3 equiv) at 0 °C and stirred for 15 min. Next, TBDMSCI (2.0 g, 13.31 mmol, 1.5 equiv) was added at 0 °C and then slowly warmed to room temperature and the reaction mixture stirred for 12 h. After completion of the reaction, it was quenched with sat. aq. NaHCO3 (20 mL). The solvent was evaporated at reduced pressure and the aqueous layer extracted with EtOAc $(3 \times 20 \text{ mL})$. The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/ EtOAc (9.5:0.5 to 9:1) as eluent to afford **11** (2.75 g, 98%) as a colorless oil; IR (CHCl₃): v = 2956, 2930, 2858, 1589, 1486, 1448, 1404, 1302, 1257, 1205, 1170, 1121, 1053, 1026, 979, 841, 781, 705, 670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): δ = 0.20 (s, 6H), 0.98 (s, 9H), 3.85 (s, 3H), 6.34 (dd, J=8.5, 2.6 Hz, 1H), 6.41 (d, J = 2.6 Hz, 1H), 7.33 (d, J = 8.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = -4.5, 18.2, 25.6, 56.1, 103.0, 105.0, 113.2, 133.0, 156.2, 156.4; HRMS *m/z* calcd for $[C_{13}H_{21}BrO_2Si + H]^+$ 317.0567, found: 317.0567.

4.1.2. (*S*)-7-(*tert*-Butyldimethylsilyloxy)-2-[2-(*tert*-butyldi-methylsilyloxy)propyl]-4,5-dimethoxynaphthalen-1-ol 12

To a solution of **11** (1.0 g, 3.15 mmol) in dry Et₂O (25 mL) at $-50 \,^{\circ}$ C was added *n*-BuLi (2.2 mL 3.49 mmol, 1.1 equiv, 1.6 M solution in hexane) and the reaction mixture was stirred for 15 min. It was then transferred to a suspension of Cr(CO)₆ (0.832 g, 3.78 mmol, 1.2 equiv) in dry Et₂O (25 mL) at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and then at room temperature for 2 h. Next, Et₂O was evaporated off and the residue was dissolved in dry CH₂Cl₂ (25 mL). To this solution was added Me₃OBF₄ (0.70 g, 4.73 mmol, 1.5 equiv) in portions at 0 °C and the reaction mixture was stirred for 1 h. It was warmed to room temperature and stirred for 2 h. The red colored reaction mixture was concentrated and the residue was purified by silica gel column chromatography using petroleum ether/CH₂Cl₂ (9:1 to 4:1) as eluent to give **9** (0.968 g, 65%) as a red colored semisolid. This was used immediately in the next step.

To a solution of freshly prepared Fischer carbene 9 (0.94 g, 1.99 mmol) in dry and degassed THF (15 mL) was added a solution of alkyne 10 (0.79 g, 3.98 mmol, 2.0 equiv 99% e.e.) in dry and degassed THF (5 mL). The reaction mixture was heated at 45 °C for 12 h and then allowed to cool to room temperature, exposed to air, and further stirred for 1 h. Next, the THF was removed and the residue purified by silica gel column chromatography using petroleum ether/EtOAc (9:1 to 4:1) as eluent to afford 12 (0.484 g, 48%) as a light yellow semisolid; $[\alpha]_D^{25} = -10.6$ (c 1.2, CHCl₃); IR (CHCl₃): v = 3434, 2956, 2927, 2856, 1653, 1605, 1592, 1512, 1464, 1378, 1328, 1258, 1216, 1159, 1125, 1090, 1036, 985, 939, 838, 780, 759 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): $\delta = -0.12$ (s, 3H), 0.04 (s, 3H), 0.26 (s, 6H), 0.88 (s, 9H), 1.01 (s, 9H), 1.23 (d, / = 6.1 Hz, 3H), 2.88 (d, / = 5.2 Hz, 2H), 3.88 (s, 3H), 3.93 (s, 3H), 4.21–4.28 (m, 1H), 6.39 (s, 1H), 6.44 (d, J = 2.4 Hz, 1H), 7.26 (d, J = 2.4 Hz, 1H), 8.4 (s, 1H, OH); ¹³C NMR (100 MHz. $CDCl_3$): $\delta = -5.3, -4.9, -4.44, -4.39, 17.9, 18.3, 23.1, 25.7, 25.8, -4.9, -4.44, -4.39, 17.9, 18.3, 23.1, 25.7, 25.8, -4.9, -4.44, -4.39, 17.9, 18.3, 23.1, 25.7, 25.8, -4.9, -4.44, -4.39, -4.44, -4.39, -4.44, -4.39, -4.44, -4.39, -4.44, -4.39, -4.44, -4.39, -4.44$ 41.7, 56.1, 57.4, 71.7, 102.2, 102.6, 108.8, 113.4, 118.9, 129.6, 144.1, 150.2, 153.5, 157.7; HRMS *m/z* calcd for [C₂₇H₄₆O₅Si₂+H]⁺ 507.2962, found: 507.2955.

4.1.3. (S)-tert-Butyldimethyl[1-(1,4,5,7-tetramethoxy-naphthalen-2-yl)propan-2-yloxy]silane 13

To a solution of **12** (0.4 g, 0.789 mmol) in dry DMF (15 mL) at 0 °C was added NaH (41.6 mg, 1.74 mmol, 2.2 equiv) and stirred for 30 min. Next, MeI (0.2 mL, 3.16 mmol, 4.0 equiv) was added and the reaction mixture was stirred for 6 h at room temperature. Ice cooled water was added and the reaction mixture extracted with EtOAc (3 \times 20 mL). The combined organic layers were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9:1 to 3:2) as eluent to give 13 (0.232 g, 70%) as a colorless oil; $[\alpha]_D^{25} = +24.6$ (*c* 0.25, CHCl₃); IR (CHCl₃): *v* = 2956, 2930, 2856, 1676, 1621, 1606, 1468, 1404, 1380, 1246, 1155, 1124, 1083, 1061, 1006, 833 cm $^{-1}$; ¹H NMR (400 MHz, CDCl₃/ TMS): $\delta = -0.14$ (s, 3H), -0.03 (s, 3H), 0.84 (s, 9H), 1.19 (d, *J* = 6.0 Hz, 3H), 2.78 (dd, *J* = 13.1, 5.9 Hz, 1H), 2.92 (dd, *J* = 13.1, 7.0 Hz, 1H), 3.84 (s, 3H), 3.91 (s, 3H), 3.92 (s, 3H), 3.93 (s, 3H), 4.15-4.23 (m, 1H), 6.49 (d, J = 2.4 Hz, 1H), 6.54 (s, 1H), 6.96 (d, I = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = -5.0, -4.9, 18.1,$ 23.8, 25.8, 40.8, 55.2, 56.2, 56.6, 61.0, 69.2, 92.9, 98.3, 107.5, 113.0, 128.8, 132.0, 146.9, 153.0, 158.4, 158.6; HRMS m/z calcd for [C₂₃H₃₆O₅Si+H]⁺ 421.2410, found: 421.2398.

4.1.4. (S)-1-(1,4,5,7-Tetramethoxynaphthalen-2-yl)-propan-2-ol 8

To a solution of compound 13 (0.2 g, 0.475 mmol) in dry THF (20 mL) was added TBAF (0.95 mL, 0.95 mmol, 1 M solution in THF, 2.0 equiv). The reaction mixture was stirred at room temperature for 6 h. It was then quenched with water (10 mL) and THF was removed under reduced pressure. The solution was extracted with EtOAc $(3 \times 20 \text{ mL})$ and the combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether-EtOAc (9:1 to 3:2) as eluent to give 8 (0.140 g, 96%) as a colorless oil; $[\alpha]_{D}^{25} = +26.7$ (*c* 0.4, CHCl₃); IR (CHCl₃): v = 3481, 3018, 2965, 2939, 2843, 1619, 1606, 1511, 1467, 1450, 1404, 1381, 1355, 1263, 1173, 1154, 1121, 1082, 1060, 1004, 941, 930, 834 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): δ = 1.29 (d, J = 6.2 Hz, 3H), 2.90 (d, *I* = 6.1 Hz, 2H), 3.86 (s, 3H), 3.92 (s, 3H), 3.93 (s, 3H), 3.94 (s, 3H), 4.16-4.21 (m, 1H), 6.51 (s, 2H), 6.96 (d, J = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 23.2, 40.4, 55.2, 56.3, 56.7, 61.0, 68.6, 92.9, 98.6, 106.5, 113.2, 127.9, 132.0, 146.8, 153.7, 158.7; HRMS m/z calcd for $[C_{17}H_{22}O_5+H]^+$ 307.1545, found: 307.1550.

4.1.5. (1*R*,3*S*)-1,5,7,9,10-Pentamethoxy-3-methyl-3,4-dihydro-1*H*-benzo[g]isochromene 14

To a solution of alcohol 8 (100 mg, 0.326 mmol) in CH_2Cl_2 (8 mL) were added trimethylorthoformate (0.36 mL, 3.26 mmol, 10.0 equiv) and *p*-TsOH.H₂O (5.6 mg, 0.0294 mmol). The reaction mixture was stirred at room temperature for 1 h and then quenched with satd aq NaHCO₃ (8 mL) and the solution extracted with CH_2Cl_2 (3 × 15 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9:1 to 4:1) as eluent to afford 14 (104 mg, 92%) as a colorless oil; $[\alpha]_D^{25} = -89.7$ (*c* 0.64, CHCl₃); IR (CHCl₃): *v* = 2972, 2935, 2842, 1622, 1603, 1585, 1504, 1469, 1452, 1414, 1387, 1343, 1261, 1231, 1205, 1161, 1134, 1116, 1083, 1068, 1047, 1008, 974, 941, 849, 833, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/ TMS): $\delta = 1.43$ (d, I = 6.2 Hz, 3H), 2.56 (dd, I = 17.0, 11.6 Hz, 1H), 3.03 (dd, J = 17.0, 3.3 Hz, 1H), 3.59 (s, 3H), 3.83 (s, 3H), 3.86 (s, 3H), 3.93 (s, 3H), 3.96 (s, 3H), 4.33-4.41 (m, 1H), 5.83 (s, 1H), 6.50 (d, I = 2.3 Hz, 1H), 6.94 (d, I = 2.3 Hz, 1H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 21.5, 30.2, 54.8, 55.2, 55.9, 60.1, 61.8, 63.0, \delta = 21.5, 30.2, 54.8, 55.2, 55.9, 60.1, 61.8, 63.0, \delta = 21.5, 55.2, 55.9, 55.2, 55.9, 55.9, 55.2, 55.9, 55.9, 55.2, 55.9, 55.9, 55.2, 55.9, 55$ 92.4, 96.0, 98.5, 115.2, 122.7, 124.8, 131.6, 147.6, 150.8, 157.6, 158.5; HRMS m/z calcd for $[C_{19}H_{24}O_6+H]^+$ 349.1651, found: 349.1657.

4.1.6. (+)-Astropaquinone B 2 and (1*R*,1'*R*,3*S*,3'*S*)-1,1',7,7',9,9'hexamethoxy-3,3'-dimethyl-3,3',4,4'-tetrahydro-1*H*,1'*H*-6,6'dibenzo[*g*]isochromene-5,5',10,10'-tetraone 15

To a stirred solution of 14 (50 mg, 0.144 mmol) in CH₃CN (5 mL) and water (5 mL) was added phenyliodine bis(trifluoroacetate) (PIFA, 124 mg, 0.288 mmol, 2.0 equiv). The reaction mixture was stirred at 0 °C for 5 min. It was then diluted with EtOAc (10 mL) and the organic layer separated. The aqueous layer was extracted with EtOAc $(3 \times 10 \text{ mL})$ and the combined organic extracts were washed with water and brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1 to 7:3) as eluent to afford 2 (36.5 mg, 80%) as a yellow solid. Further elution with petroleum ether/EtOAc (2:3) as eluent gave 15 (9.1 mg, 10%) as a yellow solid. Data for **2**: mp = 162–164 °C, lit.⁷ mp = 164–167 °C; $[\alpha]_D^{25} = +42.3$ (c 0.12, CHCl₃), lit.⁷ $[\alpha]_D^{19} = +35.0$ (c 0.14, CHCl₃), lit.³ $[\alpha]_D^{27.8} = +45.1$ (*c* 0.12, CHCl₃); IR (CHCl₃): *v* = 3015, 2963, 2930, 2852, 1659, 1594, 1563, 1467, 1457, 1385, 1339, 1322, 1196, 1160, 1089, 1071, 1055, 1038, 961, 940, 860, 840, 821, 720, 686, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): δ = 1.38 (d, J = 6.3 Hz,

3H), 2.23 (dd, *J* = 19.1, 11.0 Hz, 1H), 2.66 (dd, *J* = 19.1, 3.5 Hz, 1H), 3.56 (s, 3H), 3.94 (s, 3H), 3.96 (s, 3H), 4.19-4.25 (m, 1H), 5.54 (s, 1H), 6.72 (d, J = 2.4 Hz, 1H), 7.23 (d, J = 2.4 Hz, 1H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 20.9$, 29.0, 55.9, 56.2, 56.4, 62.0, 93.7, 103.2, 104.3, 114.2, 135.7, 140.5, 140.9, 162.0, 164.5, 180.8, 184.9; HRMS m/z calcd for $[C_{17}H_{18}O_6 + H]^+$ 319.1182, found: 319.1181. Data for **15**: mp = 155–165 °C (decomp); $[\alpha]_{D}^{25} = +19.6$ (c 0.2, CHCl₃); IR (CHCl₃): v = 3017, 2973, 2934, 1666, 1579, 1550, 1470, 1433, 1344, 1304, 1264, 1220, 1167, 1126, 1094, 1049, 978, 924, 831, 707, 669 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): δ = 1.38 (d, J = 6.2 Hz, 6H), 2.28 (dd, J = 18.9, 11.2 Hz, 2H), 2.63 (dd, J = 18.9, 3.4 Hz, 2H), 3.56 (s, 6H), 4.02 (s, 6H), 4.03 (s, 6H), 4.14-4.23 (m, 2H), 5.53 (s, 2H), 6.76 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 29.3, 56.1, 56.6, 56.7, 62.1, 93.4, 100.3, 114.7, 115.8, 130.9, 139.4, 142.2, 160.5, 160.7, 180.2, 184.2; HRMS m/z calcd for [C₃₄H₃₄O₁₂+H]⁺635.2128, found: 635.2132.

4.1.7. (+)-Astropaquinone C 3

To a stirred solution of 2 (20 mg, 0.063 mmol) in benzene (5 mL) and water (1 drop) was added p-TsOH·H₂O (cat). The reaction mixture was refluxed for 4 h. It was then guenched with satd aq NaHCO₃ (2 mL) and the aqueous layer extracted with EtOAc $(3 \times 10 \text{ mL})$. The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1 to 2:1) as eluent to afford 3 (14.4 mg, 75%) as a yellow solid: mp = 181–183 °C, lit.⁷ mp = 178–181 °C; $[\alpha]_D^{25} = +44.0$ (c 0.1, CHCl₃), lit.⁷ $[\alpha]_D^{19} = +31.1$ (c 0.10, CHCl₃), lit.³ $[\alpha]_D^{24.7} = +53.9$ (c 0.10, CHCl₃); IR (CHCl₃): v = 3434, 3011, 2925, 2854, 1658, 1595, 1563, 1463, 1380, 1347, 1321, 1277, 1217, 1160, 1122, 1081, 1031, 968, 941, 922, 863, 829, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃/TMS): $\delta = 1.40$ (d, J = 6.2 Hz, 3H), 2.23 (dd, J = 19.1, 11.1 Hz, 1H), 2.71 (dd, J = 19.1, 3.2 Hz, 1H), 3.96 (s, 3H), 3.97 (s, 3H), 4.28-4.36 (m, 1H), 6.02 (s, 1H), 6.74 (d, J = 2.4 Hz, 1H), 7.26(d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.9$, 29.0, 56.0, 56.4, 62.9, 87.2, 103.6, 104.3, 113.9, 135.7, 140.4, 142.1, 162.1, 164.9, 182.1, 184.6; HRMS *m/z* calcd for $[C_{16}H_{16}O_6+K]^+$ 343.0584, found: 343.0586.

Acknowledgements

This work was financially supported by the Department of Science and Technology, New Delhi (Grant No. SR/S1/OC-25/2008) and Board of Research in Nuclear sciences (BRNS), Government of India (Grant No. 2009/37/25 BRNS). S.V.M. thank the Council of Scientific and Industrial Research (CSIR) New Delhi for a senior research fellowship.

References

- (a) Brimble, M. A.; Duncalf, L. J.; Nairn, M. R. Nat. Prod. Rep. **1999**, *16*, 267–281;
 (b) Brimble, M. A.; Nairn, M. R.; Prabaharan, H. Tetrahedron **2000**, *56*, 1937–1992;
 (c) Sperry, J.; Bachu, P.; Brimble, M. A. Nat. Prod. Rep. **2008**, *25*, 376–400.
- (a) Moore, H. W. Science 1977, 197, 527–532; (b) Moore, H. W.; Czerniak, R. Med. Res. Rev. 1981, 1, 249–280.
- Wang, L; Dong, J. Y.; Song, H. C.; Shen, K. Z.; Wang, L. M.; Sun, R.; Wang, C. R.; Gao, Y. X.; Li, G. H.; Li, L; Zhang, K. Q. Planta Med. 2009, 75, 1339–1343.
- Singh, S. B.; Cordingley, M. G.; Ball, R. G.; Smith, J. L.; Dombrowski, A. W.; Goetz, M. A. Tetrahedron Lett. 1991, 32, 5279–5282.
- 5. Opatz, T.; Kolshorn, H.; Thines, E.; Anke, H. J. Nat. Prod. 2008, 71, 1973–1976.
- Geng, W. L.; Wang, X. Y.; Kurtan, T.; Mandi, A.; Tang, H.; Schulz, B.; Sun, P.; Zhang, W. J. Nat. Prod. 2012, 75, 1828–1832.
- 7. Wadsworth, A. D.; Sperry, J.; Brimble, M. A. Synthesis 2010, 2604-2608.
- (a) Evans, G. E.; Leeper, F. J.; Murphy, J. A.; Staunton, J. J. Chem. Soc., Chem. Commun. 1979, 205–206; (b) Dodd, J. H.; Weinreb, S. M. Tetrahedron Lett. 1979, 20, 3593–3596; (c) Zhang, Z.; Yu, B. J. Org. Chem. 2003, 68, 6309–6313.
- For the total synthesis of thysanone, see: (a) Gill, M.; Donner, C. D. Tetrahedron Lett. 1999, 40, 3921–3924; (b) Donner, C. D.; Gill, M.J. Chem. Soc., Perkin Trans. 1 2002, 938–948; (c) Sperry, J.; Brimble, M. A. Synlett 2008, 1910–1912; (d) Sperry, J.; Yuen, T. Y.; Brimble, M. A. Synthesis 2009, 2561–2569. For analogue synthesis, see; (e) Brimble, M. A.; Elliott, R. J. R.; McEwan, J. F. Aust. J. Chem.

2000, 53, 571–576; (f) Brimble, M. A.; Elliott, R. J. R. *Tetrahedron* **2002**, 58, 183–189; (g) Kraus, G. A.; Ogutu, H. *Tetrahedron* **2002**, 58, 7391–7395; (h) Bulbule, V. J.; Koranne, P. S.; Deshpande, V. H.; Borate, H. B. *Tetrahedron* **2007**, 63, 166–170; (i) Brimble, M. A.; Houghton, S. I.; Woodgate, P. D. *Tetrahedron* **2007**, 63, 880–887; (j) Sawant, R. T.; Jadhav, S. G.; Waghmode, S. B. *Eur. J. Org. Chem.* **2010**, 4442–4449. For the formal synthesis of thysanone, see:; (k) Bachu, P.; Sperry, J.; Brimble, M. A. *Tetrahedron* **2008**, 64, 4827–4834; (l) Sawant, R. T.; Waghmode, S. B. *Tetrahedron* **2009**, 65, 1599–1602.

(a) Fernandes, R. A.; Chavan, V. P. *Tetrahedron Lett.* 2008, 49, 3899–3901; (b) Fernandes, R. A.; Chavan, V. P.; Ingle, A. B. *Tetrahedron Lett.* 2008, 49, 6341–6343; (c) Fernandes, R. A.; Chavan, V. P. *Eur. J. Org. Chem.* 2010, 4306–4311; (d) Fernandes, R. A.; Mulay, S. V. *Synlett* 2010, 2667–2671; (e) Fernandes, R. A.; Mulay, S. V. *Synlett* 2010, 2667–2671; (e) Fernandes, R. A.; Chavan, V. P.; Mulay, S. V. *Tetrahedron: Asymmetry* 2011, 22, 487–492; (g) Fernandes, R. A.; Chavan, V. P. *Tetrahedron: Asymmetry* 2011, 22, 487–492; (h) Fernandes, R. A.; Ingle, A. B. *Eur. J. Org. Chem.* 2011, 6624–6627; (i)

Fernandes, R. A.; Ingle, A. B.; Chavan, V. P. Org. Biomol. Chem. **2012**, *10*, 4462–4466; (j) Fernandes, R. A.; Chavan, V. P.; Mulay, S. V.; Manchoju, A. J. Org. Chem. **2012**, *77*, 10455–10460.

- (a) Dötz, K. H. Angew. Chem., Int. Ed. 1975, 14, 644–645; (b) Dötz, K. H.; Tomuschat, P. Chem. Soc. Rev. 1999, 28, 187–198.
- Bos, M. E.; Wulff, W. D.; Miller, R. A.; Chamberlin, S.; Brandvold, T. A. J. Am. Chem. Soc. 1991, 113, 9293–9319. See the Experimental section for its preparation.
- (a) Bender, C. F.; Yoshimoto, F. K.; Paradise, C. L.; De Brabander, J. K. J. Am. Chem. Soc. 2009, 131, 11350–11352; (b) Masquelin, T.; Hengartner, U.; Streith, J. Synthesis 1995, 780–786; (c) Larghi, E. L.; Kaufman, T. S. Eur. J. Org. Chem. 2011, 5195–5231.
- 14. The assigned *trans*-stereochemistry was confirmed by converting it into **2**.
- Sperty, J.; Sajberg, J. J. P.; Stiemke, F. M.; Brimble, M. A. Org. Biomol. Chem. 2009, 7, 2599–2603.